1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 DEBUG_COUNTER(CSECounter, "early-cse", 73 "Controls which instructions are removed"); 74 75 static cl::opt<unsigned> EarlyCSEMssaOptCap( 76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 78 "for faster compile. Caps the MemorySSA clobbering calls.")); 79 80 static cl::opt<bool> EarlyCSEDebugHash( 81 "earlycse-debug-hash", cl::init(false), cl::Hidden, 82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 83 "function is well-behaved w.r.t. its isEqual predicate")); 84 85 //===----------------------------------------------------------------------===// 86 // SimpleValue 87 //===----------------------------------------------------------------------===// 88 89 namespace { 90 91 /// Struct representing the available values in the scoped hash table. 92 struct SimpleValue { 93 Instruction *Inst; 94 95 SimpleValue(Instruction *I) : Inst(I) { 96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 97 } 98 99 bool isSentinel() const { 100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 102 } 103 104 static bool canHandle(Instruction *Inst) { 105 // This can only handle non-void readnone functions. 106 // Also handled are constrained intrinsic that look like the types 107 // of instruction handled below (UnaryOperator, etc.). 108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 109 if (Function *F = CI->getCalledFunction()) { 110 switch ((Intrinsic::ID)F->getIntrinsicID()) { 111 case Intrinsic::experimental_constrained_fadd: 112 case Intrinsic::experimental_constrained_fsub: 113 case Intrinsic::experimental_constrained_fmul: 114 case Intrinsic::experimental_constrained_fdiv: 115 case Intrinsic::experimental_constrained_frem: 116 case Intrinsic::experimental_constrained_fptosi: 117 case Intrinsic::experimental_constrained_sitofp: 118 case Intrinsic::experimental_constrained_fptoui: 119 case Intrinsic::experimental_constrained_uitofp: 120 case Intrinsic::experimental_constrained_fcmp: 121 case Intrinsic::experimental_constrained_fcmps: { 122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 123 return CFP->isDefaultFPEnvironment(); 124 } 125 } 126 } 127 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 128 } 129 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 130 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 131 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 132 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 133 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 134 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 135 } 136 }; 137 138 } // end anonymous namespace 139 140 namespace llvm { 141 142 template <> struct DenseMapInfo<SimpleValue> { 143 static inline SimpleValue getEmptyKey() { 144 return DenseMapInfo<Instruction *>::getEmptyKey(); 145 } 146 147 static inline SimpleValue getTombstoneKey() { 148 return DenseMapInfo<Instruction *>::getTombstoneKey(); 149 } 150 151 static unsigned getHashValue(SimpleValue Val); 152 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 153 }; 154 155 } // end namespace llvm 156 157 /// Match a 'select' including an optional 'not's of the condition. 158 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 159 Value *&B, 160 SelectPatternFlavor &Flavor) { 161 // Return false if V is not even a select. 162 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 163 return false; 164 165 // Look through a 'not' of the condition operand by swapping A/B. 166 Value *CondNot; 167 if (match(Cond, m_Not(m_Value(CondNot)))) { 168 Cond = CondNot; 169 std::swap(A, B); 170 } 171 172 // Match canonical forms of min/max. We are not using ValueTracking's 173 // more powerful matchSelectPattern() because it may rely on instruction flags 174 // such as "nsw". That would be incompatible with the current hashing 175 // mechanism that may remove flags to increase the likelihood of CSE. 176 177 Flavor = SPF_UNKNOWN; 178 CmpInst::Predicate Pred; 179 180 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 181 // Check for commuted variants of min/max by swapping predicate. 182 // If we do not match the standard or commuted patterns, this is not a 183 // recognized form of min/max, but it is still a select, so return true. 184 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 185 return true; 186 Pred = ICmpInst::getSwappedPredicate(Pred); 187 } 188 189 switch (Pred) { 190 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 191 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 192 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 193 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 194 // Non-strict inequalities. 195 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 196 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 197 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 198 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 199 default: break; 200 } 201 202 return true; 203 } 204 205 static unsigned getHashValueImpl(SimpleValue Val) { 206 Instruction *Inst = Val.Inst; 207 // Hash in all of the operands as pointers. 208 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 209 Value *LHS = BinOp->getOperand(0); 210 Value *RHS = BinOp->getOperand(1); 211 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 212 std::swap(LHS, RHS); 213 214 return hash_combine(BinOp->getOpcode(), LHS, RHS); 215 } 216 217 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 218 // Compares can be commuted by swapping the comparands and 219 // updating the predicate. Choose the form that has the 220 // comparands in sorted order, or in the case of a tie, the 221 // one with the lower predicate. 222 Value *LHS = CI->getOperand(0); 223 Value *RHS = CI->getOperand(1); 224 CmpInst::Predicate Pred = CI->getPredicate(); 225 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 226 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 227 std::swap(LHS, RHS); 228 Pred = SwappedPred; 229 } 230 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 231 } 232 233 // Hash general selects to allow matching commuted true/false operands. 234 SelectPatternFlavor SPF; 235 Value *Cond, *A, *B; 236 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 237 // Hash min/max (cmp + select) to allow for commuted operands. 238 // Min/max may also have non-canonical compare predicate (eg, the compare for 239 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 240 // compare. 241 // TODO: We should also detect FP min/max. 242 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 243 SPF == SPF_UMIN || SPF == SPF_UMAX) { 244 if (A > B) 245 std::swap(A, B); 246 return hash_combine(Inst->getOpcode(), SPF, A, B); 247 } 248 249 // Hash general selects to allow matching commuted true/false operands. 250 251 // If we do not have a compare as the condition, just hash in the condition. 252 CmpInst::Predicate Pred; 253 Value *X, *Y; 254 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 255 return hash_combine(Inst->getOpcode(), Cond, A, B); 256 257 // Similar to cmp normalization (above) - canonicalize the predicate value: 258 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 259 if (CmpInst::getInversePredicate(Pred) < Pred) { 260 Pred = CmpInst::getInversePredicate(Pred); 261 std::swap(A, B); 262 } 263 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 264 } 265 266 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 267 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 268 269 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 270 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 271 272 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 273 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 274 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 275 276 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 277 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 278 IVI->getOperand(1), 279 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 280 281 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 282 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 283 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 284 isa<FreezeInst>(Inst)) && 285 "Invalid/unknown instruction"); 286 287 // Handle intrinsics with commutative operands. 288 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 289 // 2 operands are commutative. 290 auto *II = dyn_cast<IntrinsicInst>(Inst); 291 if (II && II->isCommutative() && II->arg_size() == 2) { 292 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 293 if (LHS > RHS) 294 std::swap(LHS, RHS); 295 return hash_combine(II->getOpcode(), LHS, RHS); 296 } 297 298 // gc.relocate is 'special' call: its second and third operands are 299 // not real values, but indices into statepoint's argument list. 300 // Get values they point to. 301 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 302 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 303 GCR->getBasePtr(), GCR->getDerivedPtr()); 304 305 // Mix in the opcode. 306 return hash_combine( 307 Inst->getOpcode(), 308 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 309 } 310 311 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 312 #ifndef NDEBUG 313 // If -earlycse-debug-hash was specified, return a constant -- this 314 // will force all hashing to collide, so we'll exhaustively search 315 // the table for a match, and the assertion in isEqual will fire if 316 // there's a bug causing equal keys to hash differently. 317 if (EarlyCSEDebugHash) 318 return 0; 319 #endif 320 return getHashValueImpl(Val); 321 } 322 323 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 324 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 325 326 if (LHS.isSentinel() || RHS.isSentinel()) 327 return LHSI == RHSI; 328 329 if (LHSI->getOpcode() != RHSI->getOpcode()) 330 return false; 331 if (LHSI->isIdenticalToWhenDefined(RHSI)) 332 return true; 333 334 // If we're not strictly identical, we still might be a commutable instruction 335 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 336 if (!LHSBinOp->isCommutative()) 337 return false; 338 339 assert(isa<BinaryOperator>(RHSI) && 340 "same opcode, but different instruction type?"); 341 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 342 343 // Commuted equality 344 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 345 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 346 } 347 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 348 assert(isa<CmpInst>(RHSI) && 349 "same opcode, but different instruction type?"); 350 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 351 // Commuted equality 352 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 353 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 354 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 355 } 356 357 // TODO: Extend this for >2 args by matching the trailing N-2 args. 358 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 359 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 360 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 361 LII->isCommutative() && LII->arg_size() == 2) { 362 return LII->getArgOperand(0) == RII->getArgOperand(1) && 363 LII->getArgOperand(1) == RII->getArgOperand(0); 364 } 365 366 // See comment above in `getHashValue()`. 367 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 368 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 369 return GCR1->getOperand(0) == GCR2->getOperand(0) && 370 GCR1->getBasePtr() == GCR2->getBasePtr() && 371 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 372 373 // Min/max can occur with commuted operands, non-canonical predicates, 374 // and/or non-canonical operands. 375 // Selects can be non-trivially equivalent via inverted conditions and swaps. 376 SelectPatternFlavor LSPF, RSPF; 377 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 378 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 379 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 380 if (LSPF == RSPF) { 381 // TODO: We should also detect FP min/max. 382 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 383 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 384 return ((LHSA == RHSA && LHSB == RHSB) || 385 (LHSA == RHSB && LHSB == RHSA)); 386 387 // select Cond, A, B <--> select not(Cond), B, A 388 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 389 return true; 390 } 391 392 // If the true/false operands are swapped and the conditions are compares 393 // with inverted predicates, the selects are equal: 394 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 395 // 396 // This also handles patterns with a double-negation in the sense of not + 397 // inverse, because we looked through a 'not' in the matching function and 398 // swapped A/B: 399 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 400 // 401 // This intentionally does NOT handle patterns with a double-negation in 402 // the sense of not + not, because doing so could result in values 403 // comparing 404 // as equal that hash differently in the min/max cases like: 405 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 406 // ^ hashes as min ^ would not hash as min 407 // In the context of the EarlyCSE pass, however, such cases never reach 408 // this code, as we simplify the double-negation before hashing the second 409 // select (and so still succeed at CSEing them). 410 if (LHSA == RHSB && LHSB == RHSA) { 411 CmpInst::Predicate PredL, PredR; 412 Value *X, *Y; 413 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 414 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 415 CmpInst::getInversePredicate(PredL) == PredR) 416 return true; 417 } 418 } 419 420 return false; 421 } 422 423 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 424 // These comparisons are nontrivial, so assert that equality implies 425 // hash equality (DenseMap demands this as an invariant). 426 bool Result = isEqualImpl(LHS, RHS); 427 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 428 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 429 return Result; 430 } 431 432 //===----------------------------------------------------------------------===// 433 // CallValue 434 //===----------------------------------------------------------------------===// 435 436 namespace { 437 438 /// Struct representing the available call values in the scoped hash 439 /// table. 440 struct CallValue { 441 Instruction *Inst; 442 443 CallValue(Instruction *I) : Inst(I) { 444 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 445 } 446 447 bool isSentinel() const { 448 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 449 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 450 } 451 452 static bool canHandle(Instruction *Inst) { 453 // Don't value number anything that returns void. 454 if (Inst->getType()->isVoidTy()) 455 return false; 456 457 CallInst *CI = dyn_cast<CallInst>(Inst); 458 if (!CI || !CI->onlyReadsMemory()) 459 return false; 460 return true; 461 } 462 }; 463 464 } // end anonymous namespace 465 466 namespace llvm { 467 468 template <> struct DenseMapInfo<CallValue> { 469 static inline CallValue getEmptyKey() { 470 return DenseMapInfo<Instruction *>::getEmptyKey(); 471 } 472 473 static inline CallValue getTombstoneKey() { 474 return DenseMapInfo<Instruction *>::getTombstoneKey(); 475 } 476 477 static unsigned getHashValue(CallValue Val); 478 static bool isEqual(CallValue LHS, CallValue RHS); 479 }; 480 481 } // end namespace llvm 482 483 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 484 Instruction *Inst = Val.Inst; 485 486 // Hash all of the operands as pointers and mix in the opcode. 487 return hash_combine( 488 Inst->getOpcode(), 489 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 490 } 491 492 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 493 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 494 if (LHS.isSentinel() || RHS.isSentinel()) 495 return LHSI == RHSI; 496 497 return LHSI->isIdenticalTo(RHSI); 498 } 499 500 //===----------------------------------------------------------------------===// 501 // EarlyCSE implementation 502 //===----------------------------------------------------------------------===// 503 504 namespace { 505 506 /// A simple and fast domtree-based CSE pass. 507 /// 508 /// This pass does a simple depth-first walk over the dominator tree, 509 /// eliminating trivially redundant instructions and using instsimplify to 510 /// canonicalize things as it goes. It is intended to be fast and catch obvious 511 /// cases so that instcombine and other passes are more effective. It is 512 /// expected that a later pass of GVN will catch the interesting/hard cases. 513 class EarlyCSE { 514 public: 515 const TargetLibraryInfo &TLI; 516 const TargetTransformInfo &TTI; 517 DominatorTree &DT; 518 AssumptionCache &AC; 519 const SimplifyQuery SQ; 520 MemorySSA *MSSA; 521 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 522 523 using AllocatorTy = 524 RecyclingAllocator<BumpPtrAllocator, 525 ScopedHashTableVal<SimpleValue, Value *>>; 526 using ScopedHTType = 527 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 528 AllocatorTy>; 529 530 /// A scoped hash table of the current values of all of our simple 531 /// scalar expressions. 532 /// 533 /// As we walk down the domtree, we look to see if instructions are in this: 534 /// if so, we replace them with what we find, otherwise we insert them so 535 /// that dominated values can succeed in their lookup. 536 ScopedHTType AvailableValues; 537 538 /// A scoped hash table of the current values of previously encountered 539 /// memory locations. 540 /// 541 /// This allows us to get efficient access to dominating loads or stores when 542 /// we have a fully redundant load. In addition to the most recent load, we 543 /// keep track of a generation count of the read, which is compared against 544 /// the current generation count. The current generation count is incremented 545 /// after every possibly writing memory operation, which ensures that we only 546 /// CSE loads with other loads that have no intervening store. Ordering 547 /// events (such as fences or atomic instructions) increment the generation 548 /// count as well; essentially, we model these as writes to all possible 549 /// locations. Note that atomic and/or volatile loads and stores can be 550 /// present the table; it is the responsibility of the consumer to inspect 551 /// the atomicity/volatility if needed. 552 struct LoadValue { 553 Instruction *DefInst = nullptr; 554 unsigned Generation = 0; 555 int MatchingId = -1; 556 bool IsAtomic = false; 557 558 LoadValue() = default; 559 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 560 bool IsAtomic) 561 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 562 IsAtomic(IsAtomic) {} 563 }; 564 565 using LoadMapAllocator = 566 RecyclingAllocator<BumpPtrAllocator, 567 ScopedHashTableVal<Value *, LoadValue>>; 568 using LoadHTType = 569 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 570 LoadMapAllocator>; 571 572 LoadHTType AvailableLoads; 573 574 // A scoped hash table mapping memory locations (represented as typed 575 // addresses) to generation numbers at which that memory location became 576 // (henceforth indefinitely) invariant. 577 using InvariantMapAllocator = 578 RecyclingAllocator<BumpPtrAllocator, 579 ScopedHashTableVal<MemoryLocation, unsigned>>; 580 using InvariantHTType = 581 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 582 InvariantMapAllocator>; 583 InvariantHTType AvailableInvariants; 584 585 /// A scoped hash table of the current values of read-only call 586 /// values. 587 /// 588 /// It uses the same generation count as loads. 589 using CallHTType = 590 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 591 CallHTType AvailableCalls; 592 593 /// This is the current generation of the memory value. 594 unsigned CurrentGeneration = 0; 595 596 /// Set up the EarlyCSE runner for a particular function. 597 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 598 const TargetTransformInfo &TTI, DominatorTree &DT, 599 AssumptionCache &AC, MemorySSA *MSSA) 600 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 601 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) { 602 if (MSSA) 603 MSSA->ensureOptimizedUses(); 604 } 605 606 bool run(); 607 608 private: 609 unsigned ClobberCounter = 0; 610 // Almost a POD, but needs to call the constructors for the scoped hash 611 // tables so that a new scope gets pushed on. These are RAII so that the 612 // scope gets popped when the NodeScope is destroyed. 613 class NodeScope { 614 public: 615 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 616 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 617 : Scope(AvailableValues), LoadScope(AvailableLoads), 618 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 619 NodeScope(const NodeScope &) = delete; 620 NodeScope &operator=(const NodeScope &) = delete; 621 622 private: 623 ScopedHTType::ScopeTy Scope; 624 LoadHTType::ScopeTy LoadScope; 625 InvariantHTType::ScopeTy InvariantScope; 626 CallHTType::ScopeTy CallScope; 627 }; 628 629 // Contains all the needed information to create a stack for doing a depth 630 // first traversal of the tree. This includes scopes for values, loads, and 631 // calls as well as the generation. There is a child iterator so that the 632 // children do not need to be store separately. 633 class StackNode { 634 public: 635 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 636 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 637 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 638 DomTreeNode::const_iterator end) 639 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 640 EndIter(end), 641 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 642 AvailableCalls) 643 {} 644 StackNode(const StackNode &) = delete; 645 StackNode &operator=(const StackNode &) = delete; 646 647 // Accessors. 648 unsigned currentGeneration() const { return CurrentGeneration; } 649 unsigned childGeneration() const { return ChildGeneration; } 650 void childGeneration(unsigned generation) { ChildGeneration = generation; } 651 DomTreeNode *node() { return Node; } 652 DomTreeNode::const_iterator childIter() const { return ChildIter; } 653 654 DomTreeNode *nextChild() { 655 DomTreeNode *child = *ChildIter; 656 ++ChildIter; 657 return child; 658 } 659 660 DomTreeNode::const_iterator end() const { return EndIter; } 661 bool isProcessed() const { return Processed; } 662 void process() { Processed = true; } 663 664 private: 665 unsigned CurrentGeneration; 666 unsigned ChildGeneration; 667 DomTreeNode *Node; 668 DomTreeNode::const_iterator ChildIter; 669 DomTreeNode::const_iterator EndIter; 670 NodeScope Scopes; 671 bool Processed = false; 672 }; 673 674 /// Wrapper class to handle memory instructions, including loads, 675 /// stores and intrinsic loads and stores defined by the target. 676 class ParseMemoryInst { 677 public: 678 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 679 : Inst(Inst) { 680 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 681 IntrID = II->getIntrinsicID(); 682 if (TTI.getTgtMemIntrinsic(II, Info)) 683 return; 684 if (isHandledNonTargetIntrinsic(IntrID)) { 685 switch (IntrID) { 686 case Intrinsic::masked_load: 687 Info.PtrVal = Inst->getOperand(0); 688 Info.MatchingId = Intrinsic::masked_load; 689 Info.ReadMem = true; 690 Info.WriteMem = false; 691 Info.IsVolatile = false; 692 break; 693 case Intrinsic::masked_store: 694 Info.PtrVal = Inst->getOperand(1); 695 // Use the ID of masked load as the "matching id". This will 696 // prevent matching non-masked loads/stores with masked ones 697 // (which could be done), but at the moment, the code here 698 // does not support matching intrinsics with non-intrinsics, 699 // so keep the MatchingIds specific to masked instructions 700 // for now (TODO). 701 Info.MatchingId = Intrinsic::masked_load; 702 Info.ReadMem = false; 703 Info.WriteMem = true; 704 Info.IsVolatile = false; 705 break; 706 } 707 } 708 } 709 } 710 711 Instruction *get() { return Inst; } 712 const Instruction *get() const { return Inst; } 713 714 bool isLoad() const { 715 if (IntrID != 0) 716 return Info.ReadMem; 717 return isa<LoadInst>(Inst); 718 } 719 720 bool isStore() const { 721 if (IntrID != 0) 722 return Info.WriteMem; 723 return isa<StoreInst>(Inst); 724 } 725 726 bool isAtomic() const { 727 if (IntrID != 0) 728 return Info.Ordering != AtomicOrdering::NotAtomic; 729 return Inst->isAtomic(); 730 } 731 732 bool isUnordered() const { 733 if (IntrID != 0) 734 return Info.isUnordered(); 735 736 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 737 return LI->isUnordered(); 738 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 739 return SI->isUnordered(); 740 } 741 // Conservative answer 742 return !Inst->isAtomic(); 743 } 744 745 bool isVolatile() const { 746 if (IntrID != 0) 747 return Info.IsVolatile; 748 749 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 750 return LI->isVolatile(); 751 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 752 return SI->isVolatile(); 753 } 754 // Conservative answer 755 return true; 756 } 757 758 bool isInvariantLoad() const { 759 if (auto *LI = dyn_cast<LoadInst>(Inst)) 760 return LI->hasMetadata(LLVMContext::MD_invariant_load); 761 return false; 762 } 763 764 bool isValid() const { return getPointerOperand() != nullptr; } 765 766 // For regular (non-intrinsic) loads/stores, this is set to -1. For 767 // intrinsic loads/stores, the id is retrieved from the corresponding 768 // field in the MemIntrinsicInfo structure. That field contains 769 // non-negative values only. 770 int getMatchingId() const { 771 if (IntrID != 0) 772 return Info.MatchingId; 773 return -1; 774 } 775 776 Value *getPointerOperand() const { 777 if (IntrID != 0) 778 return Info.PtrVal; 779 return getLoadStorePointerOperand(Inst); 780 } 781 782 Type *getValueType() const { 783 // TODO: handle target-specific intrinsics. 784 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 785 switch (II->getIntrinsicID()) { 786 case Intrinsic::masked_load: 787 return II->getType(); 788 case Intrinsic::masked_store: 789 return II->getArgOperand(0)->getType(); 790 default: 791 return nullptr; 792 } 793 } 794 return getLoadStoreType(Inst); 795 } 796 797 bool mayReadFromMemory() const { 798 if (IntrID != 0) 799 return Info.ReadMem; 800 return Inst->mayReadFromMemory(); 801 } 802 803 bool mayWriteToMemory() const { 804 if (IntrID != 0) 805 return Info.WriteMem; 806 return Inst->mayWriteToMemory(); 807 } 808 809 private: 810 Intrinsic::ID IntrID = 0; 811 MemIntrinsicInfo Info; 812 Instruction *Inst; 813 }; 814 815 // This function is to prevent accidentally passing a non-target 816 // intrinsic ID to TargetTransformInfo. 817 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 818 switch (ID) { 819 case Intrinsic::masked_load: 820 case Intrinsic::masked_store: 821 return true; 822 } 823 return false; 824 } 825 static bool isHandledNonTargetIntrinsic(const Value *V) { 826 if (auto *II = dyn_cast<IntrinsicInst>(V)) 827 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 828 return false; 829 } 830 831 bool processNode(DomTreeNode *Node); 832 833 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 834 const BasicBlock *BB, const BasicBlock *Pred); 835 836 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 837 unsigned CurrentGeneration); 838 839 bool overridingStores(const ParseMemoryInst &Earlier, 840 const ParseMemoryInst &Later); 841 842 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 843 // TODO: We could insert relevant casts on type mismatch here. 844 if (auto *LI = dyn_cast<LoadInst>(Inst)) 845 return LI->getType() == ExpectedType ? LI : nullptr; 846 else if (auto *SI = dyn_cast<StoreInst>(Inst)) { 847 Value *V = SI->getValueOperand(); 848 return V->getType() == ExpectedType ? V : nullptr; 849 } 850 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 851 auto *II = cast<IntrinsicInst>(Inst); 852 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 853 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 854 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 855 } 856 857 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 858 Type *ExpectedType) const { 859 switch (II->getIntrinsicID()) { 860 case Intrinsic::masked_load: 861 return II; 862 case Intrinsic::masked_store: 863 return II->getOperand(0); 864 } 865 return nullptr; 866 } 867 868 /// Return true if the instruction is known to only operate on memory 869 /// provably invariant in the given "generation". 870 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 871 872 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 873 Instruction *EarlierInst, Instruction *LaterInst); 874 875 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 876 const IntrinsicInst *Later) { 877 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 878 // Is Mask0 a submask of Mask1? 879 if (Mask0 == Mask1) 880 return true; 881 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 882 return false; 883 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 884 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 885 if (!Vec0 || !Vec1) 886 return false; 887 assert(Vec0->getType() == Vec1->getType() && 888 "Masks should have the same type"); 889 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 890 Constant *Elem0 = Vec0->getOperand(i); 891 Constant *Elem1 = Vec1->getOperand(i); 892 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 893 if (Int0 && Int0->isZero()) 894 continue; 895 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 896 if (Int1 && !Int1->isZero()) 897 continue; 898 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 899 return false; 900 if (Elem0 == Elem1) 901 continue; 902 return false; 903 } 904 return true; 905 }; 906 auto PtrOp = [](const IntrinsicInst *II) { 907 if (II->getIntrinsicID() == Intrinsic::masked_load) 908 return II->getOperand(0); 909 if (II->getIntrinsicID() == Intrinsic::masked_store) 910 return II->getOperand(1); 911 llvm_unreachable("Unexpected IntrinsicInst"); 912 }; 913 auto MaskOp = [](const IntrinsicInst *II) { 914 if (II->getIntrinsicID() == Intrinsic::masked_load) 915 return II->getOperand(2); 916 if (II->getIntrinsicID() == Intrinsic::masked_store) 917 return II->getOperand(3); 918 llvm_unreachable("Unexpected IntrinsicInst"); 919 }; 920 auto ThruOp = [](const IntrinsicInst *II) { 921 if (II->getIntrinsicID() == Intrinsic::masked_load) 922 return II->getOperand(3); 923 llvm_unreachable("Unexpected IntrinsicInst"); 924 }; 925 926 if (PtrOp(Earlier) != PtrOp(Later)) 927 return false; 928 929 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 930 Intrinsic::ID IDL = Later->getIntrinsicID(); 931 // We could really use specific intrinsic classes for masked loads 932 // and stores in IntrinsicInst.h. 933 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 934 // Trying to replace later masked load with the earlier one. 935 // Check that the pointers are the same, and 936 // - masks and pass-throughs are the same, or 937 // - replacee's pass-through is "undef" and replacer's mask is a 938 // super-set of the replacee's mask. 939 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 940 return true; 941 if (!isa<UndefValue>(ThruOp(Later))) 942 return false; 943 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 944 } 945 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 946 // Trying to replace a load of a stored value with the store's value. 947 // Check that the pointers are the same, and 948 // - load's mask is a subset of store's mask, and 949 // - load's pass-through is "undef". 950 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 951 return false; 952 return isa<UndefValue>(ThruOp(Later)); 953 } 954 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 955 // Trying to remove a store of the loaded value. 956 // Check that the pointers are the same, and 957 // - store's mask is a subset of the load's mask. 958 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 959 } 960 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 961 // Trying to remove a dead store (earlier). 962 // Check that the pointers are the same, 963 // - the to-be-removed store's mask is a subset of the other store's 964 // mask. 965 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 966 } 967 return false; 968 } 969 970 void removeMSSA(Instruction &Inst) { 971 if (!MSSA) 972 return; 973 if (VerifyMemorySSA) 974 MSSA->verifyMemorySSA(); 975 // Removing a store here can leave MemorySSA in an unoptimized state by 976 // creating MemoryPhis that have identical arguments and by creating 977 // MemoryUses whose defining access is not an actual clobber. The phi case 978 // is handled by MemorySSA when passing OptimizePhis = true to 979 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 980 // by MemorySSA's getClobberingMemoryAccess. 981 MSSAUpdater->removeMemoryAccess(&Inst, true); 982 } 983 }; 984 985 } // end anonymous namespace 986 987 /// Determine if the memory referenced by LaterInst is from the same heap 988 /// version as EarlierInst. 989 /// This is currently called in two scenarios: 990 /// 991 /// load p 992 /// ... 993 /// load p 994 /// 995 /// and 996 /// 997 /// x = load p 998 /// ... 999 /// store x, p 1000 /// 1001 /// in both cases we want to verify that there are no possible writes to the 1002 /// memory referenced by p between the earlier and later instruction. 1003 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1004 unsigned LaterGeneration, 1005 Instruction *EarlierInst, 1006 Instruction *LaterInst) { 1007 // Check the simple memory generation tracking first. 1008 if (EarlierGeneration == LaterGeneration) 1009 return true; 1010 1011 if (!MSSA) 1012 return false; 1013 1014 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1015 // read/write memory, then we can safely return true here. 1016 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1017 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1018 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1019 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1020 // with the default optimization pipeline. 1021 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1022 if (!EarlierMA) 1023 return true; 1024 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1025 if (!LaterMA) 1026 return true; 1027 1028 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1029 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1030 // EarlierInst and LaterInst and neither can any other write that potentially 1031 // clobbers LaterInst. 1032 MemoryAccess *LaterDef; 1033 if (ClobberCounter < EarlyCSEMssaOptCap) { 1034 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1035 ClobberCounter++; 1036 } else 1037 LaterDef = LaterMA->getDefiningAccess(); 1038 1039 return MSSA->dominates(LaterDef, EarlierMA); 1040 } 1041 1042 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1043 // A location loaded from with an invariant_load is assumed to *never* change 1044 // within the visible scope of the compilation. 1045 if (auto *LI = dyn_cast<LoadInst>(I)) 1046 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1047 return true; 1048 1049 auto MemLocOpt = MemoryLocation::getOrNone(I); 1050 if (!MemLocOpt) 1051 // "target" intrinsic forms of loads aren't currently known to 1052 // MemoryLocation::get. TODO 1053 return false; 1054 MemoryLocation MemLoc = *MemLocOpt; 1055 if (!AvailableInvariants.count(MemLoc)) 1056 return false; 1057 1058 // Is the generation at which this became invariant older than the 1059 // current one? 1060 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1061 } 1062 1063 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1064 const BranchInst *BI, const BasicBlock *BB, 1065 const BasicBlock *Pred) { 1066 assert(BI->isConditional() && "Should be a conditional branch!"); 1067 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1068 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1069 auto *TorF = (BI->getSuccessor(0) == BB) 1070 ? ConstantInt::getTrue(BB->getContext()) 1071 : ConstantInt::getFalse(BB->getContext()); 1072 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1073 Value *&RHS) { 1074 if (Opcode == Instruction::And && 1075 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1076 return true; 1077 else if (Opcode == Instruction::Or && 1078 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1079 return true; 1080 return false; 1081 }; 1082 // If the condition is AND operation, we can propagate its operands into the 1083 // true branch. If it is OR operation, we can propagate them into the false 1084 // branch. 1085 unsigned PropagateOpcode = 1086 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1087 1088 bool MadeChanges = false; 1089 SmallVector<Instruction *, 4> WorkList; 1090 SmallPtrSet<Instruction *, 4> Visited; 1091 WorkList.push_back(CondInst); 1092 while (!WorkList.empty()) { 1093 Instruction *Curr = WorkList.pop_back_val(); 1094 1095 AvailableValues.insert(Curr, TorF); 1096 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1097 << Curr->getName() << "' as " << *TorF << " in " 1098 << BB->getName() << "\n"); 1099 if (!DebugCounter::shouldExecute(CSECounter)) { 1100 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1101 } else { 1102 // Replace all dominated uses with the known value. 1103 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1104 BasicBlockEdge(Pred, BB))) { 1105 NumCSECVP += Count; 1106 MadeChanges = true; 1107 } 1108 } 1109 1110 Value *LHS, *RHS; 1111 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1112 for (auto &Op : { LHS, RHS }) 1113 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1114 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1115 WorkList.push_back(OPI); 1116 } 1117 1118 return MadeChanges; 1119 } 1120 1121 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1122 unsigned CurrentGeneration) { 1123 if (InVal.DefInst == nullptr) 1124 return nullptr; 1125 if (InVal.MatchingId != MemInst.getMatchingId()) 1126 return nullptr; 1127 // We don't yet handle removing loads with ordering of any kind. 1128 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1129 return nullptr; 1130 // We can't replace an atomic load with one which isn't also atomic. 1131 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1132 return nullptr; 1133 // The value V returned from this function is used differently depending 1134 // on whether MemInst is a load or a store. If it's a load, we will replace 1135 // MemInst with V, if it's a store, we will check if V is the same as the 1136 // available value. 1137 bool MemInstMatching = !MemInst.isLoad(); 1138 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1139 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1140 1141 // For stores check the result values before checking memory generation 1142 // (otherwise isSameMemGeneration may crash). 1143 Value *Result = MemInst.isStore() 1144 ? getOrCreateResult(Matching, Other->getType()) 1145 : nullptr; 1146 if (MemInst.isStore() && InVal.DefInst != Result) 1147 return nullptr; 1148 1149 // Deal with non-target memory intrinsics. 1150 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1151 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1152 if (OtherNTI != MatchingNTI) 1153 return nullptr; 1154 if (OtherNTI && MatchingNTI) { 1155 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1156 cast<IntrinsicInst>(MemInst.get()))) 1157 return nullptr; 1158 } 1159 1160 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1161 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1162 MemInst.get())) 1163 return nullptr; 1164 1165 if (!Result) 1166 Result = getOrCreateResult(Matching, Other->getType()); 1167 return Result; 1168 } 1169 1170 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1171 const ParseMemoryInst &Later) { 1172 // Can we remove Earlier store because of Later store? 1173 1174 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1175 "Violated invariant"); 1176 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1177 return false; 1178 if (!Earlier.getValueType() || !Later.getValueType() || 1179 Earlier.getValueType() != Later.getValueType()) 1180 return false; 1181 if (Earlier.getMatchingId() != Later.getMatchingId()) 1182 return false; 1183 // At the moment, we don't remove ordered stores, but do remove 1184 // unordered atomic stores. There's no special requirement (for 1185 // unordered atomics) about removing atomic stores only in favor of 1186 // other atomic stores since we were going to execute the non-atomic 1187 // one anyway and the atomic one might never have become visible. 1188 if (!Earlier.isUnordered() || !Later.isUnordered()) 1189 return false; 1190 1191 // Deal with non-target memory intrinsics. 1192 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1193 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1194 if (ENTI && LNTI) 1195 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1196 cast<IntrinsicInst>(Later.get())); 1197 1198 // Because of the check above, at least one of them is false. 1199 // For now disallow matching intrinsics with non-intrinsics, 1200 // so assume that the stores match if neither is an intrinsic. 1201 return ENTI == LNTI; 1202 } 1203 1204 bool EarlyCSE::processNode(DomTreeNode *Node) { 1205 bool Changed = false; 1206 BasicBlock *BB = Node->getBlock(); 1207 1208 // If this block has a single predecessor, then the predecessor is the parent 1209 // of the domtree node and all of the live out memory values are still current 1210 // in this block. If this block has multiple predecessors, then they could 1211 // have invalidated the live-out memory values of our parent value. For now, 1212 // just be conservative and invalidate memory if this block has multiple 1213 // predecessors. 1214 if (!BB->getSinglePredecessor()) 1215 ++CurrentGeneration; 1216 1217 // If this node has a single predecessor which ends in a conditional branch, 1218 // we can infer the value of the branch condition given that we took this 1219 // path. We need the single predecessor to ensure there's not another path 1220 // which reaches this block where the condition might hold a different 1221 // value. Since we're adding this to the scoped hash table (like any other 1222 // def), it will have been popped if we encounter a future merge block. 1223 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1224 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1225 if (BI && BI->isConditional()) { 1226 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1227 if (CondInst && SimpleValue::canHandle(CondInst)) 1228 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1229 } 1230 } 1231 1232 /// LastStore - Keep track of the last non-volatile store that we saw... for 1233 /// as long as there in no instruction that reads memory. If we see a store 1234 /// to the same location, we delete the dead store. This zaps trivial dead 1235 /// stores which can occur in bitfield code among other things. 1236 Instruction *LastStore = nullptr; 1237 1238 // See if any instructions in the block can be eliminated. If so, do it. If 1239 // not, add them to AvailableValues. 1240 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 1241 // Dead instructions should just be removed. 1242 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1243 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1244 if (!DebugCounter::shouldExecute(CSECounter)) { 1245 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1246 continue; 1247 } 1248 1249 salvageKnowledge(&Inst, &AC); 1250 salvageDebugInfo(Inst); 1251 removeMSSA(Inst); 1252 Inst.eraseFromParent(); 1253 Changed = true; 1254 ++NumSimplify; 1255 continue; 1256 } 1257 1258 // Skip assume intrinsics, they don't really have side effects (although 1259 // they're marked as such to ensure preservation of control dependencies), 1260 // and this pass will not bother with its removal. However, we should mark 1261 // its condition as true for all dominated blocks. 1262 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1263 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1264 if (CondI && SimpleValue::canHandle(CondI)) { 1265 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1266 << '\n'); 1267 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1268 } else 1269 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1270 continue; 1271 } 1272 1273 // Likewise, noalias intrinsics don't actually write. 1274 if (match(&Inst, 1275 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1276 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1277 << '\n'); 1278 continue; 1279 } 1280 1281 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1282 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1283 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1284 continue; 1285 } 1286 1287 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1288 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1289 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1290 continue; 1291 } 1292 1293 // We can skip all invariant.start intrinsics since they only read memory, 1294 // and we can forward values across it. For invariant starts without 1295 // invariant ends, we can use the fact that the invariantness never ends to 1296 // start a scope in the current generaton which is true for all future 1297 // generations. Also, we dont need to consume the last store since the 1298 // semantics of invariant.start allow us to perform DSE of the last 1299 // store, if there was a store following invariant.start. Consider: 1300 // 1301 // store 30, i8* p 1302 // invariant.start(p) 1303 // store 40, i8* p 1304 // We can DSE the store to 30, since the store 40 to invariant location p 1305 // causes undefined behaviour. 1306 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1307 // If there are any uses, the scope might end. 1308 if (!Inst.use_empty()) 1309 continue; 1310 MemoryLocation MemLoc = 1311 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1312 // Don't start a scope if we already have a better one pushed 1313 if (!AvailableInvariants.count(MemLoc)) 1314 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1315 continue; 1316 } 1317 1318 if (isGuard(&Inst)) { 1319 if (auto *CondI = 1320 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1321 if (SimpleValue::canHandle(CondI)) { 1322 // Do we already know the actual value of this condition? 1323 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1324 // Is the condition known to be true? 1325 if (isa<ConstantInt>(KnownCond) && 1326 cast<ConstantInt>(KnownCond)->isOne()) { 1327 LLVM_DEBUG(dbgs() 1328 << "EarlyCSE removing guard: " << Inst << '\n'); 1329 salvageKnowledge(&Inst, &AC); 1330 removeMSSA(Inst); 1331 Inst.eraseFromParent(); 1332 Changed = true; 1333 continue; 1334 } else 1335 // Use the known value if it wasn't true. 1336 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1337 } 1338 // The condition we're on guarding here is true for all dominated 1339 // locations. 1340 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1341 } 1342 } 1343 1344 // Guard intrinsics read all memory, but don't write any memory. 1345 // Accordingly, don't update the generation but consume the last store (to 1346 // avoid an incorrect DSE). 1347 LastStore = nullptr; 1348 continue; 1349 } 1350 1351 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1352 // its simpler value. 1353 if (Value *V = SimplifyInstruction(&Inst, SQ)) { 1354 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1355 << '\n'); 1356 if (!DebugCounter::shouldExecute(CSECounter)) { 1357 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1358 } else { 1359 bool Killed = false; 1360 if (!Inst.use_empty()) { 1361 Inst.replaceAllUsesWith(V); 1362 Changed = true; 1363 } 1364 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1365 salvageKnowledge(&Inst, &AC); 1366 removeMSSA(Inst); 1367 Inst.eraseFromParent(); 1368 Changed = true; 1369 Killed = true; 1370 } 1371 if (Changed) 1372 ++NumSimplify; 1373 if (Killed) 1374 continue; 1375 } 1376 } 1377 1378 // If this is a simple instruction that we can value number, process it. 1379 if (SimpleValue::canHandle(&Inst)) { 1380 // See if the instruction has an available value. If so, use it. 1381 if (Value *V = AvailableValues.lookup(&Inst)) { 1382 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1383 << '\n'); 1384 if (!DebugCounter::shouldExecute(CSECounter)) { 1385 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1386 continue; 1387 } 1388 if (auto *I = dyn_cast<Instruction>(V)) { 1389 // If I being poison triggers UB, there is no need to drop those 1390 // flags. Otherwise, only retain flags present on both I and Inst. 1391 // TODO: Currently some fast-math flags are not treated as 1392 // poison-generating even though they should. Until this is fixed, 1393 // always retain flags present on both I and Inst for floating point 1394 // instructions. 1395 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1396 I->andIRFlags(&Inst); 1397 } 1398 Inst.replaceAllUsesWith(V); 1399 salvageKnowledge(&Inst, &AC); 1400 removeMSSA(Inst); 1401 Inst.eraseFromParent(); 1402 Changed = true; 1403 ++NumCSE; 1404 continue; 1405 } 1406 1407 // Otherwise, just remember that this value is available. 1408 AvailableValues.insert(&Inst, &Inst); 1409 continue; 1410 } 1411 1412 ParseMemoryInst MemInst(&Inst, TTI); 1413 // If this is a non-volatile load, process it. 1414 if (MemInst.isValid() && MemInst.isLoad()) { 1415 // (conservatively) we can't peak past the ordering implied by this 1416 // operation, but we can add this load to our set of available values 1417 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1418 LastStore = nullptr; 1419 ++CurrentGeneration; 1420 } 1421 1422 if (MemInst.isInvariantLoad()) { 1423 // If we pass an invariant load, we know that memory location is 1424 // indefinitely constant from the moment of first dereferenceability. 1425 // We conservatively treat the invariant_load as that moment. If we 1426 // pass a invariant load after already establishing a scope, don't 1427 // restart it since we want to preserve the earliest point seen. 1428 auto MemLoc = MemoryLocation::get(&Inst); 1429 if (!AvailableInvariants.count(MemLoc)) 1430 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1431 } 1432 1433 // If we have an available version of this load, and if it is the right 1434 // generation or the load is known to be from an invariant location, 1435 // replace this instruction. 1436 // 1437 // If either the dominating load or the current load are invariant, then 1438 // we can assume the current load loads the same value as the dominating 1439 // load. 1440 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1441 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1442 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1443 << " to: " << *InVal.DefInst << '\n'); 1444 if (!DebugCounter::shouldExecute(CSECounter)) { 1445 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1446 continue; 1447 } 1448 if (!Inst.use_empty()) 1449 Inst.replaceAllUsesWith(Op); 1450 salvageKnowledge(&Inst, &AC); 1451 removeMSSA(Inst); 1452 Inst.eraseFromParent(); 1453 Changed = true; 1454 ++NumCSELoad; 1455 continue; 1456 } 1457 1458 // Otherwise, remember that we have this instruction. 1459 AvailableLoads.insert(MemInst.getPointerOperand(), 1460 LoadValue(&Inst, CurrentGeneration, 1461 MemInst.getMatchingId(), 1462 MemInst.isAtomic())); 1463 LastStore = nullptr; 1464 continue; 1465 } 1466 1467 // If this instruction may read from memory or throw (and potentially read 1468 // from memory in the exception handler), forget LastStore. Load/store 1469 // intrinsics will indicate both a read and a write to memory. The target 1470 // may override this (e.g. so that a store intrinsic does not read from 1471 // memory, and thus will be treated the same as a regular store for 1472 // commoning purposes). 1473 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1474 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1475 LastStore = nullptr; 1476 1477 // If this is a read-only call, process it. 1478 if (CallValue::canHandle(&Inst)) { 1479 // If we have an available version of this call, and if it is the right 1480 // generation, replace this instruction. 1481 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1482 if (InVal.first != nullptr && 1483 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1484 &Inst)) { 1485 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1486 << " to: " << *InVal.first << '\n'); 1487 if (!DebugCounter::shouldExecute(CSECounter)) { 1488 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1489 continue; 1490 } 1491 if (!Inst.use_empty()) 1492 Inst.replaceAllUsesWith(InVal.first); 1493 salvageKnowledge(&Inst, &AC); 1494 removeMSSA(Inst); 1495 Inst.eraseFromParent(); 1496 Changed = true; 1497 ++NumCSECall; 1498 continue; 1499 } 1500 1501 // Otherwise, remember that we have this instruction. 1502 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1503 continue; 1504 } 1505 1506 // A release fence requires that all stores complete before it, but does 1507 // not prevent the reordering of following loads 'before' the fence. As a 1508 // result, we don't need to consider it as writing to memory and don't need 1509 // to advance the generation. We do need to prevent DSE across the fence, 1510 // but that's handled above. 1511 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1512 if (FI->getOrdering() == AtomicOrdering::Release) { 1513 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1514 continue; 1515 } 1516 1517 // write back DSE - If we write back the same value we just loaded from 1518 // the same location and haven't passed any intervening writes or ordering 1519 // operations, we can remove the write. The primary benefit is in allowing 1520 // the available load table to remain valid and value forward past where 1521 // the store originally was. 1522 if (MemInst.isValid() && MemInst.isStore()) { 1523 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1524 if (InVal.DefInst && 1525 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1526 // It is okay to have a LastStore to a different pointer here if MemorySSA 1527 // tells us that the load and store are from the same memory generation. 1528 // In that case, LastStore should keep its present value since we're 1529 // removing the current store. 1530 assert((!LastStore || 1531 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1532 MemInst.getPointerOperand() || 1533 MSSA) && 1534 "can't have an intervening store if not using MemorySSA!"); 1535 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1536 if (!DebugCounter::shouldExecute(CSECounter)) { 1537 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1538 continue; 1539 } 1540 salvageKnowledge(&Inst, &AC); 1541 removeMSSA(Inst); 1542 Inst.eraseFromParent(); 1543 Changed = true; 1544 ++NumDSE; 1545 // We can avoid incrementing the generation count since we were able 1546 // to eliminate this store. 1547 continue; 1548 } 1549 } 1550 1551 // Okay, this isn't something we can CSE at all. Check to see if it is 1552 // something that could modify memory. If so, our available memory values 1553 // cannot be used so bump the generation count. 1554 if (Inst.mayWriteToMemory()) { 1555 ++CurrentGeneration; 1556 1557 if (MemInst.isValid() && MemInst.isStore()) { 1558 // We do a trivial form of DSE if there are two stores to the same 1559 // location with no intervening loads. Delete the earlier store. 1560 if (LastStore) { 1561 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1562 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1563 << " due to: " << Inst << '\n'); 1564 if (!DebugCounter::shouldExecute(CSECounter)) { 1565 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1566 } else { 1567 salvageKnowledge(&Inst, &AC); 1568 removeMSSA(*LastStore); 1569 LastStore->eraseFromParent(); 1570 Changed = true; 1571 ++NumDSE; 1572 LastStore = nullptr; 1573 } 1574 } 1575 // fallthrough - we can exploit information about this store 1576 } 1577 1578 // Okay, we just invalidated anything we knew about loaded values. Try 1579 // to salvage *something* by remembering that the stored value is a live 1580 // version of the pointer. It is safe to forward from volatile stores 1581 // to non-volatile loads, so we don't have to check for volatility of 1582 // the store. 1583 AvailableLoads.insert(MemInst.getPointerOperand(), 1584 LoadValue(&Inst, CurrentGeneration, 1585 MemInst.getMatchingId(), 1586 MemInst.isAtomic())); 1587 1588 // Remember that this was the last unordered store we saw for DSE. We 1589 // don't yet handle DSE on ordered or volatile stores since we don't 1590 // have a good way to model the ordering requirement for following 1591 // passes once the store is removed. We could insert a fence, but 1592 // since fences are slightly stronger than stores in their ordering, 1593 // it's not clear this is a profitable transform. Another option would 1594 // be to merge the ordering with that of the post dominating store. 1595 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1596 LastStore = &Inst; 1597 else 1598 LastStore = nullptr; 1599 } 1600 } 1601 } 1602 1603 return Changed; 1604 } 1605 1606 bool EarlyCSE::run() { 1607 // Note, deque is being used here because there is significant performance 1608 // gains over vector when the container becomes very large due to the 1609 // specific access patterns. For more information see the mailing list 1610 // discussion on this: 1611 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1612 std::deque<StackNode *> nodesToProcess; 1613 1614 bool Changed = false; 1615 1616 // Process the root node. 1617 nodesToProcess.push_back(new StackNode( 1618 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1619 CurrentGeneration, DT.getRootNode(), 1620 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1621 1622 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1623 1624 // Process the stack. 1625 while (!nodesToProcess.empty()) { 1626 // Grab the first item off the stack. Set the current generation, remove 1627 // the node from the stack, and process it. 1628 StackNode *NodeToProcess = nodesToProcess.back(); 1629 1630 // Initialize class members. 1631 CurrentGeneration = NodeToProcess->currentGeneration(); 1632 1633 // Check if the node needs to be processed. 1634 if (!NodeToProcess->isProcessed()) { 1635 // Process the node. 1636 Changed |= processNode(NodeToProcess->node()); 1637 NodeToProcess->childGeneration(CurrentGeneration); 1638 NodeToProcess->process(); 1639 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1640 // Push the next child onto the stack. 1641 DomTreeNode *child = NodeToProcess->nextChild(); 1642 nodesToProcess.push_back( 1643 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1644 AvailableCalls, NodeToProcess->childGeneration(), 1645 child, child->begin(), child->end())); 1646 } else { 1647 // It has been processed, and there are no more children to process, 1648 // so delete it and pop it off the stack. 1649 delete NodeToProcess; 1650 nodesToProcess.pop_back(); 1651 } 1652 } // while (!nodes...) 1653 1654 return Changed; 1655 } 1656 1657 PreservedAnalyses EarlyCSEPass::run(Function &F, 1658 FunctionAnalysisManager &AM) { 1659 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1660 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1661 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1662 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1663 auto *MSSA = 1664 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1665 1666 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1667 1668 if (!CSE.run()) 1669 return PreservedAnalyses::all(); 1670 1671 PreservedAnalyses PA; 1672 PA.preserveSet<CFGAnalyses>(); 1673 if (UseMemorySSA) 1674 PA.preserve<MemorySSAAnalysis>(); 1675 return PA; 1676 } 1677 1678 void EarlyCSEPass::printPipeline( 1679 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1680 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1681 OS, MapClassName2PassName); 1682 OS << "<"; 1683 if (UseMemorySSA) 1684 OS << "memssa"; 1685 OS << ">"; 1686 } 1687 1688 namespace { 1689 1690 /// A simple and fast domtree-based CSE pass. 1691 /// 1692 /// This pass does a simple depth-first walk over the dominator tree, 1693 /// eliminating trivially redundant instructions and using instsimplify to 1694 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1695 /// cases so that instcombine and other passes are more effective. It is 1696 /// expected that a later pass of GVN will catch the interesting/hard cases. 1697 template<bool UseMemorySSA> 1698 class EarlyCSELegacyCommonPass : public FunctionPass { 1699 public: 1700 static char ID; 1701 1702 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1703 if (UseMemorySSA) 1704 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1705 else 1706 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1707 } 1708 1709 bool runOnFunction(Function &F) override { 1710 if (skipFunction(F)) 1711 return false; 1712 1713 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1714 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1715 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1716 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1717 auto *MSSA = 1718 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1719 1720 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1721 1722 return CSE.run(); 1723 } 1724 1725 void getAnalysisUsage(AnalysisUsage &AU) const override { 1726 AU.addRequired<AssumptionCacheTracker>(); 1727 AU.addRequired<DominatorTreeWrapperPass>(); 1728 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1729 AU.addRequired<TargetTransformInfoWrapperPass>(); 1730 if (UseMemorySSA) { 1731 AU.addRequired<AAResultsWrapperPass>(); 1732 AU.addRequired<MemorySSAWrapperPass>(); 1733 AU.addPreserved<MemorySSAWrapperPass>(); 1734 } 1735 AU.addPreserved<GlobalsAAWrapperPass>(); 1736 AU.addPreserved<AAResultsWrapperPass>(); 1737 AU.setPreservesCFG(); 1738 } 1739 }; 1740 1741 } // end anonymous namespace 1742 1743 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1744 1745 template<> 1746 char EarlyCSELegacyPass::ID = 0; 1747 1748 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1749 false) 1750 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1751 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1752 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1753 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1754 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1755 1756 using EarlyCSEMemSSALegacyPass = 1757 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1758 1759 template<> 1760 char EarlyCSEMemSSALegacyPass::ID = 0; 1761 1762 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1763 if (UseMemorySSA) 1764 return new EarlyCSEMemSSALegacyPass(); 1765 else 1766 return new EarlyCSELegacyPass(); 1767 } 1768 1769 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1770 "Early CSE w/ MemorySSA", false, false) 1771 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1772 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1773 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1774 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1775 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1776 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1777 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1778 "Early CSE w/ MemorySSA", false, false) 1779