1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include <cassert> 58 #include <deque> 59 #include <memory> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "early-cse" 66 67 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 68 STATISTIC(NumCSE, "Number of instructions CSE'd"); 69 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 70 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 71 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 72 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 73 74 DEBUG_COUNTER(CSECounter, "early-cse", 75 "Controls which instructions are removed"); 76 77 //===----------------------------------------------------------------------===// 78 // SimpleValue 79 //===----------------------------------------------------------------------===// 80 81 namespace { 82 83 /// Struct representing the available values in the scoped hash table. 84 struct SimpleValue { 85 Instruction *Inst; 86 87 SimpleValue(Instruction *I) : Inst(I) { 88 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 89 } 90 91 bool isSentinel() const { 92 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 93 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 94 } 95 96 static bool canHandle(Instruction *Inst) { 97 // This can only handle non-void readnone functions. 98 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 99 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 100 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 101 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 102 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 103 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 104 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 105 } 106 }; 107 108 } // end anonymous namespace 109 110 namespace llvm { 111 112 template <> struct DenseMapInfo<SimpleValue> { 113 static inline SimpleValue getEmptyKey() { 114 return DenseMapInfo<Instruction *>::getEmptyKey(); 115 } 116 117 static inline SimpleValue getTombstoneKey() { 118 return DenseMapInfo<Instruction *>::getTombstoneKey(); 119 } 120 121 static unsigned getHashValue(SimpleValue Val); 122 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 123 }; 124 125 } // end namespace llvm 126 127 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 128 Instruction *Inst = Val.Inst; 129 // Hash in all of the operands as pointers. 130 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 131 Value *LHS = BinOp->getOperand(0); 132 Value *RHS = BinOp->getOperand(1); 133 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 134 std::swap(LHS, RHS); 135 136 return hash_combine(BinOp->getOpcode(), LHS, RHS); 137 } 138 139 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 140 Value *LHS = CI->getOperand(0); 141 Value *RHS = CI->getOperand(1); 142 CmpInst::Predicate Pred = CI->getPredicate(); 143 if (Inst->getOperand(0) > Inst->getOperand(1)) { 144 std::swap(LHS, RHS); 145 Pred = CI->getSwappedPredicate(); 146 } 147 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 148 } 149 150 // Hash min/max/abs (cmp + select) to allow for commuted operands. 151 // Min/max may also have non-canonical compare predicate (eg, the compare for 152 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 153 // compare. 154 Value *A, *B; 155 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor; 156 // TODO: We should also detect FP min/max. 157 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 158 SPF == SPF_UMIN || SPF == SPF_UMAX || 159 SPF == SPF_ABS || SPF == SPF_NABS) { 160 if (A > B) 161 std::swap(A, B); 162 return hash_combine(Inst->getOpcode(), SPF, A, B); 163 } 164 165 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 166 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 167 168 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 169 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 170 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 171 172 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 173 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 174 IVI->getOperand(1), 175 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 176 177 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 178 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 179 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 180 isa<ShuffleVectorInst>(Inst)) && 181 "Invalid/unknown instruction"); 182 183 // Mix in the opcode. 184 return hash_combine( 185 Inst->getOpcode(), 186 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 187 } 188 189 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 190 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 191 192 if (LHS.isSentinel() || RHS.isSentinel()) 193 return LHSI == RHSI; 194 195 if (LHSI->getOpcode() != RHSI->getOpcode()) 196 return false; 197 if (LHSI->isIdenticalToWhenDefined(RHSI)) 198 return true; 199 200 // If we're not strictly identical, we still might be a commutable instruction 201 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 202 if (!LHSBinOp->isCommutative()) 203 return false; 204 205 assert(isa<BinaryOperator>(RHSI) && 206 "same opcode, but different instruction type?"); 207 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 208 209 // Commuted equality 210 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 211 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 212 } 213 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 214 assert(isa<CmpInst>(RHSI) && 215 "same opcode, but different instruction type?"); 216 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 217 // Commuted equality 218 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 219 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 220 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 221 } 222 223 // Min/max/abs can occur with commuted operands, non-canonical predicates, 224 // and/or non-canonical operands. 225 Value *LHSA, *LHSB; 226 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor; 227 // TODO: We should also detect FP min/max. 228 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 229 LSPF == SPF_UMIN || LSPF == SPF_UMAX || 230 LSPF == SPF_ABS || LSPF == SPF_NABS) { 231 Value *RHSA, *RHSB; 232 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor; 233 return (LSPF == RSPF && ((LHSA == RHSA && LHSB == RHSB) || 234 (LHSA == RHSB && LHSB == RHSA))); 235 } 236 237 return false; 238 } 239 240 //===----------------------------------------------------------------------===// 241 // CallValue 242 //===----------------------------------------------------------------------===// 243 244 namespace { 245 246 /// Struct representing the available call values in the scoped hash 247 /// table. 248 struct CallValue { 249 Instruction *Inst; 250 251 CallValue(Instruction *I) : Inst(I) { 252 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 253 } 254 255 bool isSentinel() const { 256 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 257 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 258 } 259 260 static bool canHandle(Instruction *Inst) { 261 // Don't value number anything that returns void. 262 if (Inst->getType()->isVoidTy()) 263 return false; 264 265 CallInst *CI = dyn_cast<CallInst>(Inst); 266 if (!CI || !CI->onlyReadsMemory()) 267 return false; 268 return true; 269 } 270 }; 271 272 } // end anonymous namespace 273 274 namespace llvm { 275 276 template <> struct DenseMapInfo<CallValue> { 277 static inline CallValue getEmptyKey() { 278 return DenseMapInfo<Instruction *>::getEmptyKey(); 279 } 280 281 static inline CallValue getTombstoneKey() { 282 return DenseMapInfo<Instruction *>::getTombstoneKey(); 283 } 284 285 static unsigned getHashValue(CallValue Val); 286 static bool isEqual(CallValue LHS, CallValue RHS); 287 }; 288 289 } // end namespace llvm 290 291 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 292 Instruction *Inst = Val.Inst; 293 // Hash all of the operands as pointers and mix in the opcode. 294 return hash_combine( 295 Inst->getOpcode(), 296 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 297 } 298 299 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 300 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 301 if (LHS.isSentinel() || RHS.isSentinel()) 302 return LHSI == RHSI; 303 return LHSI->isIdenticalTo(RHSI); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // EarlyCSE implementation 308 //===----------------------------------------------------------------------===// 309 310 namespace { 311 312 /// A simple and fast domtree-based CSE pass. 313 /// 314 /// This pass does a simple depth-first walk over the dominator tree, 315 /// eliminating trivially redundant instructions and using instsimplify to 316 /// canonicalize things as it goes. It is intended to be fast and catch obvious 317 /// cases so that instcombine and other passes are more effective. It is 318 /// expected that a later pass of GVN will catch the interesting/hard cases. 319 class EarlyCSE { 320 public: 321 const TargetLibraryInfo &TLI; 322 const TargetTransformInfo &TTI; 323 DominatorTree &DT; 324 AssumptionCache &AC; 325 const SimplifyQuery SQ; 326 MemorySSA *MSSA; 327 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 328 329 using AllocatorTy = 330 RecyclingAllocator<BumpPtrAllocator, 331 ScopedHashTableVal<SimpleValue, Value *>>; 332 using ScopedHTType = 333 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 334 AllocatorTy>; 335 336 /// A scoped hash table of the current values of all of our simple 337 /// scalar expressions. 338 /// 339 /// As we walk down the domtree, we look to see if instructions are in this: 340 /// if so, we replace them with what we find, otherwise we insert them so 341 /// that dominated values can succeed in their lookup. 342 ScopedHTType AvailableValues; 343 344 /// A scoped hash table of the current values of previously encounted memory 345 /// locations. 346 /// 347 /// This allows us to get efficient access to dominating loads or stores when 348 /// we have a fully redundant load. In addition to the most recent load, we 349 /// keep track of a generation count of the read, which is compared against 350 /// the current generation count. The current generation count is incremented 351 /// after every possibly writing memory operation, which ensures that we only 352 /// CSE loads with other loads that have no intervening store. Ordering 353 /// events (such as fences or atomic instructions) increment the generation 354 /// count as well; essentially, we model these as writes to all possible 355 /// locations. Note that atomic and/or volatile loads and stores can be 356 /// present the table; it is the responsibility of the consumer to inspect 357 /// the atomicity/volatility if needed. 358 struct LoadValue { 359 Instruction *DefInst = nullptr; 360 unsigned Generation = 0; 361 int MatchingId = -1; 362 bool IsAtomic = false; 363 364 LoadValue() = default; 365 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 366 bool IsAtomic) 367 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 368 IsAtomic(IsAtomic) {} 369 }; 370 371 using LoadMapAllocator = 372 RecyclingAllocator<BumpPtrAllocator, 373 ScopedHashTableVal<Value *, LoadValue>>; 374 using LoadHTType = 375 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 376 LoadMapAllocator>; 377 378 LoadHTType AvailableLoads; 379 380 // A scoped hash table mapping memory locations (represented as typed 381 // addresses) to generation numbers at which that memory location became 382 // (henceforth indefinitely) invariant. 383 using InvariantMapAllocator = 384 RecyclingAllocator<BumpPtrAllocator, 385 ScopedHashTableVal<MemoryLocation, unsigned>>; 386 using InvariantHTType = 387 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 388 InvariantMapAllocator>; 389 InvariantHTType AvailableInvariants; 390 391 /// A scoped hash table of the current values of read-only call 392 /// values. 393 /// 394 /// It uses the same generation count as loads. 395 using CallHTType = 396 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 397 CallHTType AvailableCalls; 398 399 /// This is the current generation of the memory value. 400 unsigned CurrentGeneration = 0; 401 402 /// Set up the EarlyCSE runner for a particular function. 403 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 404 const TargetTransformInfo &TTI, DominatorTree &DT, 405 AssumptionCache &AC, MemorySSA *MSSA) 406 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 407 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} 408 409 bool run(); 410 411 private: 412 // Almost a POD, but needs to call the constructors for the scoped hash 413 // tables so that a new scope gets pushed on. These are RAII so that the 414 // scope gets popped when the NodeScope is destroyed. 415 class NodeScope { 416 public: 417 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 418 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 419 : Scope(AvailableValues), LoadScope(AvailableLoads), 420 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 421 NodeScope(const NodeScope &) = delete; 422 NodeScope &operator=(const NodeScope &) = delete; 423 424 private: 425 ScopedHTType::ScopeTy Scope; 426 LoadHTType::ScopeTy LoadScope; 427 InvariantHTType::ScopeTy InvariantScope; 428 CallHTType::ScopeTy CallScope; 429 }; 430 431 // Contains all the needed information to create a stack for doing a depth 432 // first traversal of the tree. This includes scopes for values, loads, and 433 // calls as well as the generation. There is a child iterator so that the 434 // children do not need to be store separately. 435 class StackNode { 436 public: 437 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 438 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 439 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 440 DomTreeNode::iterator end) 441 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 442 EndIter(end), 443 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 444 AvailableCalls) 445 {} 446 StackNode(const StackNode &) = delete; 447 StackNode &operator=(const StackNode &) = delete; 448 449 // Accessors. 450 unsigned currentGeneration() { return CurrentGeneration; } 451 unsigned childGeneration() { return ChildGeneration; } 452 void childGeneration(unsigned generation) { ChildGeneration = generation; } 453 DomTreeNode *node() { return Node; } 454 DomTreeNode::iterator childIter() { return ChildIter; } 455 456 DomTreeNode *nextChild() { 457 DomTreeNode *child = *ChildIter; 458 ++ChildIter; 459 return child; 460 } 461 462 DomTreeNode::iterator end() { return EndIter; } 463 bool isProcessed() { return Processed; } 464 void process() { Processed = true; } 465 466 private: 467 unsigned CurrentGeneration; 468 unsigned ChildGeneration; 469 DomTreeNode *Node; 470 DomTreeNode::iterator ChildIter; 471 DomTreeNode::iterator EndIter; 472 NodeScope Scopes; 473 bool Processed = false; 474 }; 475 476 /// Wrapper class to handle memory instructions, including loads, 477 /// stores and intrinsic loads and stores defined by the target. 478 class ParseMemoryInst { 479 public: 480 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 481 : Inst(Inst) { 482 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 483 if (TTI.getTgtMemIntrinsic(II, Info)) 484 IsTargetMemInst = true; 485 } 486 487 bool isLoad() const { 488 if (IsTargetMemInst) return Info.ReadMem; 489 return isa<LoadInst>(Inst); 490 } 491 492 bool isStore() const { 493 if (IsTargetMemInst) return Info.WriteMem; 494 return isa<StoreInst>(Inst); 495 } 496 497 bool isAtomic() const { 498 if (IsTargetMemInst) 499 return Info.Ordering != AtomicOrdering::NotAtomic; 500 return Inst->isAtomic(); 501 } 502 503 bool isUnordered() const { 504 if (IsTargetMemInst) 505 return Info.isUnordered(); 506 507 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 508 return LI->isUnordered(); 509 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 510 return SI->isUnordered(); 511 } 512 // Conservative answer 513 return !Inst->isAtomic(); 514 } 515 516 bool isVolatile() const { 517 if (IsTargetMemInst) 518 return Info.IsVolatile; 519 520 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 521 return LI->isVolatile(); 522 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 523 return SI->isVolatile(); 524 } 525 // Conservative answer 526 return true; 527 } 528 529 bool isInvariantLoad() const { 530 if (auto *LI = dyn_cast<LoadInst>(Inst)) 531 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 532 return false; 533 } 534 535 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 536 return (getPointerOperand() == Inst.getPointerOperand() && 537 getMatchingId() == Inst.getMatchingId()); 538 } 539 540 bool isValid() const { return getPointerOperand() != nullptr; } 541 542 // For regular (non-intrinsic) loads/stores, this is set to -1. For 543 // intrinsic loads/stores, the id is retrieved from the corresponding 544 // field in the MemIntrinsicInfo structure. That field contains 545 // non-negative values only. 546 int getMatchingId() const { 547 if (IsTargetMemInst) return Info.MatchingId; 548 return -1; 549 } 550 551 Value *getPointerOperand() const { 552 if (IsTargetMemInst) return Info.PtrVal; 553 return getLoadStorePointerOperand(Inst); 554 } 555 556 bool mayReadFromMemory() const { 557 if (IsTargetMemInst) return Info.ReadMem; 558 return Inst->mayReadFromMemory(); 559 } 560 561 bool mayWriteToMemory() const { 562 if (IsTargetMemInst) return Info.WriteMem; 563 return Inst->mayWriteToMemory(); 564 } 565 566 private: 567 bool IsTargetMemInst = false; 568 MemIntrinsicInfo Info; 569 Instruction *Inst; 570 }; 571 572 bool processNode(DomTreeNode *Node); 573 574 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 575 if (auto *LI = dyn_cast<LoadInst>(Inst)) 576 return LI; 577 if (auto *SI = dyn_cast<StoreInst>(Inst)) 578 return SI->getValueOperand(); 579 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 580 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 581 ExpectedType); 582 } 583 584 /// Return true if the instruction is known to only operate on memory 585 /// provably invariant in the given "generation". 586 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 587 588 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 589 Instruction *EarlierInst, Instruction *LaterInst); 590 591 void removeMSSA(Instruction *Inst) { 592 if (!MSSA) 593 return; 594 // Removing a store here can leave MemorySSA in an unoptimized state by 595 // creating MemoryPhis that have identical arguments and by creating 596 // MemoryUses whose defining access is not an actual clobber. We handle the 597 // phi case eagerly here. The non-optimized MemoryUse case is lazily 598 // updated by MemorySSA getClobberingMemoryAccess. 599 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 600 // Optimize MemoryPhi nodes that may become redundant by having all the 601 // same input values once MA is removed. 602 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 603 SmallVector<MemoryAccess *, 8> WorkQueue; 604 WorkQueue.push_back(MA); 605 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 606 // we shouldn't be processing that many phis and this will avoid an 607 // allocation in almost all cases. 608 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 609 MemoryAccess *WI = WorkQueue[I]; 610 611 for (auto *U : WI->users()) 612 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 613 PhisToCheck.insert(MP); 614 615 MSSAUpdater->removeMemoryAccess(WI); 616 617 for (MemoryPhi *MP : PhisToCheck) { 618 MemoryAccess *FirstIn = MP->getIncomingValue(0); 619 if (llvm::all_of(MP->incoming_values(), 620 [=](Use &In) { return In == FirstIn; })) 621 WorkQueue.push_back(MP); 622 } 623 PhisToCheck.clear(); 624 } 625 } 626 } 627 }; 628 629 } // end anonymous namespace 630 631 /// Determine if the memory referenced by LaterInst is from the same heap 632 /// version as EarlierInst. 633 /// This is currently called in two scenarios: 634 /// 635 /// load p 636 /// ... 637 /// load p 638 /// 639 /// and 640 /// 641 /// x = load p 642 /// ... 643 /// store x, p 644 /// 645 /// in both cases we want to verify that there are no possible writes to the 646 /// memory referenced by p between the earlier and later instruction. 647 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 648 unsigned LaterGeneration, 649 Instruction *EarlierInst, 650 Instruction *LaterInst) { 651 // Check the simple memory generation tracking first. 652 if (EarlierGeneration == LaterGeneration) 653 return true; 654 655 if (!MSSA) 656 return false; 657 658 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 659 // read/write memory, then we can safely return true here. 660 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 661 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 662 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 663 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 664 // with the default optimization pipeline. 665 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 666 if (!EarlierMA) 667 return true; 668 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 669 if (!LaterMA) 670 return true; 671 672 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 673 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 674 // EarlierInst and LaterInst and neither can any other write that potentially 675 // clobbers LaterInst. 676 MemoryAccess *LaterDef = 677 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 678 return MSSA->dominates(LaterDef, EarlierMA); 679 } 680 681 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 682 // A location loaded from with an invariant_load is assumed to *never* change 683 // within the visible scope of the compilation. 684 if (auto *LI = dyn_cast<LoadInst>(I)) 685 if (LI->getMetadata(LLVMContext::MD_invariant_load)) 686 return true; 687 688 auto MemLocOpt = MemoryLocation::getOrNone(I); 689 if (!MemLocOpt) 690 // "target" intrinsic forms of loads aren't currently known to 691 // MemoryLocation::get. TODO 692 return false; 693 MemoryLocation MemLoc = *MemLocOpt; 694 if (!AvailableInvariants.count(MemLoc)) 695 return false; 696 697 // Is the generation at which this became invariant older than the 698 // current one? 699 return AvailableInvariants.lookup(MemLoc) <= GenAt; 700 } 701 702 bool EarlyCSE::processNode(DomTreeNode *Node) { 703 bool Changed = false; 704 BasicBlock *BB = Node->getBlock(); 705 706 // If this block has a single predecessor, then the predecessor is the parent 707 // of the domtree node and all of the live out memory values are still current 708 // in this block. If this block has multiple predecessors, then they could 709 // have invalidated the live-out memory values of our parent value. For now, 710 // just be conservative and invalidate memory if this block has multiple 711 // predecessors. 712 if (!BB->getSinglePredecessor()) 713 ++CurrentGeneration; 714 715 // If this node has a single predecessor which ends in a conditional branch, 716 // we can infer the value of the branch condition given that we took this 717 // path. We need the single predecessor to ensure there's not another path 718 // which reaches this block where the condition might hold a different 719 // value. Since we're adding this to the scoped hash table (like any other 720 // def), it will have been popped if we encounter a future merge block. 721 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 722 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 723 if (BI && BI->isConditional()) { 724 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 725 if (CondInst && SimpleValue::canHandle(CondInst)) { 726 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 727 auto *TorF = (BI->getSuccessor(0) == BB) 728 ? ConstantInt::getTrue(BB->getContext()) 729 : ConstantInt::getFalse(BB->getContext()); 730 AvailableValues.insert(CondInst, TorF); 731 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 732 << CondInst->getName() << "' as " << *TorF << " in " 733 << BB->getName() << "\n"); 734 if (!DebugCounter::shouldExecute(CSECounter)) { 735 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 736 } else { 737 // Replace all dominated uses with the known value. 738 if (unsigned Count = replaceDominatedUsesWith( 739 CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) { 740 Changed = true; 741 NumCSECVP += Count; 742 } 743 } 744 } 745 } 746 } 747 748 /// LastStore - Keep track of the last non-volatile store that we saw... for 749 /// as long as there in no instruction that reads memory. If we see a store 750 /// to the same location, we delete the dead store. This zaps trivial dead 751 /// stores which can occur in bitfield code among other things. 752 Instruction *LastStore = nullptr; 753 754 // See if any instructions in the block can be eliminated. If so, do it. If 755 // not, add them to AvailableValues. 756 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 757 Instruction *Inst = &*I++; 758 759 // Dead instructions should just be removed. 760 if (isInstructionTriviallyDead(Inst, &TLI)) { 761 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 762 if (!DebugCounter::shouldExecute(CSECounter)) { 763 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 764 continue; 765 } 766 salvageDebugInfo(*Inst); 767 removeMSSA(Inst); 768 Inst->eraseFromParent(); 769 Changed = true; 770 ++NumSimplify; 771 continue; 772 } 773 774 // Skip assume intrinsics, they don't really have side effects (although 775 // they're marked as such to ensure preservation of control dependencies), 776 // and this pass will not bother with its removal. However, we should mark 777 // its condition as true for all dominated blocks. 778 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 779 auto *CondI = 780 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 781 if (CondI && SimpleValue::canHandle(CondI)) { 782 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst 783 << '\n'); 784 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 785 } else 786 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 787 continue; 788 } 789 790 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 791 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 792 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 793 continue; 794 } 795 796 // We can skip all invariant.start intrinsics since they only read memory, 797 // and we can forward values across it. For invariant starts without 798 // invariant ends, we can use the fact that the invariantness never ends to 799 // start a scope in the current generaton which is true for all future 800 // generations. Also, we dont need to consume the last store since the 801 // semantics of invariant.start allow us to perform DSE of the last 802 // store, if there was a store following invariant.start. Consider: 803 // 804 // store 30, i8* p 805 // invariant.start(p) 806 // store 40, i8* p 807 // We can DSE the store to 30, since the store 40 to invariant location p 808 // causes undefined behaviour. 809 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 810 // If there are any uses, the scope might end. 811 if (!Inst->use_empty()) 812 continue; 813 auto *CI = cast<CallInst>(Inst); 814 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); 815 // Don't start a scope if we already have a better one pushed 816 if (!AvailableInvariants.count(MemLoc)) 817 AvailableInvariants.insert(MemLoc, CurrentGeneration); 818 continue; 819 } 820 821 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 822 if (auto *CondI = 823 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 824 if (SimpleValue::canHandle(CondI)) { 825 // Do we already know the actual value of this condition? 826 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 827 // Is the condition known to be true? 828 if (isa<ConstantInt>(KnownCond) && 829 cast<ConstantInt>(KnownCond)->isOne()) { 830 LLVM_DEBUG(dbgs() 831 << "EarlyCSE removing guard: " << *Inst << '\n'); 832 removeMSSA(Inst); 833 Inst->eraseFromParent(); 834 Changed = true; 835 continue; 836 } else 837 // Use the known value if it wasn't true. 838 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 839 } 840 // The condition we're on guarding here is true for all dominated 841 // locations. 842 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 843 } 844 } 845 846 // Guard intrinsics read all memory, but don't write any memory. 847 // Accordingly, don't update the generation but consume the last store (to 848 // avoid an incorrect DSE). 849 LastStore = nullptr; 850 continue; 851 } 852 853 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 854 // its simpler value. 855 if (Value *V = SimplifyInstruction(Inst, SQ)) { 856 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V 857 << '\n'); 858 if (!DebugCounter::shouldExecute(CSECounter)) { 859 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 860 } else { 861 bool Killed = false; 862 if (!Inst->use_empty()) { 863 Inst->replaceAllUsesWith(V); 864 Changed = true; 865 } 866 if (isInstructionTriviallyDead(Inst, &TLI)) { 867 removeMSSA(Inst); 868 Inst->eraseFromParent(); 869 Changed = true; 870 Killed = true; 871 } 872 if (Changed) 873 ++NumSimplify; 874 if (Killed) 875 continue; 876 } 877 } 878 879 // If this is a simple instruction that we can value number, process it. 880 if (SimpleValue::canHandle(Inst)) { 881 // See if the instruction has an available value. If so, use it. 882 if (Value *V = AvailableValues.lookup(Inst)) { 883 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V 884 << '\n'); 885 if (!DebugCounter::shouldExecute(CSECounter)) { 886 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 887 continue; 888 } 889 if (auto *I = dyn_cast<Instruction>(V)) 890 I->andIRFlags(Inst); 891 Inst->replaceAllUsesWith(V); 892 removeMSSA(Inst); 893 Inst->eraseFromParent(); 894 Changed = true; 895 ++NumCSE; 896 continue; 897 } 898 899 // Otherwise, just remember that this value is available. 900 AvailableValues.insert(Inst, Inst); 901 continue; 902 } 903 904 ParseMemoryInst MemInst(Inst, TTI); 905 // If this is a non-volatile load, process it. 906 if (MemInst.isValid() && MemInst.isLoad()) { 907 // (conservatively) we can't peak past the ordering implied by this 908 // operation, but we can add this load to our set of available values 909 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 910 LastStore = nullptr; 911 ++CurrentGeneration; 912 } 913 914 if (MemInst.isInvariantLoad()) { 915 // If we pass an invariant load, we know that memory location is 916 // indefinitely constant from the moment of first dereferenceability. 917 // We conservatively treat the invariant_load as that moment. If we 918 // pass a invariant load after already establishing a scope, don't 919 // restart it since we want to preserve the earliest point seen. 920 auto MemLoc = MemoryLocation::get(Inst); 921 if (!AvailableInvariants.count(MemLoc)) 922 AvailableInvariants.insert(MemLoc, CurrentGeneration); 923 } 924 925 // If we have an available version of this load, and if it is the right 926 // generation or the load is known to be from an invariant location, 927 // replace this instruction. 928 // 929 // If either the dominating load or the current load are invariant, then 930 // we can assume the current load loads the same value as the dominating 931 // load. 932 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 933 if (InVal.DefInst != nullptr && 934 InVal.MatchingId == MemInst.getMatchingId() && 935 // We don't yet handle removing loads with ordering of any kind. 936 !MemInst.isVolatile() && MemInst.isUnordered() && 937 // We can't replace an atomic load with one which isn't also atomic. 938 InVal.IsAtomic >= MemInst.isAtomic() && 939 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 940 isSameMemGeneration(InVal.Generation, CurrentGeneration, 941 InVal.DefInst, Inst))) { 942 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 943 if (Op != nullptr) { 944 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 945 << " to: " << *InVal.DefInst << '\n'); 946 if (!DebugCounter::shouldExecute(CSECounter)) { 947 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 948 continue; 949 } 950 if (!Inst->use_empty()) 951 Inst->replaceAllUsesWith(Op); 952 removeMSSA(Inst); 953 Inst->eraseFromParent(); 954 Changed = true; 955 ++NumCSELoad; 956 continue; 957 } 958 } 959 960 // Otherwise, remember that we have this instruction. 961 AvailableLoads.insert( 962 MemInst.getPointerOperand(), 963 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 964 MemInst.isAtomic())); 965 LastStore = nullptr; 966 continue; 967 } 968 969 // If this instruction may read from memory or throw (and potentially read 970 // from memory in the exception handler), forget LastStore. Load/store 971 // intrinsics will indicate both a read and a write to memory. The target 972 // may override this (e.g. so that a store intrinsic does not read from 973 // memory, and thus will be treated the same as a regular store for 974 // commoning purposes). 975 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 976 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 977 LastStore = nullptr; 978 979 // If this is a read-only call, process it. 980 if (CallValue::canHandle(Inst)) { 981 // If we have an available version of this call, and if it is the right 982 // generation, replace this instruction. 983 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 984 if (InVal.first != nullptr && 985 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 986 Inst)) { 987 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 988 << " to: " << *InVal.first << '\n'); 989 if (!DebugCounter::shouldExecute(CSECounter)) { 990 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 991 continue; 992 } 993 if (!Inst->use_empty()) 994 Inst->replaceAllUsesWith(InVal.first); 995 removeMSSA(Inst); 996 Inst->eraseFromParent(); 997 Changed = true; 998 ++NumCSECall; 999 continue; 1000 } 1001 1002 // Otherwise, remember that we have this instruction. 1003 AvailableCalls.insert( 1004 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 1005 continue; 1006 } 1007 1008 // A release fence requires that all stores complete before it, but does 1009 // not prevent the reordering of following loads 'before' the fence. As a 1010 // result, we don't need to consider it as writing to memory and don't need 1011 // to advance the generation. We do need to prevent DSE across the fence, 1012 // but that's handled above. 1013 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 1014 if (FI->getOrdering() == AtomicOrdering::Release) { 1015 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 1016 continue; 1017 } 1018 1019 // write back DSE - If we write back the same value we just loaded from 1020 // the same location and haven't passed any intervening writes or ordering 1021 // operations, we can remove the write. The primary benefit is in allowing 1022 // the available load table to remain valid and value forward past where 1023 // the store originally was. 1024 if (MemInst.isValid() && MemInst.isStore()) { 1025 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1026 if (InVal.DefInst && 1027 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 1028 InVal.MatchingId == MemInst.getMatchingId() && 1029 // We don't yet handle removing stores with ordering of any kind. 1030 !MemInst.isVolatile() && MemInst.isUnordered() && 1031 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1032 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1033 InVal.DefInst, Inst))) { 1034 // It is okay to have a LastStore to a different pointer here if MemorySSA 1035 // tells us that the load and store are from the same memory generation. 1036 // In that case, LastStore should keep its present value since we're 1037 // removing the current store. 1038 assert((!LastStore || 1039 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1040 MemInst.getPointerOperand() || 1041 MSSA) && 1042 "can't have an intervening store if not using MemorySSA!"); 1043 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 1044 if (!DebugCounter::shouldExecute(CSECounter)) { 1045 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1046 continue; 1047 } 1048 removeMSSA(Inst); 1049 Inst->eraseFromParent(); 1050 Changed = true; 1051 ++NumDSE; 1052 // We can avoid incrementing the generation count since we were able 1053 // to eliminate this store. 1054 continue; 1055 } 1056 } 1057 1058 // Okay, this isn't something we can CSE at all. Check to see if it is 1059 // something that could modify memory. If so, our available memory values 1060 // cannot be used so bump the generation count. 1061 if (Inst->mayWriteToMemory()) { 1062 ++CurrentGeneration; 1063 1064 if (MemInst.isValid() && MemInst.isStore()) { 1065 // We do a trivial form of DSE if there are two stores to the same 1066 // location with no intervening loads. Delete the earlier store. 1067 // At the moment, we don't remove ordered stores, but do remove 1068 // unordered atomic stores. There's no special requirement (for 1069 // unordered atomics) about removing atomic stores only in favor of 1070 // other atomic stores since we we're going to execute the non-atomic 1071 // one anyway and the atomic one might never have become visible. 1072 if (LastStore) { 1073 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1074 assert(LastStoreMemInst.isUnordered() && 1075 !LastStoreMemInst.isVolatile() && 1076 "Violated invariant"); 1077 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1078 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1079 << " due to: " << *Inst << '\n'); 1080 if (!DebugCounter::shouldExecute(CSECounter)) { 1081 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1082 } else { 1083 removeMSSA(LastStore); 1084 LastStore->eraseFromParent(); 1085 Changed = true; 1086 ++NumDSE; 1087 LastStore = nullptr; 1088 } 1089 } 1090 // fallthrough - we can exploit information about this store 1091 } 1092 1093 // Okay, we just invalidated anything we knew about loaded values. Try 1094 // to salvage *something* by remembering that the stored value is a live 1095 // version of the pointer. It is safe to forward from volatile stores 1096 // to non-volatile loads, so we don't have to check for volatility of 1097 // the store. 1098 AvailableLoads.insert( 1099 MemInst.getPointerOperand(), 1100 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1101 MemInst.isAtomic())); 1102 1103 // Remember that this was the last unordered store we saw for DSE. We 1104 // don't yet handle DSE on ordered or volatile stores since we don't 1105 // have a good way to model the ordering requirement for following 1106 // passes once the store is removed. We could insert a fence, but 1107 // since fences are slightly stronger than stores in their ordering, 1108 // it's not clear this is a profitable transform. Another option would 1109 // be to merge the ordering with that of the post dominating store. 1110 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1111 LastStore = Inst; 1112 else 1113 LastStore = nullptr; 1114 } 1115 } 1116 } 1117 1118 return Changed; 1119 } 1120 1121 bool EarlyCSE::run() { 1122 // Note, deque is being used here because there is significant performance 1123 // gains over vector when the container becomes very large due to the 1124 // specific access patterns. For more information see the mailing list 1125 // discussion on this: 1126 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1127 std::deque<StackNode *> nodesToProcess; 1128 1129 bool Changed = false; 1130 1131 // Process the root node. 1132 nodesToProcess.push_back(new StackNode( 1133 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1134 CurrentGeneration, DT.getRootNode(), 1135 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1136 1137 // Save the current generation. 1138 unsigned LiveOutGeneration = CurrentGeneration; 1139 1140 // Process the stack. 1141 while (!nodesToProcess.empty()) { 1142 // Grab the first item off the stack. Set the current generation, remove 1143 // the node from the stack, and process it. 1144 StackNode *NodeToProcess = nodesToProcess.back(); 1145 1146 // Initialize class members. 1147 CurrentGeneration = NodeToProcess->currentGeneration(); 1148 1149 // Check if the node needs to be processed. 1150 if (!NodeToProcess->isProcessed()) { 1151 // Process the node. 1152 Changed |= processNode(NodeToProcess->node()); 1153 NodeToProcess->childGeneration(CurrentGeneration); 1154 NodeToProcess->process(); 1155 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1156 // Push the next child onto the stack. 1157 DomTreeNode *child = NodeToProcess->nextChild(); 1158 nodesToProcess.push_back( 1159 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1160 AvailableCalls, NodeToProcess->childGeneration(), 1161 child, child->begin(), child->end())); 1162 } else { 1163 // It has been processed, and there are no more children to process, 1164 // so delete it and pop it off the stack. 1165 delete NodeToProcess; 1166 nodesToProcess.pop_back(); 1167 } 1168 } // while (!nodes...) 1169 1170 // Reset the current generation. 1171 CurrentGeneration = LiveOutGeneration; 1172 1173 return Changed; 1174 } 1175 1176 PreservedAnalyses EarlyCSEPass::run(Function &F, 1177 FunctionAnalysisManager &AM) { 1178 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1179 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1180 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1181 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1182 auto *MSSA = 1183 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1184 1185 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1186 1187 if (!CSE.run()) 1188 return PreservedAnalyses::all(); 1189 1190 PreservedAnalyses PA; 1191 PA.preserveSet<CFGAnalyses>(); 1192 PA.preserve<GlobalsAA>(); 1193 if (UseMemorySSA) 1194 PA.preserve<MemorySSAAnalysis>(); 1195 return PA; 1196 } 1197 1198 namespace { 1199 1200 /// A simple and fast domtree-based CSE pass. 1201 /// 1202 /// This pass does a simple depth-first walk over the dominator tree, 1203 /// eliminating trivially redundant instructions and using instsimplify to 1204 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1205 /// cases so that instcombine and other passes are more effective. It is 1206 /// expected that a later pass of GVN will catch the interesting/hard cases. 1207 template<bool UseMemorySSA> 1208 class EarlyCSELegacyCommonPass : public FunctionPass { 1209 public: 1210 static char ID; 1211 1212 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1213 if (UseMemorySSA) 1214 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1215 else 1216 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1217 } 1218 1219 bool runOnFunction(Function &F) override { 1220 if (skipFunction(F)) 1221 return false; 1222 1223 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1224 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1225 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1226 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1227 auto *MSSA = 1228 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1229 1230 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1231 1232 return CSE.run(); 1233 } 1234 1235 void getAnalysisUsage(AnalysisUsage &AU) const override { 1236 AU.addRequired<AssumptionCacheTracker>(); 1237 AU.addRequired<DominatorTreeWrapperPass>(); 1238 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1239 AU.addRequired<TargetTransformInfoWrapperPass>(); 1240 if (UseMemorySSA) { 1241 AU.addRequired<MemorySSAWrapperPass>(); 1242 AU.addPreserved<MemorySSAWrapperPass>(); 1243 } 1244 AU.addPreserved<GlobalsAAWrapperPass>(); 1245 AU.setPreservesCFG(); 1246 } 1247 }; 1248 1249 } // end anonymous namespace 1250 1251 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1252 1253 template<> 1254 char EarlyCSELegacyPass::ID = 0; 1255 1256 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1257 false) 1258 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1259 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1260 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1261 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1262 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1263 1264 using EarlyCSEMemSSALegacyPass = 1265 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1266 1267 template<> 1268 char EarlyCSEMemSSALegacyPass::ID = 0; 1269 1270 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1271 if (UseMemorySSA) 1272 return new EarlyCSEMemSSALegacyPass(); 1273 else 1274 return new EarlyCSELegacyPass(); 1275 } 1276 1277 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1278 "Early CSE w/ MemorySSA", false, false) 1279 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1280 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1282 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1283 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1284 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1285 "Early CSE w/ MemorySSA", false, false) 1286