1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/MemorySSA.h" 36 #include <deque> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 #define DEBUG_TYPE "early-cse" 41 42 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 43 STATISTIC(NumCSE, "Number of instructions CSE'd"); 44 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 45 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 46 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 47 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 48 49 //===----------------------------------------------------------------------===// 50 // SimpleValue 51 //===----------------------------------------------------------------------===// 52 53 namespace { 54 /// \brief Struct representing the available values in the scoped hash table. 55 struct SimpleValue { 56 Instruction *Inst; 57 58 SimpleValue(Instruction *I) : Inst(I) { 59 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 60 } 61 62 bool isSentinel() const { 63 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 64 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 65 } 66 67 static bool canHandle(Instruction *Inst) { 68 // This can only handle non-void readnone functions. 69 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 70 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 71 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 72 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 73 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 74 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 75 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 76 } 77 }; 78 } 79 80 namespace llvm { 81 template <> struct DenseMapInfo<SimpleValue> { 82 static inline SimpleValue getEmptyKey() { 83 return DenseMapInfo<Instruction *>::getEmptyKey(); 84 } 85 static inline SimpleValue getTombstoneKey() { 86 return DenseMapInfo<Instruction *>::getTombstoneKey(); 87 } 88 static unsigned getHashValue(SimpleValue Val); 89 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 90 }; 91 } 92 93 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 94 Instruction *Inst = Val.Inst; 95 // Hash in all of the operands as pointers. 96 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 97 Value *LHS = BinOp->getOperand(0); 98 Value *RHS = BinOp->getOperand(1); 99 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 100 std::swap(LHS, RHS); 101 102 return hash_combine(BinOp->getOpcode(), LHS, RHS); 103 } 104 105 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 106 Value *LHS = CI->getOperand(0); 107 Value *RHS = CI->getOperand(1); 108 CmpInst::Predicate Pred = CI->getPredicate(); 109 if (Inst->getOperand(0) > Inst->getOperand(1)) { 110 std::swap(LHS, RHS); 111 Pred = CI->getSwappedPredicate(); 112 } 113 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 114 } 115 116 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 117 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 118 119 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 120 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 121 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 122 123 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 124 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 125 IVI->getOperand(1), 126 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 127 128 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 129 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 130 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 131 isa<ShuffleVectorInst>(Inst)) && 132 "Invalid/unknown instruction"); 133 134 // Mix in the opcode. 135 return hash_combine( 136 Inst->getOpcode(), 137 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 138 } 139 140 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 141 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 142 143 if (LHS.isSentinel() || RHS.isSentinel()) 144 return LHSI == RHSI; 145 146 if (LHSI->getOpcode() != RHSI->getOpcode()) 147 return false; 148 if (LHSI->isIdenticalToWhenDefined(RHSI)) 149 return true; 150 151 // If we're not strictly identical, we still might be a commutable instruction 152 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 153 if (!LHSBinOp->isCommutative()) 154 return false; 155 156 assert(isa<BinaryOperator>(RHSI) && 157 "same opcode, but different instruction type?"); 158 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 159 160 // Commuted equality 161 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 162 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 163 } 164 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 165 assert(isa<CmpInst>(RHSI) && 166 "same opcode, but different instruction type?"); 167 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 168 // Commuted equality 169 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 170 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 171 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 172 } 173 174 return false; 175 } 176 177 //===----------------------------------------------------------------------===// 178 // CallValue 179 //===----------------------------------------------------------------------===// 180 181 namespace { 182 /// \brief Struct representing the available call values in the scoped hash 183 /// table. 184 struct CallValue { 185 Instruction *Inst; 186 187 CallValue(Instruction *I) : Inst(I) { 188 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 189 } 190 191 bool isSentinel() const { 192 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 193 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 194 } 195 196 static bool canHandle(Instruction *Inst) { 197 // Don't value number anything that returns void. 198 if (Inst->getType()->isVoidTy()) 199 return false; 200 201 CallInst *CI = dyn_cast<CallInst>(Inst); 202 if (!CI || !CI->onlyReadsMemory()) 203 return false; 204 return true; 205 } 206 }; 207 } 208 209 namespace llvm { 210 template <> struct DenseMapInfo<CallValue> { 211 static inline CallValue getEmptyKey() { 212 return DenseMapInfo<Instruction *>::getEmptyKey(); 213 } 214 static inline CallValue getTombstoneKey() { 215 return DenseMapInfo<Instruction *>::getTombstoneKey(); 216 } 217 static unsigned getHashValue(CallValue Val); 218 static bool isEqual(CallValue LHS, CallValue RHS); 219 }; 220 } 221 222 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 223 Instruction *Inst = Val.Inst; 224 // Hash all of the operands as pointers and mix in the opcode. 225 return hash_combine( 226 Inst->getOpcode(), 227 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 228 } 229 230 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 231 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 232 if (LHS.isSentinel() || RHS.isSentinel()) 233 return LHSI == RHSI; 234 return LHSI->isIdenticalTo(RHSI); 235 } 236 237 //===----------------------------------------------------------------------===// 238 // EarlyCSE implementation 239 //===----------------------------------------------------------------------===// 240 241 namespace { 242 /// \brief A simple and fast domtree-based CSE pass. 243 /// 244 /// This pass does a simple depth-first walk over the dominator tree, 245 /// eliminating trivially redundant instructions and using instsimplify to 246 /// canonicalize things as it goes. It is intended to be fast and catch obvious 247 /// cases so that instcombine and other passes are more effective. It is 248 /// expected that a later pass of GVN will catch the interesting/hard cases. 249 class EarlyCSE { 250 public: 251 const TargetLibraryInfo &TLI; 252 const TargetTransformInfo &TTI; 253 DominatorTree &DT; 254 AssumptionCache &AC; 255 MemorySSA *MSSA; 256 typedef RecyclingAllocator< 257 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 258 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 259 AllocatorTy> ScopedHTType; 260 261 /// \brief A scoped hash table of the current values of all of our simple 262 /// scalar expressions. 263 /// 264 /// As we walk down the domtree, we look to see if instructions are in this: 265 /// if so, we replace them with what we find, otherwise we insert them so 266 /// that dominated values can succeed in their lookup. 267 ScopedHTType AvailableValues; 268 269 /// A scoped hash table of the current values of previously encounted memory 270 /// locations. 271 /// 272 /// This allows us to get efficient access to dominating loads or stores when 273 /// we have a fully redundant load. In addition to the most recent load, we 274 /// keep track of a generation count of the read, which is compared against 275 /// the current generation count. The current generation count is incremented 276 /// after every possibly writing memory operation, which ensures that we only 277 /// CSE loads with other loads that have no intervening store. Ordering 278 /// events (such as fences or atomic instructions) increment the generation 279 /// count as well; essentially, we model these as writes to all possible 280 /// locations. Note that atomic and/or volatile loads and stores can be 281 /// present the table; it is the responsibility of the consumer to inspect 282 /// the atomicity/volatility if needed. 283 struct LoadValue { 284 Instruction *DefInst; 285 unsigned Generation; 286 int MatchingId; 287 bool IsAtomic; 288 bool IsInvariant; 289 LoadValue() 290 : DefInst(nullptr), Generation(0), MatchingId(-1), IsAtomic(false), 291 IsInvariant(false) {} 292 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 293 bool IsAtomic, bool IsInvariant) 294 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 295 IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} 296 }; 297 typedef RecyclingAllocator<BumpPtrAllocator, 298 ScopedHashTableVal<Value *, LoadValue>> 299 LoadMapAllocator; 300 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 301 LoadMapAllocator> LoadHTType; 302 LoadHTType AvailableLoads; 303 304 /// \brief A scoped hash table of the current values of read-only call 305 /// values. 306 /// 307 /// It uses the same generation count as loads. 308 typedef ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>> 309 CallHTType; 310 CallHTType AvailableCalls; 311 312 /// \brief This is the current generation of the memory value. 313 unsigned CurrentGeneration; 314 315 /// \brief Set up the EarlyCSE runner for a particular function. 316 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 317 DominatorTree &DT, AssumptionCache &AC, MemorySSA *MSSA) 318 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), MSSA(MSSA), CurrentGeneration(0) {} 319 320 bool run(); 321 322 private: 323 // Almost a POD, but needs to call the constructors for the scoped hash 324 // tables so that a new scope gets pushed on. These are RAII so that the 325 // scope gets popped when the NodeScope is destroyed. 326 class NodeScope { 327 public: 328 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 329 CallHTType &AvailableCalls) 330 : Scope(AvailableValues), LoadScope(AvailableLoads), 331 CallScope(AvailableCalls) {} 332 333 private: 334 NodeScope(const NodeScope &) = delete; 335 void operator=(const NodeScope &) = delete; 336 337 ScopedHTType::ScopeTy Scope; 338 LoadHTType::ScopeTy LoadScope; 339 CallHTType::ScopeTy CallScope; 340 }; 341 342 // Contains all the needed information to create a stack for doing a depth 343 // first traversal of the tree. This includes scopes for values, loads, and 344 // calls as well as the generation. There is a child iterator so that the 345 // children do not need to be store separately. 346 class StackNode { 347 public: 348 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 349 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 350 DomTreeNode::iterator child, DomTreeNode::iterator end) 351 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 352 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 353 Processed(false) {} 354 355 // Accessors. 356 unsigned currentGeneration() { return CurrentGeneration; } 357 unsigned childGeneration() { return ChildGeneration; } 358 void childGeneration(unsigned generation) { ChildGeneration = generation; } 359 DomTreeNode *node() { return Node; } 360 DomTreeNode::iterator childIter() { return ChildIter; } 361 DomTreeNode *nextChild() { 362 DomTreeNode *child = *ChildIter; 363 ++ChildIter; 364 return child; 365 } 366 DomTreeNode::iterator end() { return EndIter; } 367 bool isProcessed() { return Processed; } 368 void process() { Processed = true; } 369 370 private: 371 StackNode(const StackNode &) = delete; 372 void operator=(const StackNode &) = delete; 373 374 // Members. 375 unsigned CurrentGeneration; 376 unsigned ChildGeneration; 377 DomTreeNode *Node; 378 DomTreeNode::iterator ChildIter; 379 DomTreeNode::iterator EndIter; 380 NodeScope Scopes; 381 bool Processed; 382 }; 383 384 /// \brief Wrapper class to handle memory instructions, including loads, 385 /// stores and intrinsic loads and stores defined by the target. 386 class ParseMemoryInst { 387 public: 388 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 389 : IsTargetMemInst(false), Inst(Inst) { 390 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 391 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1) 392 IsTargetMemInst = true; 393 } 394 bool isLoad() const { 395 if (IsTargetMemInst) return Info.ReadMem; 396 return isa<LoadInst>(Inst); 397 } 398 bool isStore() const { 399 if (IsTargetMemInst) return Info.WriteMem; 400 return isa<StoreInst>(Inst); 401 } 402 bool isAtomic() const { 403 if (IsTargetMemInst) { 404 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 405 return false; 406 } 407 return Inst->isAtomic(); 408 } 409 bool isUnordered() const { 410 if (IsTargetMemInst) { 411 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 412 return true; 413 } 414 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 415 return LI->isUnordered(); 416 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 417 return SI->isUnordered(); 418 } 419 // Conservative answer 420 return !Inst->isAtomic(); 421 } 422 423 bool isVolatile() const { 424 if (IsTargetMemInst) { 425 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 426 return false; 427 } 428 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 429 return LI->isVolatile(); 430 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 431 return SI->isVolatile(); 432 } 433 // Conservative answer 434 return true; 435 } 436 437 bool isInvariantLoad() const { 438 if (auto *LI = dyn_cast<LoadInst>(Inst)) 439 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 440 return false; 441 } 442 443 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 444 return (getPointerOperand() == Inst.getPointerOperand() && 445 getMatchingId() == Inst.getMatchingId()); 446 } 447 bool isValid() const { return getPointerOperand() != nullptr; } 448 449 // For regular (non-intrinsic) loads/stores, this is set to -1. For 450 // intrinsic loads/stores, the id is retrieved from the corresponding 451 // field in the MemIntrinsicInfo structure. That field contains 452 // non-negative values only. 453 int getMatchingId() const { 454 if (IsTargetMemInst) return Info.MatchingId; 455 return -1; 456 } 457 Value *getPointerOperand() const { 458 if (IsTargetMemInst) return Info.PtrVal; 459 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 460 return LI->getPointerOperand(); 461 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 462 return SI->getPointerOperand(); 463 } 464 return nullptr; 465 } 466 bool mayReadFromMemory() const { 467 if (IsTargetMemInst) return Info.ReadMem; 468 return Inst->mayReadFromMemory(); 469 } 470 bool mayWriteToMemory() const { 471 if (IsTargetMemInst) return Info.WriteMem; 472 return Inst->mayWriteToMemory(); 473 } 474 475 private: 476 bool IsTargetMemInst; 477 MemIntrinsicInfo Info; 478 Instruction *Inst; 479 }; 480 481 bool processNode(DomTreeNode *Node); 482 483 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 484 if (auto *LI = dyn_cast<LoadInst>(Inst)) 485 return LI; 486 if (auto *SI = dyn_cast<StoreInst>(Inst)) 487 return SI->getValueOperand(); 488 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 489 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 490 ExpectedType); 491 } 492 493 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 494 Instruction *EarlierInst, Instruction *LaterInst); 495 496 void removeMSSA(Instruction *Inst) { 497 if (!MSSA) 498 return; 499 // Removing a store here can leave MemorySSA in an unoptimized state by 500 // creating MemoryPhis that have identical arguments and by creating 501 // MemoryUses whose defining access is not an actual clobber. We handle the 502 // phi case eagerly here. The non-optimized MemoryUse case is lazily 503 // updated by MemorySSA getClobberingMemoryAccess. 504 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 505 // Optimize MemoryPhi nodes that may become redundant by having all the 506 // same input values once MA is removed. 507 SmallVector<MemoryPhi *, 4> PhisToCheck; 508 SmallVector<MemoryAccess *, 8> WorkQueue; 509 WorkQueue.push_back(MA); 510 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 511 // we shouldn't be processing that many phis and this will avoid an 512 // allocation in almost all cases. 513 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 514 MemoryAccess *WI = WorkQueue[I]; 515 516 for (auto *U : WI->users()) 517 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 518 PhisToCheck.push_back(MP); 519 520 MSSA->removeMemoryAccess(WI); 521 522 for (MemoryPhi *MP : PhisToCheck) { 523 MemoryAccess *FirstIn = MP->getIncomingValue(0); 524 if (all_of(MP->incoming_values(), 525 [=](Use &In) { return In == FirstIn; })) 526 WorkQueue.push_back(MP); 527 } 528 PhisToCheck.clear(); 529 } 530 } 531 } 532 }; 533 } 534 535 /// Determine if the memory referenced by LaterInst is from the same heap 536 /// version as EarlierInst. 537 /// This is currently called in two scenarios: 538 /// 539 /// load p 540 /// ... 541 /// load p 542 /// 543 /// and 544 /// 545 /// x = load p 546 /// ... 547 /// store x, p 548 /// 549 /// in both cases we want to verify that there are no possible writes to the 550 /// memory referenced by p between the earlier and later instruction. 551 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 552 unsigned LaterGeneration, 553 Instruction *EarlierInst, 554 Instruction *LaterInst) { 555 // Check the simple memory generation tracking first. 556 if (EarlierGeneration == LaterGeneration) 557 return true; 558 559 if (!MSSA) 560 return false; 561 562 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 563 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 564 // EarlierInst and LaterInst and neither can any other write that potentially 565 // clobbers LaterInst. 566 MemoryAccess *LaterDef = 567 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 568 return MSSA->dominates(LaterDef, MSSA->getMemoryAccess(EarlierInst)); 569 } 570 571 bool EarlyCSE::processNode(DomTreeNode *Node) { 572 bool Changed = false; 573 BasicBlock *BB = Node->getBlock(); 574 575 // If this block has a single predecessor, then the predecessor is the parent 576 // of the domtree node and all of the live out memory values are still current 577 // in this block. If this block has multiple predecessors, then they could 578 // have invalidated the live-out memory values of our parent value. For now, 579 // just be conservative and invalidate memory if this block has multiple 580 // predecessors. 581 if (!BB->getSinglePredecessor()) 582 ++CurrentGeneration; 583 584 // If this node has a single predecessor which ends in a conditional branch, 585 // we can infer the value of the branch condition given that we took this 586 // path. We need the single predecessor to ensure there's not another path 587 // which reaches this block where the condition might hold a different 588 // value. Since we're adding this to the scoped hash table (like any other 589 // def), it will have been popped if we encounter a future merge block. 590 if (BasicBlock *Pred = BB->getSinglePredecessor()) 591 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 592 if (BI->isConditional()) 593 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 594 if (SimpleValue::canHandle(CondInst)) { 595 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 596 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 597 ConstantInt::getTrue(BB->getContext()) : 598 ConstantInt::getFalse(BB->getContext()); 599 AvailableValues.insert(CondInst, ConditionalConstant); 600 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 601 << CondInst->getName() << "' as " << *ConditionalConstant 602 << " in " << BB->getName() << "\n"); 603 // Replace all dominated uses with the known value. 604 if (unsigned Count = 605 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 606 BasicBlockEdge(Pred, BB))) { 607 Changed = true; 608 NumCSECVP = NumCSECVP + Count; 609 } 610 } 611 612 /// LastStore - Keep track of the last non-volatile store that we saw... for 613 /// as long as there in no instruction that reads memory. If we see a store 614 /// to the same location, we delete the dead store. This zaps trivial dead 615 /// stores which can occur in bitfield code among other things. 616 Instruction *LastStore = nullptr; 617 618 const DataLayout &DL = BB->getModule()->getDataLayout(); 619 620 // See if any instructions in the block can be eliminated. If so, do it. If 621 // not, add them to AvailableValues. 622 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 623 Instruction *Inst = &*I++; 624 625 // Dead instructions should just be removed. 626 if (isInstructionTriviallyDead(Inst, &TLI)) { 627 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 628 removeMSSA(Inst); 629 Inst->eraseFromParent(); 630 Changed = true; 631 ++NumSimplify; 632 continue; 633 } 634 635 // Skip assume intrinsics, they don't really have side effects (although 636 // they're marked as such to ensure preservation of control dependencies), 637 // and this pass will not disturb any of the assumption's control 638 // dependencies. 639 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 640 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 641 continue; 642 } 643 644 // Skip invariant.start intrinsics since they only read memory, and we can 645 // forward values across it. Also, we dont need to consume the last store 646 // since the semantics of invariant.start allow us to perform DSE of the 647 // last store, if there was a store following invariant.start. Consider: 648 // 649 // store 30, i8* p 650 // invariant.start(p) 651 // store 40, i8* p 652 // We can DSE the store to 30, since the store 40 to invariant location p 653 // causes undefined behaviour. 654 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) 655 continue; 656 657 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 658 if (auto *CondI = 659 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 660 // The condition we're on guarding here is true for all dominated 661 // locations. 662 if (SimpleValue::canHandle(CondI)) 663 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 664 } 665 666 // Guard intrinsics read all memory, but don't write any memory. 667 // Accordingly, don't update the generation but consume the last store (to 668 // avoid an incorrect DSE). 669 LastStore = nullptr; 670 continue; 671 } 672 673 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 674 // its simpler value. 675 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 676 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 677 bool Killed = false; 678 if (!Inst->use_empty()) { 679 Inst->replaceAllUsesWith(V); 680 Changed = true; 681 } 682 if (isInstructionTriviallyDead(Inst, &TLI)) { 683 removeMSSA(Inst); 684 Inst->eraseFromParent(); 685 Changed = true; 686 Killed = true; 687 } 688 if (Changed) 689 ++NumSimplify; 690 if (Killed) 691 continue; 692 } 693 694 // If this is a simple instruction that we can value number, process it. 695 if (SimpleValue::canHandle(Inst)) { 696 // See if the instruction has an available value. If so, use it. 697 if (Value *V = AvailableValues.lookup(Inst)) { 698 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 699 if (auto *I = dyn_cast<Instruction>(V)) 700 I->andIRFlags(Inst); 701 Inst->replaceAllUsesWith(V); 702 removeMSSA(Inst); 703 Inst->eraseFromParent(); 704 Changed = true; 705 ++NumCSE; 706 continue; 707 } 708 709 // Otherwise, just remember that this value is available. 710 AvailableValues.insert(Inst, Inst); 711 continue; 712 } 713 714 ParseMemoryInst MemInst(Inst, TTI); 715 // If this is a non-volatile load, process it. 716 if (MemInst.isValid() && MemInst.isLoad()) { 717 // (conservatively) we can't peak past the ordering implied by this 718 // operation, but we can add this load to our set of available values 719 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 720 LastStore = nullptr; 721 ++CurrentGeneration; 722 } 723 724 // If we have an available version of this load, and if it is the right 725 // generation or the load is known to be from an invariant location, 726 // replace this instruction. 727 // 728 // If either the dominating load or the current load are invariant, then 729 // we can assume the current load loads the same value as the dominating 730 // load. 731 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 732 if (InVal.DefInst != nullptr && 733 InVal.MatchingId == MemInst.getMatchingId() && 734 // We don't yet handle removing loads with ordering of any kind. 735 !MemInst.isVolatile() && MemInst.isUnordered() && 736 // We can't replace an atomic load with one which isn't also atomic. 737 InVal.IsAtomic >= MemInst.isAtomic() && 738 (InVal.IsInvariant || MemInst.isInvariantLoad() || 739 isSameMemGeneration(InVal.Generation, CurrentGeneration, 740 InVal.DefInst, Inst))) { 741 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 742 if (Op != nullptr) { 743 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 744 << " to: " << *InVal.DefInst << '\n'); 745 if (!Inst->use_empty()) 746 Inst->replaceAllUsesWith(Op); 747 removeMSSA(Inst); 748 Inst->eraseFromParent(); 749 Changed = true; 750 ++NumCSELoad; 751 continue; 752 } 753 } 754 755 // Otherwise, remember that we have this instruction. 756 AvailableLoads.insert( 757 MemInst.getPointerOperand(), 758 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 759 MemInst.isAtomic(), MemInst.isInvariantLoad())); 760 LastStore = nullptr; 761 continue; 762 } 763 764 // If this instruction may read from memory, forget LastStore. 765 // Load/store intrinsics will indicate both a read and a write to 766 // memory. The target may override this (e.g. so that a store intrinsic 767 // does not read from memory, and thus will be treated the same as a 768 // regular store for commoning purposes). 769 if (Inst->mayReadFromMemory() && 770 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 771 LastStore = nullptr; 772 773 // If this is a read-only call, process it. 774 if (CallValue::canHandle(Inst)) { 775 // If we have an available version of this call, and if it is the right 776 // generation, replace this instruction. 777 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 778 if (InVal.first != nullptr && 779 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 780 Inst)) { 781 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 782 << " to: " << *InVal.first << '\n'); 783 if (!Inst->use_empty()) 784 Inst->replaceAllUsesWith(InVal.first); 785 removeMSSA(Inst); 786 Inst->eraseFromParent(); 787 Changed = true; 788 ++NumCSECall; 789 continue; 790 } 791 792 // Otherwise, remember that we have this instruction. 793 AvailableCalls.insert( 794 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 795 continue; 796 } 797 798 // A release fence requires that all stores complete before it, but does 799 // not prevent the reordering of following loads 'before' the fence. As a 800 // result, we don't need to consider it as writing to memory and don't need 801 // to advance the generation. We do need to prevent DSE across the fence, 802 // but that's handled above. 803 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 804 if (FI->getOrdering() == AtomicOrdering::Release) { 805 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 806 continue; 807 } 808 809 // write back DSE - If we write back the same value we just loaded from 810 // the same location and haven't passed any intervening writes or ordering 811 // operations, we can remove the write. The primary benefit is in allowing 812 // the available load table to remain valid and value forward past where 813 // the store originally was. 814 if (MemInst.isValid() && MemInst.isStore()) { 815 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 816 if (InVal.DefInst && 817 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 818 InVal.MatchingId == MemInst.getMatchingId() && 819 // We don't yet handle removing stores with ordering of any kind. 820 !MemInst.isVolatile() && MemInst.isUnordered() && 821 isSameMemGeneration(InVal.Generation, CurrentGeneration, 822 InVal.DefInst, Inst)) { 823 // It is okay to have a LastStore to a different pointer here if MemorySSA 824 // tells us that the load and store are from the same memory generation. 825 // In that case, LastStore should keep its present value since we're 826 // removing the current store. 827 assert((!LastStore || 828 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 829 MemInst.getPointerOperand() || 830 MSSA) && 831 "can't have an intervening store if not using MemorySSA!"); 832 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 833 removeMSSA(Inst); 834 Inst->eraseFromParent(); 835 Changed = true; 836 ++NumDSE; 837 // We can avoid incrementing the generation count since we were able 838 // to eliminate this store. 839 continue; 840 } 841 } 842 843 // Okay, this isn't something we can CSE at all. Check to see if it is 844 // something that could modify memory. If so, our available memory values 845 // cannot be used so bump the generation count. 846 if (Inst->mayWriteToMemory()) { 847 ++CurrentGeneration; 848 849 if (MemInst.isValid() && MemInst.isStore()) { 850 // We do a trivial form of DSE if there are two stores to the same 851 // location with no intervening loads. Delete the earlier store. 852 // At the moment, we don't remove ordered stores, but do remove 853 // unordered atomic stores. There's no special requirement (for 854 // unordered atomics) about removing atomic stores only in favor of 855 // other atomic stores since we we're going to execute the non-atomic 856 // one anyway and the atomic one might never have become visible. 857 if (LastStore) { 858 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 859 assert(LastStoreMemInst.isUnordered() && 860 !LastStoreMemInst.isVolatile() && 861 "Violated invariant"); 862 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 863 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 864 << " due to: " << *Inst << '\n'); 865 removeMSSA(LastStore); 866 LastStore->eraseFromParent(); 867 Changed = true; 868 ++NumDSE; 869 LastStore = nullptr; 870 } 871 // fallthrough - we can exploit information about this store 872 } 873 874 // Okay, we just invalidated anything we knew about loaded values. Try 875 // to salvage *something* by remembering that the stored value is a live 876 // version of the pointer. It is safe to forward from volatile stores 877 // to non-volatile loads, so we don't have to check for volatility of 878 // the store. 879 AvailableLoads.insert( 880 MemInst.getPointerOperand(), 881 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 882 MemInst.isAtomic(), /*IsInvariant=*/false)); 883 884 // Remember that this was the last unordered store we saw for DSE. We 885 // don't yet handle DSE on ordered or volatile stores since we don't 886 // have a good way to model the ordering requirement for following 887 // passes once the store is removed. We could insert a fence, but 888 // since fences are slightly stronger than stores in their ordering, 889 // it's not clear this is a profitable transform. Another option would 890 // be to merge the ordering with that of the post dominating store. 891 if (MemInst.isUnordered() && !MemInst.isVolatile()) 892 LastStore = Inst; 893 else 894 LastStore = nullptr; 895 } 896 } 897 } 898 899 return Changed; 900 } 901 902 bool EarlyCSE::run() { 903 // Note, deque is being used here because there is significant performance 904 // gains over vector when the container becomes very large due to the 905 // specific access patterns. For more information see the mailing list 906 // discussion on this: 907 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 908 std::deque<StackNode *> nodesToProcess; 909 910 bool Changed = false; 911 912 // Process the root node. 913 nodesToProcess.push_back(new StackNode( 914 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 915 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 916 917 // Save the current generation. 918 unsigned LiveOutGeneration = CurrentGeneration; 919 920 // Process the stack. 921 while (!nodesToProcess.empty()) { 922 // Grab the first item off the stack. Set the current generation, remove 923 // the node from the stack, and process it. 924 StackNode *NodeToProcess = nodesToProcess.back(); 925 926 // Initialize class members. 927 CurrentGeneration = NodeToProcess->currentGeneration(); 928 929 // Check if the node needs to be processed. 930 if (!NodeToProcess->isProcessed()) { 931 // Process the node. 932 Changed |= processNode(NodeToProcess->node()); 933 NodeToProcess->childGeneration(CurrentGeneration); 934 NodeToProcess->process(); 935 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 936 // Push the next child onto the stack. 937 DomTreeNode *child = NodeToProcess->nextChild(); 938 nodesToProcess.push_back( 939 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 940 NodeToProcess->childGeneration(), child, child->begin(), 941 child->end())); 942 } else { 943 // It has been processed, and there are no more children to process, 944 // so delete it and pop it off the stack. 945 delete NodeToProcess; 946 nodesToProcess.pop_back(); 947 } 948 } // while (!nodes...) 949 950 // Reset the current generation. 951 CurrentGeneration = LiveOutGeneration; 952 953 return Changed; 954 } 955 956 PreservedAnalyses EarlyCSEPass::run(Function &F, 957 FunctionAnalysisManager &AM) { 958 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 959 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 960 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 961 auto &AC = AM.getResult<AssumptionAnalysis>(F); 962 auto *MSSA = 963 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 964 965 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 966 967 if (!CSE.run()) 968 return PreservedAnalyses::all(); 969 970 PreservedAnalyses PA; 971 PA.preserveSet<CFGAnalyses>(); 972 PA.preserve<GlobalsAA>(); 973 if (UseMemorySSA) 974 PA.preserve<MemorySSAAnalysis>(); 975 return PA; 976 } 977 978 namespace { 979 /// \brief A simple and fast domtree-based CSE pass. 980 /// 981 /// This pass does a simple depth-first walk over the dominator tree, 982 /// eliminating trivially redundant instructions and using instsimplify to 983 /// canonicalize things as it goes. It is intended to be fast and catch obvious 984 /// cases so that instcombine and other passes are more effective. It is 985 /// expected that a later pass of GVN will catch the interesting/hard cases. 986 template<bool UseMemorySSA> 987 class EarlyCSELegacyCommonPass : public FunctionPass { 988 public: 989 static char ID; 990 991 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 992 if (UseMemorySSA) 993 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 994 else 995 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 996 } 997 998 bool runOnFunction(Function &F) override { 999 if (skipFunction(F)) 1000 return false; 1001 1002 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1003 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1004 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1005 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1006 auto *MSSA = 1007 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1008 1009 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 1010 1011 return CSE.run(); 1012 } 1013 1014 void getAnalysisUsage(AnalysisUsage &AU) const override { 1015 AU.addRequired<AssumptionCacheTracker>(); 1016 AU.addRequired<DominatorTreeWrapperPass>(); 1017 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1018 AU.addRequired<TargetTransformInfoWrapperPass>(); 1019 if (UseMemorySSA) { 1020 AU.addRequired<MemorySSAWrapperPass>(); 1021 AU.addPreserved<MemorySSAWrapperPass>(); 1022 } 1023 AU.addPreserved<GlobalsAAWrapperPass>(); 1024 AU.setPreservesCFG(); 1025 } 1026 }; 1027 } 1028 1029 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1030 1031 template<> 1032 char EarlyCSELegacyPass::ID = 0; 1033 1034 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1035 false) 1036 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1037 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1038 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1039 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1040 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1041 1042 using EarlyCSEMemSSALegacyPass = 1043 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1044 1045 template<> 1046 char EarlyCSEMemSSALegacyPass::ID = 0; 1047 1048 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1049 if (UseMemorySSA) 1050 return new EarlyCSEMemSSALegacyPass(); 1051 else 1052 return new EarlyCSELegacyPass(); 1053 } 1054 1055 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1056 "Early CSE w/ MemorySSA", false, false) 1057 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1058 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1059 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1060 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1061 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1062 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1063 "Early CSE w/ MemorySSA", false, false) 1064