1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include <cassert> 58 #include <deque> 59 #include <memory> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "early-cse" 66 67 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 68 STATISTIC(NumCSE, "Number of instructions CSE'd"); 69 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 70 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 71 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 72 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 73 74 DEBUG_COUNTER(CSECounter, "early-cse", 75 "Controls which instructions are removed"); 76 77 //===----------------------------------------------------------------------===// 78 // SimpleValue 79 //===----------------------------------------------------------------------===// 80 81 namespace { 82 83 /// Struct representing the available values in the scoped hash table. 84 struct SimpleValue { 85 Instruction *Inst; 86 87 SimpleValue(Instruction *I) : Inst(I) { 88 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 89 } 90 91 bool isSentinel() const { 92 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 93 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 94 } 95 96 static bool canHandle(Instruction *Inst) { 97 // This can only handle non-void readnone functions. 98 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 99 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 100 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 101 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 102 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 103 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 104 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 105 } 106 }; 107 108 } // end anonymous namespace 109 110 namespace llvm { 111 112 template <> struct DenseMapInfo<SimpleValue> { 113 static inline SimpleValue getEmptyKey() { 114 return DenseMapInfo<Instruction *>::getEmptyKey(); 115 } 116 117 static inline SimpleValue getTombstoneKey() { 118 return DenseMapInfo<Instruction *>::getTombstoneKey(); 119 } 120 121 static unsigned getHashValue(SimpleValue Val); 122 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 123 }; 124 125 } // end namespace llvm 126 127 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 128 Instruction *Inst = Val.Inst; 129 // Hash in all of the operands as pointers. 130 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 131 Value *LHS = BinOp->getOperand(0); 132 Value *RHS = BinOp->getOperand(1); 133 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 134 std::swap(LHS, RHS); 135 136 return hash_combine(BinOp->getOpcode(), LHS, RHS); 137 } 138 139 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 140 Value *LHS = CI->getOperand(0); 141 Value *RHS = CI->getOperand(1); 142 CmpInst::Predicate Pred = CI->getPredicate(); 143 if (Inst->getOperand(0) > Inst->getOperand(1)) { 144 std::swap(LHS, RHS); 145 Pred = CI->getSwappedPredicate(); 146 } 147 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 148 } 149 150 // Hash min/max/abs (cmp + select) to allow for commuted operands. 151 // Min/max may also have non-canonical compare predicate (eg, the compare for 152 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 153 // compare. 154 Value *A, *B; 155 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor; 156 // TODO: We should also detect FP min/max. 157 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 158 SPF == SPF_UMIN || SPF == SPF_UMAX) { 159 if (A > B) 160 std::swap(A, B); 161 return hash_combine(Inst->getOpcode(), SPF, A, B); 162 } 163 if (SPF == SPF_ABS || SPF == SPF_NABS) { 164 // ABS/NABS always puts the input in A and its negation in B. 165 return hash_combine(Inst->getOpcode(), SPF, A, B); 166 } 167 168 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 169 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 170 171 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 172 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 173 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 174 175 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 176 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 177 IVI->getOperand(1), 178 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 179 180 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 181 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 182 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 183 isa<ShuffleVectorInst>(Inst)) && 184 "Invalid/unknown instruction"); 185 186 // Mix in the opcode. 187 return hash_combine( 188 Inst->getOpcode(), 189 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 190 } 191 192 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 193 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 194 195 if (LHS.isSentinel() || RHS.isSentinel()) 196 return LHSI == RHSI; 197 198 if (LHSI->getOpcode() != RHSI->getOpcode()) 199 return false; 200 if (LHSI->isIdenticalToWhenDefined(RHSI)) 201 return true; 202 203 // If we're not strictly identical, we still might be a commutable instruction 204 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 205 if (!LHSBinOp->isCommutative()) 206 return false; 207 208 assert(isa<BinaryOperator>(RHSI) && 209 "same opcode, but different instruction type?"); 210 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 211 212 // Commuted equality 213 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 214 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 215 } 216 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 217 assert(isa<CmpInst>(RHSI) && 218 "same opcode, but different instruction type?"); 219 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 220 // Commuted equality 221 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 222 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 223 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 224 } 225 226 // Min/max/abs can occur with commuted operands, non-canonical predicates, 227 // and/or non-canonical operands. 228 Value *LHSA, *LHSB; 229 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor; 230 // TODO: We should also detect FP min/max. 231 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 232 LSPF == SPF_UMIN || LSPF == SPF_UMAX || 233 LSPF == SPF_ABS || LSPF == SPF_NABS) { 234 Value *RHSA, *RHSB; 235 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor; 236 if (LSPF == RSPF) { 237 // Abs results are placed in a defined order by matchSelectPattern. 238 if (LSPF == SPF_ABS || LSPF == SPF_NABS) 239 return LHSA == RHSA && LHSB == RHSB; 240 return ((LHSA == RHSA && LHSB == RHSB) || 241 (LHSA == RHSB && LHSB == RHSA)); 242 } 243 } 244 245 return false; 246 } 247 248 //===----------------------------------------------------------------------===// 249 // CallValue 250 //===----------------------------------------------------------------------===// 251 252 namespace { 253 254 /// Struct representing the available call values in the scoped hash 255 /// table. 256 struct CallValue { 257 Instruction *Inst; 258 259 CallValue(Instruction *I) : Inst(I) { 260 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 261 } 262 263 bool isSentinel() const { 264 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 265 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 266 } 267 268 static bool canHandle(Instruction *Inst) { 269 // Don't value number anything that returns void. 270 if (Inst->getType()->isVoidTy()) 271 return false; 272 273 CallInst *CI = dyn_cast<CallInst>(Inst); 274 if (!CI || !CI->onlyReadsMemory()) 275 return false; 276 return true; 277 } 278 }; 279 280 } // end anonymous namespace 281 282 namespace llvm { 283 284 template <> struct DenseMapInfo<CallValue> { 285 static inline CallValue getEmptyKey() { 286 return DenseMapInfo<Instruction *>::getEmptyKey(); 287 } 288 289 static inline CallValue getTombstoneKey() { 290 return DenseMapInfo<Instruction *>::getTombstoneKey(); 291 } 292 293 static unsigned getHashValue(CallValue Val); 294 static bool isEqual(CallValue LHS, CallValue RHS); 295 }; 296 297 } // end namespace llvm 298 299 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 300 Instruction *Inst = Val.Inst; 301 // Hash all of the operands as pointers and mix in the opcode. 302 return hash_combine( 303 Inst->getOpcode(), 304 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 305 } 306 307 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 308 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 309 if (LHS.isSentinel() || RHS.isSentinel()) 310 return LHSI == RHSI; 311 return LHSI->isIdenticalTo(RHSI); 312 } 313 314 //===----------------------------------------------------------------------===// 315 // EarlyCSE implementation 316 //===----------------------------------------------------------------------===// 317 318 namespace { 319 320 /// A simple and fast domtree-based CSE pass. 321 /// 322 /// This pass does a simple depth-first walk over the dominator tree, 323 /// eliminating trivially redundant instructions and using instsimplify to 324 /// canonicalize things as it goes. It is intended to be fast and catch obvious 325 /// cases so that instcombine and other passes are more effective. It is 326 /// expected that a later pass of GVN will catch the interesting/hard cases. 327 class EarlyCSE { 328 public: 329 const TargetLibraryInfo &TLI; 330 const TargetTransformInfo &TTI; 331 DominatorTree &DT; 332 AssumptionCache &AC; 333 const SimplifyQuery SQ; 334 MemorySSA *MSSA; 335 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 336 337 using AllocatorTy = 338 RecyclingAllocator<BumpPtrAllocator, 339 ScopedHashTableVal<SimpleValue, Value *>>; 340 using ScopedHTType = 341 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 342 AllocatorTy>; 343 344 /// A scoped hash table of the current values of all of our simple 345 /// scalar expressions. 346 /// 347 /// As we walk down the domtree, we look to see if instructions are in this: 348 /// if so, we replace them with what we find, otherwise we insert them so 349 /// that dominated values can succeed in their lookup. 350 ScopedHTType AvailableValues; 351 352 /// A scoped hash table of the current values of previously encounted memory 353 /// locations. 354 /// 355 /// This allows us to get efficient access to dominating loads or stores when 356 /// we have a fully redundant load. In addition to the most recent load, we 357 /// keep track of a generation count of the read, which is compared against 358 /// the current generation count. The current generation count is incremented 359 /// after every possibly writing memory operation, which ensures that we only 360 /// CSE loads with other loads that have no intervening store. Ordering 361 /// events (such as fences or atomic instructions) increment the generation 362 /// count as well; essentially, we model these as writes to all possible 363 /// locations. Note that atomic and/or volatile loads and stores can be 364 /// present the table; it is the responsibility of the consumer to inspect 365 /// the atomicity/volatility if needed. 366 struct LoadValue { 367 Instruction *DefInst = nullptr; 368 unsigned Generation = 0; 369 int MatchingId = -1; 370 bool IsAtomic = false; 371 372 LoadValue() = default; 373 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 374 bool IsAtomic) 375 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 376 IsAtomic(IsAtomic) {} 377 }; 378 379 using LoadMapAllocator = 380 RecyclingAllocator<BumpPtrAllocator, 381 ScopedHashTableVal<Value *, LoadValue>>; 382 using LoadHTType = 383 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 384 LoadMapAllocator>; 385 386 LoadHTType AvailableLoads; 387 388 // A scoped hash table mapping memory locations (represented as typed 389 // addresses) to generation numbers at which that memory location became 390 // (henceforth indefinitely) invariant. 391 using InvariantMapAllocator = 392 RecyclingAllocator<BumpPtrAllocator, 393 ScopedHashTableVal<MemoryLocation, unsigned>>; 394 using InvariantHTType = 395 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 396 InvariantMapAllocator>; 397 InvariantHTType AvailableInvariants; 398 399 /// A scoped hash table of the current values of read-only call 400 /// values. 401 /// 402 /// It uses the same generation count as loads. 403 using CallHTType = 404 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 405 CallHTType AvailableCalls; 406 407 /// This is the current generation of the memory value. 408 unsigned CurrentGeneration = 0; 409 410 /// Set up the EarlyCSE runner for a particular function. 411 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 412 const TargetTransformInfo &TTI, DominatorTree &DT, 413 AssumptionCache &AC, MemorySSA *MSSA) 414 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 415 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} 416 417 bool run(); 418 419 private: 420 // Almost a POD, but needs to call the constructors for the scoped hash 421 // tables so that a new scope gets pushed on. These are RAII so that the 422 // scope gets popped when the NodeScope is destroyed. 423 class NodeScope { 424 public: 425 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 426 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 427 : Scope(AvailableValues), LoadScope(AvailableLoads), 428 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 429 NodeScope(const NodeScope &) = delete; 430 NodeScope &operator=(const NodeScope &) = delete; 431 432 private: 433 ScopedHTType::ScopeTy Scope; 434 LoadHTType::ScopeTy LoadScope; 435 InvariantHTType::ScopeTy InvariantScope; 436 CallHTType::ScopeTy CallScope; 437 }; 438 439 // Contains all the needed information to create a stack for doing a depth 440 // first traversal of the tree. This includes scopes for values, loads, and 441 // calls as well as the generation. There is a child iterator so that the 442 // children do not need to be store separately. 443 class StackNode { 444 public: 445 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 446 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 447 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 448 DomTreeNode::iterator end) 449 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 450 EndIter(end), 451 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 452 AvailableCalls) 453 {} 454 StackNode(const StackNode &) = delete; 455 StackNode &operator=(const StackNode &) = delete; 456 457 // Accessors. 458 unsigned currentGeneration() { return CurrentGeneration; } 459 unsigned childGeneration() { return ChildGeneration; } 460 void childGeneration(unsigned generation) { ChildGeneration = generation; } 461 DomTreeNode *node() { return Node; } 462 DomTreeNode::iterator childIter() { return ChildIter; } 463 464 DomTreeNode *nextChild() { 465 DomTreeNode *child = *ChildIter; 466 ++ChildIter; 467 return child; 468 } 469 470 DomTreeNode::iterator end() { return EndIter; } 471 bool isProcessed() { return Processed; } 472 void process() { Processed = true; } 473 474 private: 475 unsigned CurrentGeneration; 476 unsigned ChildGeneration; 477 DomTreeNode *Node; 478 DomTreeNode::iterator ChildIter; 479 DomTreeNode::iterator EndIter; 480 NodeScope Scopes; 481 bool Processed = false; 482 }; 483 484 /// Wrapper class to handle memory instructions, including loads, 485 /// stores and intrinsic loads and stores defined by the target. 486 class ParseMemoryInst { 487 public: 488 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 489 : Inst(Inst) { 490 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 491 if (TTI.getTgtMemIntrinsic(II, Info)) 492 IsTargetMemInst = true; 493 } 494 495 bool isLoad() const { 496 if (IsTargetMemInst) return Info.ReadMem; 497 return isa<LoadInst>(Inst); 498 } 499 500 bool isStore() const { 501 if (IsTargetMemInst) return Info.WriteMem; 502 return isa<StoreInst>(Inst); 503 } 504 505 bool isAtomic() const { 506 if (IsTargetMemInst) 507 return Info.Ordering != AtomicOrdering::NotAtomic; 508 return Inst->isAtomic(); 509 } 510 511 bool isUnordered() const { 512 if (IsTargetMemInst) 513 return Info.isUnordered(); 514 515 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 516 return LI->isUnordered(); 517 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 518 return SI->isUnordered(); 519 } 520 // Conservative answer 521 return !Inst->isAtomic(); 522 } 523 524 bool isVolatile() const { 525 if (IsTargetMemInst) 526 return Info.IsVolatile; 527 528 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 529 return LI->isVolatile(); 530 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 531 return SI->isVolatile(); 532 } 533 // Conservative answer 534 return true; 535 } 536 537 bool isInvariantLoad() const { 538 if (auto *LI = dyn_cast<LoadInst>(Inst)) 539 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 540 return false; 541 } 542 543 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 544 return (getPointerOperand() == Inst.getPointerOperand() && 545 getMatchingId() == Inst.getMatchingId()); 546 } 547 548 bool isValid() const { return getPointerOperand() != nullptr; } 549 550 // For regular (non-intrinsic) loads/stores, this is set to -1. For 551 // intrinsic loads/stores, the id is retrieved from the corresponding 552 // field in the MemIntrinsicInfo structure. That field contains 553 // non-negative values only. 554 int getMatchingId() const { 555 if (IsTargetMemInst) return Info.MatchingId; 556 return -1; 557 } 558 559 Value *getPointerOperand() const { 560 if (IsTargetMemInst) return Info.PtrVal; 561 return getLoadStorePointerOperand(Inst); 562 } 563 564 bool mayReadFromMemory() const { 565 if (IsTargetMemInst) return Info.ReadMem; 566 return Inst->mayReadFromMemory(); 567 } 568 569 bool mayWriteToMemory() const { 570 if (IsTargetMemInst) return Info.WriteMem; 571 return Inst->mayWriteToMemory(); 572 } 573 574 private: 575 bool IsTargetMemInst = false; 576 MemIntrinsicInfo Info; 577 Instruction *Inst; 578 }; 579 580 bool processNode(DomTreeNode *Node); 581 582 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 583 if (auto *LI = dyn_cast<LoadInst>(Inst)) 584 return LI; 585 if (auto *SI = dyn_cast<StoreInst>(Inst)) 586 return SI->getValueOperand(); 587 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 588 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 589 ExpectedType); 590 } 591 592 /// Return true if the instruction is known to only operate on memory 593 /// provably invariant in the given "generation". 594 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 595 596 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 597 Instruction *EarlierInst, Instruction *LaterInst); 598 599 void removeMSSA(Instruction *Inst) { 600 if (!MSSA) 601 return; 602 // Removing a store here can leave MemorySSA in an unoptimized state by 603 // creating MemoryPhis that have identical arguments and by creating 604 // MemoryUses whose defining access is not an actual clobber. We handle the 605 // phi case eagerly here. The non-optimized MemoryUse case is lazily 606 // updated by MemorySSA getClobberingMemoryAccess. 607 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 608 // Optimize MemoryPhi nodes that may become redundant by having all the 609 // same input values once MA is removed. 610 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 611 SmallVector<MemoryAccess *, 8> WorkQueue; 612 WorkQueue.push_back(MA); 613 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 614 // we shouldn't be processing that many phis and this will avoid an 615 // allocation in almost all cases. 616 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 617 MemoryAccess *WI = WorkQueue[I]; 618 619 for (auto *U : WI->users()) 620 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 621 PhisToCheck.insert(MP); 622 623 MSSAUpdater->removeMemoryAccess(WI); 624 625 for (MemoryPhi *MP : PhisToCheck) { 626 MemoryAccess *FirstIn = MP->getIncomingValue(0); 627 if (llvm::all_of(MP->incoming_values(), 628 [=](Use &In) { return In == FirstIn; })) 629 WorkQueue.push_back(MP); 630 } 631 PhisToCheck.clear(); 632 } 633 } 634 } 635 }; 636 637 } // end anonymous namespace 638 639 /// Determine if the memory referenced by LaterInst is from the same heap 640 /// version as EarlierInst. 641 /// This is currently called in two scenarios: 642 /// 643 /// load p 644 /// ... 645 /// load p 646 /// 647 /// and 648 /// 649 /// x = load p 650 /// ... 651 /// store x, p 652 /// 653 /// in both cases we want to verify that there are no possible writes to the 654 /// memory referenced by p between the earlier and later instruction. 655 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 656 unsigned LaterGeneration, 657 Instruction *EarlierInst, 658 Instruction *LaterInst) { 659 // Check the simple memory generation tracking first. 660 if (EarlierGeneration == LaterGeneration) 661 return true; 662 663 if (!MSSA) 664 return false; 665 666 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 667 // read/write memory, then we can safely return true here. 668 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 669 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 670 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 671 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 672 // with the default optimization pipeline. 673 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 674 if (!EarlierMA) 675 return true; 676 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 677 if (!LaterMA) 678 return true; 679 680 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 681 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 682 // EarlierInst and LaterInst and neither can any other write that potentially 683 // clobbers LaterInst. 684 MemoryAccess *LaterDef = 685 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 686 return MSSA->dominates(LaterDef, EarlierMA); 687 } 688 689 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 690 // A location loaded from with an invariant_load is assumed to *never* change 691 // within the visible scope of the compilation. 692 if (auto *LI = dyn_cast<LoadInst>(I)) 693 if (LI->getMetadata(LLVMContext::MD_invariant_load)) 694 return true; 695 696 auto MemLocOpt = MemoryLocation::getOrNone(I); 697 if (!MemLocOpt) 698 // "target" intrinsic forms of loads aren't currently known to 699 // MemoryLocation::get. TODO 700 return false; 701 MemoryLocation MemLoc = *MemLocOpt; 702 if (!AvailableInvariants.count(MemLoc)) 703 return false; 704 705 // Is the generation at which this became invariant older than the 706 // current one? 707 return AvailableInvariants.lookup(MemLoc) <= GenAt; 708 } 709 710 bool EarlyCSE::processNode(DomTreeNode *Node) { 711 bool Changed = false; 712 BasicBlock *BB = Node->getBlock(); 713 714 // If this block has a single predecessor, then the predecessor is the parent 715 // of the domtree node and all of the live out memory values are still current 716 // in this block. If this block has multiple predecessors, then they could 717 // have invalidated the live-out memory values of our parent value. For now, 718 // just be conservative and invalidate memory if this block has multiple 719 // predecessors. 720 if (!BB->getSinglePredecessor()) 721 ++CurrentGeneration; 722 723 // If this node has a single predecessor which ends in a conditional branch, 724 // we can infer the value of the branch condition given that we took this 725 // path. We need the single predecessor to ensure there's not another path 726 // which reaches this block where the condition might hold a different 727 // value. Since we're adding this to the scoped hash table (like any other 728 // def), it will have been popped if we encounter a future merge block. 729 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 730 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 731 if (BI && BI->isConditional()) { 732 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 733 if (CondInst && SimpleValue::canHandle(CondInst)) { 734 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 735 auto *TorF = (BI->getSuccessor(0) == BB) 736 ? ConstantInt::getTrue(BB->getContext()) 737 : ConstantInt::getFalse(BB->getContext()); 738 AvailableValues.insert(CondInst, TorF); 739 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 740 << CondInst->getName() << "' as " << *TorF << " in " 741 << BB->getName() << "\n"); 742 if (!DebugCounter::shouldExecute(CSECounter)) { 743 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 744 } else { 745 // Replace all dominated uses with the known value. 746 if (unsigned Count = replaceDominatedUsesWith( 747 CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) { 748 Changed = true; 749 NumCSECVP += Count; 750 } 751 } 752 } 753 } 754 } 755 756 /// LastStore - Keep track of the last non-volatile store that we saw... for 757 /// as long as there in no instruction that reads memory. If we see a store 758 /// to the same location, we delete the dead store. This zaps trivial dead 759 /// stores which can occur in bitfield code among other things. 760 Instruction *LastStore = nullptr; 761 762 // See if any instructions in the block can be eliminated. If so, do it. If 763 // not, add them to AvailableValues. 764 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 765 Instruction *Inst = &*I++; 766 767 // Dead instructions should just be removed. 768 if (isInstructionTriviallyDead(Inst, &TLI)) { 769 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 770 if (!DebugCounter::shouldExecute(CSECounter)) { 771 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 772 continue; 773 } 774 salvageDebugInfo(*Inst); 775 removeMSSA(Inst); 776 Inst->eraseFromParent(); 777 Changed = true; 778 ++NumSimplify; 779 continue; 780 } 781 782 // Skip assume intrinsics, they don't really have side effects (although 783 // they're marked as such to ensure preservation of control dependencies), 784 // and this pass will not bother with its removal. However, we should mark 785 // its condition as true for all dominated blocks. 786 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 787 auto *CondI = 788 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 789 if (CondI && SimpleValue::canHandle(CondI)) { 790 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst 791 << '\n'); 792 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 793 } else 794 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 795 continue; 796 } 797 798 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 799 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 800 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 801 continue; 802 } 803 804 // We can skip all invariant.start intrinsics since they only read memory, 805 // and we can forward values across it. For invariant starts without 806 // invariant ends, we can use the fact that the invariantness never ends to 807 // start a scope in the current generaton which is true for all future 808 // generations. Also, we dont need to consume the last store since the 809 // semantics of invariant.start allow us to perform DSE of the last 810 // store, if there was a store following invariant.start. Consider: 811 // 812 // store 30, i8* p 813 // invariant.start(p) 814 // store 40, i8* p 815 // We can DSE the store to 30, since the store 40 to invariant location p 816 // causes undefined behaviour. 817 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 818 // If there are any uses, the scope might end. 819 if (!Inst->use_empty()) 820 continue; 821 auto *CI = cast<CallInst>(Inst); 822 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); 823 // Don't start a scope if we already have a better one pushed 824 if (!AvailableInvariants.count(MemLoc)) 825 AvailableInvariants.insert(MemLoc, CurrentGeneration); 826 continue; 827 } 828 829 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 830 if (auto *CondI = 831 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 832 if (SimpleValue::canHandle(CondI)) { 833 // Do we already know the actual value of this condition? 834 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 835 // Is the condition known to be true? 836 if (isa<ConstantInt>(KnownCond) && 837 cast<ConstantInt>(KnownCond)->isOne()) { 838 LLVM_DEBUG(dbgs() 839 << "EarlyCSE removing guard: " << *Inst << '\n'); 840 removeMSSA(Inst); 841 Inst->eraseFromParent(); 842 Changed = true; 843 continue; 844 } else 845 // Use the known value if it wasn't true. 846 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 847 } 848 // The condition we're on guarding here is true for all dominated 849 // locations. 850 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 851 } 852 } 853 854 // Guard intrinsics read all memory, but don't write any memory. 855 // Accordingly, don't update the generation but consume the last store (to 856 // avoid an incorrect DSE). 857 LastStore = nullptr; 858 continue; 859 } 860 861 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 862 // its simpler value. 863 if (Value *V = SimplifyInstruction(Inst, SQ)) { 864 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V 865 << '\n'); 866 if (!DebugCounter::shouldExecute(CSECounter)) { 867 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 868 } else { 869 bool Killed = false; 870 if (!Inst->use_empty()) { 871 Inst->replaceAllUsesWith(V); 872 Changed = true; 873 } 874 if (isInstructionTriviallyDead(Inst, &TLI)) { 875 removeMSSA(Inst); 876 Inst->eraseFromParent(); 877 Changed = true; 878 Killed = true; 879 } 880 if (Changed) 881 ++NumSimplify; 882 if (Killed) 883 continue; 884 } 885 } 886 887 // If this is a simple instruction that we can value number, process it. 888 if (SimpleValue::canHandle(Inst)) { 889 // See if the instruction has an available value. If so, use it. 890 if (Value *V = AvailableValues.lookup(Inst)) { 891 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V 892 << '\n'); 893 if (!DebugCounter::shouldExecute(CSECounter)) { 894 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 895 continue; 896 } 897 if (auto *I = dyn_cast<Instruction>(V)) 898 I->andIRFlags(Inst); 899 Inst->replaceAllUsesWith(V); 900 removeMSSA(Inst); 901 Inst->eraseFromParent(); 902 Changed = true; 903 ++NumCSE; 904 continue; 905 } 906 907 // Otherwise, just remember that this value is available. 908 AvailableValues.insert(Inst, Inst); 909 continue; 910 } 911 912 ParseMemoryInst MemInst(Inst, TTI); 913 // If this is a non-volatile load, process it. 914 if (MemInst.isValid() && MemInst.isLoad()) { 915 // (conservatively) we can't peak past the ordering implied by this 916 // operation, but we can add this load to our set of available values 917 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 918 LastStore = nullptr; 919 ++CurrentGeneration; 920 } 921 922 if (MemInst.isInvariantLoad()) { 923 // If we pass an invariant load, we know that memory location is 924 // indefinitely constant from the moment of first dereferenceability. 925 // We conservatively treat the invariant_load as that moment. If we 926 // pass a invariant load after already establishing a scope, don't 927 // restart it since we want to preserve the earliest point seen. 928 auto MemLoc = MemoryLocation::get(Inst); 929 if (!AvailableInvariants.count(MemLoc)) 930 AvailableInvariants.insert(MemLoc, CurrentGeneration); 931 } 932 933 // If we have an available version of this load, and if it is the right 934 // generation or the load is known to be from an invariant location, 935 // replace this instruction. 936 // 937 // If either the dominating load or the current load are invariant, then 938 // we can assume the current load loads the same value as the dominating 939 // load. 940 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 941 if (InVal.DefInst != nullptr && 942 InVal.MatchingId == MemInst.getMatchingId() && 943 // We don't yet handle removing loads with ordering of any kind. 944 !MemInst.isVolatile() && MemInst.isUnordered() && 945 // We can't replace an atomic load with one which isn't also atomic. 946 InVal.IsAtomic >= MemInst.isAtomic() && 947 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 948 isSameMemGeneration(InVal.Generation, CurrentGeneration, 949 InVal.DefInst, Inst))) { 950 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 951 if (Op != nullptr) { 952 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 953 << " to: " << *InVal.DefInst << '\n'); 954 if (!DebugCounter::shouldExecute(CSECounter)) { 955 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 956 continue; 957 } 958 if (!Inst->use_empty()) 959 Inst->replaceAllUsesWith(Op); 960 removeMSSA(Inst); 961 Inst->eraseFromParent(); 962 Changed = true; 963 ++NumCSELoad; 964 continue; 965 } 966 } 967 968 // Otherwise, remember that we have this instruction. 969 AvailableLoads.insert( 970 MemInst.getPointerOperand(), 971 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 972 MemInst.isAtomic())); 973 LastStore = nullptr; 974 continue; 975 } 976 977 // If this instruction may read from memory or throw (and potentially read 978 // from memory in the exception handler), forget LastStore. Load/store 979 // intrinsics will indicate both a read and a write to memory. The target 980 // may override this (e.g. so that a store intrinsic does not read from 981 // memory, and thus will be treated the same as a regular store for 982 // commoning purposes). 983 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 984 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 985 LastStore = nullptr; 986 987 // If this is a read-only call, process it. 988 if (CallValue::canHandle(Inst)) { 989 // If we have an available version of this call, and if it is the right 990 // generation, replace this instruction. 991 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 992 if (InVal.first != nullptr && 993 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 994 Inst)) { 995 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 996 << " to: " << *InVal.first << '\n'); 997 if (!DebugCounter::shouldExecute(CSECounter)) { 998 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 999 continue; 1000 } 1001 if (!Inst->use_empty()) 1002 Inst->replaceAllUsesWith(InVal.first); 1003 removeMSSA(Inst); 1004 Inst->eraseFromParent(); 1005 Changed = true; 1006 ++NumCSECall; 1007 continue; 1008 } 1009 1010 // Otherwise, remember that we have this instruction. 1011 AvailableCalls.insert( 1012 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 1013 continue; 1014 } 1015 1016 // A release fence requires that all stores complete before it, but does 1017 // not prevent the reordering of following loads 'before' the fence. As a 1018 // result, we don't need to consider it as writing to memory and don't need 1019 // to advance the generation. We do need to prevent DSE across the fence, 1020 // but that's handled above. 1021 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 1022 if (FI->getOrdering() == AtomicOrdering::Release) { 1023 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 1024 continue; 1025 } 1026 1027 // write back DSE - If we write back the same value we just loaded from 1028 // the same location and haven't passed any intervening writes or ordering 1029 // operations, we can remove the write. The primary benefit is in allowing 1030 // the available load table to remain valid and value forward past where 1031 // the store originally was. 1032 if (MemInst.isValid() && MemInst.isStore()) { 1033 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1034 if (InVal.DefInst && 1035 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 1036 InVal.MatchingId == MemInst.getMatchingId() && 1037 // We don't yet handle removing stores with ordering of any kind. 1038 !MemInst.isVolatile() && MemInst.isUnordered() && 1039 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1040 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1041 InVal.DefInst, Inst))) { 1042 // It is okay to have a LastStore to a different pointer here if MemorySSA 1043 // tells us that the load and store are from the same memory generation. 1044 // In that case, LastStore should keep its present value since we're 1045 // removing the current store. 1046 assert((!LastStore || 1047 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1048 MemInst.getPointerOperand() || 1049 MSSA) && 1050 "can't have an intervening store if not using MemorySSA!"); 1051 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 1052 if (!DebugCounter::shouldExecute(CSECounter)) { 1053 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1054 continue; 1055 } 1056 removeMSSA(Inst); 1057 Inst->eraseFromParent(); 1058 Changed = true; 1059 ++NumDSE; 1060 // We can avoid incrementing the generation count since we were able 1061 // to eliminate this store. 1062 continue; 1063 } 1064 } 1065 1066 // Okay, this isn't something we can CSE at all. Check to see if it is 1067 // something that could modify memory. If so, our available memory values 1068 // cannot be used so bump the generation count. 1069 if (Inst->mayWriteToMemory()) { 1070 ++CurrentGeneration; 1071 1072 if (MemInst.isValid() && MemInst.isStore()) { 1073 // We do a trivial form of DSE if there are two stores to the same 1074 // location with no intervening loads. Delete the earlier store. 1075 // At the moment, we don't remove ordered stores, but do remove 1076 // unordered atomic stores. There's no special requirement (for 1077 // unordered atomics) about removing atomic stores only in favor of 1078 // other atomic stores since we we're going to execute the non-atomic 1079 // one anyway and the atomic one might never have become visible. 1080 if (LastStore) { 1081 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1082 assert(LastStoreMemInst.isUnordered() && 1083 !LastStoreMemInst.isVolatile() && 1084 "Violated invariant"); 1085 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1086 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1087 << " due to: " << *Inst << '\n'); 1088 if (!DebugCounter::shouldExecute(CSECounter)) { 1089 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1090 } else { 1091 removeMSSA(LastStore); 1092 LastStore->eraseFromParent(); 1093 Changed = true; 1094 ++NumDSE; 1095 LastStore = nullptr; 1096 } 1097 } 1098 // fallthrough - we can exploit information about this store 1099 } 1100 1101 // Okay, we just invalidated anything we knew about loaded values. Try 1102 // to salvage *something* by remembering that the stored value is a live 1103 // version of the pointer. It is safe to forward from volatile stores 1104 // to non-volatile loads, so we don't have to check for volatility of 1105 // the store. 1106 AvailableLoads.insert( 1107 MemInst.getPointerOperand(), 1108 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1109 MemInst.isAtomic())); 1110 1111 // Remember that this was the last unordered store we saw for DSE. We 1112 // don't yet handle DSE on ordered or volatile stores since we don't 1113 // have a good way to model the ordering requirement for following 1114 // passes once the store is removed. We could insert a fence, but 1115 // since fences are slightly stronger than stores in their ordering, 1116 // it's not clear this is a profitable transform. Another option would 1117 // be to merge the ordering with that of the post dominating store. 1118 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1119 LastStore = Inst; 1120 else 1121 LastStore = nullptr; 1122 } 1123 } 1124 } 1125 1126 return Changed; 1127 } 1128 1129 bool EarlyCSE::run() { 1130 // Note, deque is being used here because there is significant performance 1131 // gains over vector when the container becomes very large due to the 1132 // specific access patterns. For more information see the mailing list 1133 // discussion on this: 1134 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1135 std::deque<StackNode *> nodesToProcess; 1136 1137 bool Changed = false; 1138 1139 // Process the root node. 1140 nodesToProcess.push_back(new StackNode( 1141 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1142 CurrentGeneration, DT.getRootNode(), 1143 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1144 1145 // Save the current generation. 1146 unsigned LiveOutGeneration = CurrentGeneration; 1147 1148 // Process the stack. 1149 while (!nodesToProcess.empty()) { 1150 // Grab the first item off the stack. Set the current generation, remove 1151 // the node from the stack, and process it. 1152 StackNode *NodeToProcess = nodesToProcess.back(); 1153 1154 // Initialize class members. 1155 CurrentGeneration = NodeToProcess->currentGeneration(); 1156 1157 // Check if the node needs to be processed. 1158 if (!NodeToProcess->isProcessed()) { 1159 // Process the node. 1160 Changed |= processNode(NodeToProcess->node()); 1161 NodeToProcess->childGeneration(CurrentGeneration); 1162 NodeToProcess->process(); 1163 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1164 // Push the next child onto the stack. 1165 DomTreeNode *child = NodeToProcess->nextChild(); 1166 nodesToProcess.push_back( 1167 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1168 AvailableCalls, NodeToProcess->childGeneration(), 1169 child, child->begin(), child->end())); 1170 } else { 1171 // It has been processed, and there are no more children to process, 1172 // so delete it and pop it off the stack. 1173 delete NodeToProcess; 1174 nodesToProcess.pop_back(); 1175 } 1176 } // while (!nodes...) 1177 1178 // Reset the current generation. 1179 CurrentGeneration = LiveOutGeneration; 1180 1181 return Changed; 1182 } 1183 1184 PreservedAnalyses EarlyCSEPass::run(Function &F, 1185 FunctionAnalysisManager &AM) { 1186 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1187 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1188 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1189 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1190 auto *MSSA = 1191 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1192 1193 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1194 1195 if (!CSE.run()) 1196 return PreservedAnalyses::all(); 1197 1198 PreservedAnalyses PA; 1199 PA.preserveSet<CFGAnalyses>(); 1200 PA.preserve<GlobalsAA>(); 1201 if (UseMemorySSA) 1202 PA.preserve<MemorySSAAnalysis>(); 1203 return PA; 1204 } 1205 1206 namespace { 1207 1208 /// A simple and fast domtree-based CSE pass. 1209 /// 1210 /// This pass does a simple depth-first walk over the dominator tree, 1211 /// eliminating trivially redundant instructions and using instsimplify to 1212 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1213 /// cases so that instcombine and other passes are more effective. It is 1214 /// expected that a later pass of GVN will catch the interesting/hard cases. 1215 template<bool UseMemorySSA> 1216 class EarlyCSELegacyCommonPass : public FunctionPass { 1217 public: 1218 static char ID; 1219 1220 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1221 if (UseMemorySSA) 1222 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1223 else 1224 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1225 } 1226 1227 bool runOnFunction(Function &F) override { 1228 if (skipFunction(F)) 1229 return false; 1230 1231 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1232 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1233 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1234 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1235 auto *MSSA = 1236 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1237 1238 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1239 1240 return CSE.run(); 1241 } 1242 1243 void getAnalysisUsage(AnalysisUsage &AU) const override { 1244 AU.addRequired<AssumptionCacheTracker>(); 1245 AU.addRequired<DominatorTreeWrapperPass>(); 1246 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1247 AU.addRequired<TargetTransformInfoWrapperPass>(); 1248 if (UseMemorySSA) { 1249 AU.addRequired<MemorySSAWrapperPass>(); 1250 AU.addPreserved<MemorySSAWrapperPass>(); 1251 } 1252 AU.addPreserved<GlobalsAAWrapperPass>(); 1253 AU.setPreservesCFG(); 1254 } 1255 }; 1256 1257 } // end anonymous namespace 1258 1259 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1260 1261 template<> 1262 char EarlyCSELegacyPass::ID = 0; 1263 1264 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1265 false) 1266 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1268 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1269 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1270 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1271 1272 using EarlyCSEMemSSALegacyPass = 1273 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1274 1275 template<> 1276 char EarlyCSEMemSSALegacyPass::ID = 0; 1277 1278 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1279 if (UseMemorySSA) 1280 return new EarlyCSEMemSSALegacyPass(); 1281 else 1282 return new EarlyCSELegacyPass(); 1283 } 1284 1285 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1286 "Early CSE w/ MemorySSA", false, false) 1287 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1288 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1289 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1290 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1291 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1292 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1293 "Early CSE w/ MemorySSA", false, false) 1294