xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision c9826829d74e637163fdb0351870b8204e62d6e6)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
59 #include "llvm/Transforms/Utils/GuardUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <deque>
63 #include <memory>
64 #include <utility>
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 #define DEBUG_TYPE "early-cse"
70 
71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
72 STATISTIC(NumCSE,      "Number of instructions CSE'd");
73 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
74 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
75 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
76 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
77 
78 DEBUG_COUNTER(CSECounter, "early-cse",
79               "Controls which instructions are removed");
80 
81 static cl::opt<unsigned> EarlyCSEMssaOptCap(
82     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
83     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
84              "for faster compile. Caps the MemorySSA clobbering calls."));
85 
86 static cl::opt<bool> EarlyCSEDebugHash(
87     "earlycse-debug-hash", cl::init(false), cl::Hidden,
88     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
89              "function is well-behaved w.r.t. its isEqual predicate"));
90 
91 //===----------------------------------------------------------------------===//
92 // SimpleValue
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// Struct representing the available values in the scoped hash table.
98 struct SimpleValue {
99   Instruction *Inst;
100 
101   SimpleValue(Instruction *I) : Inst(I) {
102     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
103   }
104 
105   bool isSentinel() const {
106     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
107            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
108   }
109 
110   static bool canHandle(Instruction *Inst) {
111     // This can only handle non-void readnone functions.
112     if (CallInst *CI = dyn_cast<CallInst>(Inst))
113       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
114     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
115            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
116            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
117            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
118            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
119            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
120   }
121 };
122 
123 } // end anonymous namespace
124 
125 namespace llvm {
126 
127 template <> struct DenseMapInfo<SimpleValue> {
128   static inline SimpleValue getEmptyKey() {
129     return DenseMapInfo<Instruction *>::getEmptyKey();
130   }
131 
132   static inline SimpleValue getTombstoneKey() {
133     return DenseMapInfo<Instruction *>::getTombstoneKey();
134   }
135 
136   static unsigned getHashValue(SimpleValue Val);
137   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
138 };
139 
140 } // end namespace llvm
141 
142 /// Match a 'select' including an optional 'not's of the condition.
143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
144                                            Value *&B,
145                                            SelectPatternFlavor &Flavor) {
146   // Return false if V is not even a select.
147   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
148     return false;
149 
150   // Look through a 'not' of the condition operand by swapping A/B.
151   Value *CondNot;
152   if (match(Cond, m_Not(m_Value(CondNot)))) {
153     Cond = CondNot;
154     std::swap(A, B);
155   }
156 
157   // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's
158   // more powerful matchSelectPattern() because it may rely on instruction flags
159   // such as "nsw". That would be incompatible with the current hashing
160   // mechanism that may remove flags to increase the likelihood of CSE.
161 
162   // These are the canonical forms of abs(X) and nabs(X) created by instcombine:
163   // %N = sub i32 0, %X
164   // %C = icmp slt i32 %X, 0
165   // %ABS = select i1 %C, i32 %N, i32 %X
166   //
167   // %N = sub i32 0, %X
168   // %C = icmp slt i32 %X, 0
169   // %NABS = select i1 %C, i32 %X, i32 %N
170   Flavor = SPF_UNKNOWN;
171   CmpInst::Predicate Pred;
172   if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) &&
173       Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) {
174     // ABS: B < 0 ? -B : B
175     Flavor = SPF_ABS;
176     return true;
177   }
178   if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) &&
179       Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) {
180     // NABS: A < 0 ? A : -A
181     Flavor = SPF_NABS;
182     return true;
183   }
184 
185   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
186     // Check for commuted variants of min/max by swapping predicate.
187     // If we do not match the standard or commuted patterns, this is not a
188     // recognized form of min/max, but it is still a select, so return true.
189     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
190       return true;
191     Pred = ICmpInst::getSwappedPredicate(Pred);
192   }
193 
194   // Check for inverted variants of min/max by swapping operands.
195   switch (Pred) {
196   case CmpInst::ICMP_ULE:
197   case CmpInst::ICMP_UGE:
198   case CmpInst::ICMP_SLE:
199   case CmpInst::ICMP_SGE:
200     Pred = CmpInst::getInversePredicate(Pred);
201     std::swap(A, B);
202     break;
203   default:
204     break;
205   }
206 
207   switch (Pred) {
208   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
209   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
210   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
211   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
212   default: break;
213   }
214 
215   return true;
216 }
217 
218 static unsigned getHashValueImpl(SimpleValue Val) {
219   Instruction *Inst = Val.Inst;
220   // Hash in all of the operands as pointers.
221   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
222     Value *LHS = BinOp->getOperand(0);
223     Value *RHS = BinOp->getOperand(1);
224     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
225       std::swap(LHS, RHS);
226 
227     return hash_combine(BinOp->getOpcode(), LHS, RHS);
228   }
229 
230   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
231     // Compares can be commuted by swapping the comparands and
232     // updating the predicate.  Choose the form that has the
233     // comparands in sorted order, or in the case of a tie, the
234     // one with the lower predicate.
235     Value *LHS = CI->getOperand(0);
236     Value *RHS = CI->getOperand(1);
237     CmpInst::Predicate Pred = CI->getPredicate();
238     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
239     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
240       std::swap(LHS, RHS);
241       Pred = SwappedPred;
242     }
243     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
244   }
245 
246   // Hash general selects to allow matching commuted true/false operands.
247   SelectPatternFlavor SPF;
248   Value *Cond, *A, *B;
249   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
250     // Hash min/max/abs (cmp + select) to allow for commuted operands.
251     // Min/max may also have non-canonical compare predicate (eg, the compare for
252     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
253     // compare.
254     // TODO: We should also detect FP min/max.
255     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
256         SPF == SPF_UMIN || SPF == SPF_UMAX) {
257       if (A > B)
258         std::swap(A, B);
259       return hash_combine(Inst->getOpcode(), SPF, A, B);
260     }
261     if (SPF == SPF_ABS || SPF == SPF_NABS) {
262       // ABS/NABS always puts the input in A and its negation in B.
263       return hash_combine(Inst->getOpcode(), SPF, A, B);
264     }
265 
266     // Hash general selects to allow matching commuted true/false operands.
267 
268     // If we do not have a compare as the condition, just hash in the condition.
269     CmpInst::Predicate Pred;
270     Value *X, *Y;
271     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
272       return hash_combine(Inst->getOpcode(), Cond, A, B);
273 
274     // Similar to cmp normalization (above) - canonicalize the predicate value:
275     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
276     if (CmpInst::getInversePredicate(Pred) < Pred) {
277       Pred = CmpInst::getInversePredicate(Pred);
278       std::swap(A, B);
279     }
280     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
281   }
282 
283   if (CastInst *CI = dyn_cast<CastInst>(Inst))
284     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
285 
286   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
287     return hash_combine(FI->getOpcode(), FI->getOperand(0));
288 
289   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
290     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
291                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
292 
293   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
294     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
295                         IVI->getOperand(1),
296                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
297 
298   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
299           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
300           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
301           isa<FreezeInst>(Inst)) &&
302          "Invalid/unknown instruction");
303 
304   // Handle intrinsics with commutative operands.
305   // TODO: Extend this to handle intrinsics with >2 operands where the 1st
306   //       2 operands are commutative.
307   auto *II = dyn_cast<IntrinsicInst>(Inst);
308   if (II && II->isCommutative() && II->getNumArgOperands() == 2) {
309     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
310     if (LHS > RHS)
311       std::swap(LHS, RHS);
312     return hash_combine(II->getOpcode(), LHS, RHS);
313   }
314 
315   // Mix in the opcode.
316   return hash_combine(
317       Inst->getOpcode(),
318       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
319 }
320 
321 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
322 #ifndef NDEBUG
323   // If -earlycse-debug-hash was specified, return a constant -- this
324   // will force all hashing to collide, so we'll exhaustively search
325   // the table for a match, and the assertion in isEqual will fire if
326   // there's a bug causing equal keys to hash differently.
327   if (EarlyCSEDebugHash)
328     return 0;
329 #endif
330   return getHashValueImpl(Val);
331 }
332 
333 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
334   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
335 
336   if (LHS.isSentinel() || RHS.isSentinel())
337     return LHSI == RHSI;
338 
339   if (LHSI->getOpcode() != RHSI->getOpcode())
340     return false;
341   if (LHSI->isIdenticalToWhenDefined(RHSI))
342     return true;
343 
344   // If we're not strictly identical, we still might be a commutable instruction
345   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
346     if (!LHSBinOp->isCommutative())
347       return false;
348 
349     assert(isa<BinaryOperator>(RHSI) &&
350            "same opcode, but different instruction type?");
351     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
352 
353     // Commuted equality
354     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
355            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
356   }
357   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
358     assert(isa<CmpInst>(RHSI) &&
359            "same opcode, but different instruction type?");
360     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
361     // Commuted equality
362     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
363            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
364            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
365   }
366 
367   // TODO: Extend this for >2 args by matching the trailing N-2 args.
368   auto *LII = dyn_cast<IntrinsicInst>(LHSI);
369   auto *RII = dyn_cast<IntrinsicInst>(RHSI);
370   if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
371       LII->isCommutative() && LII->getNumArgOperands() == 2) {
372     return LII->getArgOperand(0) == RII->getArgOperand(1) &&
373            LII->getArgOperand(1) == RII->getArgOperand(0);
374   }
375 
376   // Min/max/abs can occur with commuted operands, non-canonical predicates,
377   // and/or non-canonical operands.
378   // Selects can be non-trivially equivalent via inverted conditions and swaps.
379   SelectPatternFlavor LSPF, RSPF;
380   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
381   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
382       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
383     if (LSPF == RSPF) {
384       // TODO: We should also detect FP min/max.
385       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
386           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
387         return ((LHSA == RHSA && LHSB == RHSB) ||
388                 (LHSA == RHSB && LHSB == RHSA));
389 
390       if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
391         // Abs results are placed in a defined order by matchSelectPattern.
392         return LHSA == RHSA && LHSB == RHSB;
393       }
394 
395       // select Cond, A, B <--> select not(Cond), B, A
396       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
397         return true;
398     }
399 
400     // If the true/false operands are swapped and the conditions are compares
401     // with inverted predicates, the selects are equal:
402     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
403     //
404     // This also handles patterns with a double-negation in the sense of not +
405     // inverse, because we looked through a 'not' in the matching function and
406     // swapped A/B:
407     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
408     //
409     // This intentionally does NOT handle patterns with a double-negation in
410     // the sense of not + not, because doing so could result in values
411     // comparing
412     // as equal that hash differently in the min/max/abs cases like:
413     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
414     //   ^ hashes as min                  ^ would not hash as min
415     // In the context of the EarlyCSE pass, however, such cases never reach
416     // this code, as we simplify the double-negation before hashing the second
417     // select (and so still succeed at CSEing them).
418     if (LHSA == RHSB && LHSB == RHSA) {
419       CmpInst::Predicate PredL, PredR;
420       Value *X, *Y;
421       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
422           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
423           CmpInst::getInversePredicate(PredL) == PredR)
424         return true;
425     }
426   }
427 
428   return false;
429 }
430 
431 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
432   // These comparisons are nontrivial, so assert that equality implies
433   // hash equality (DenseMap demands this as an invariant).
434   bool Result = isEqualImpl(LHS, RHS);
435   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
436          getHashValueImpl(LHS) == getHashValueImpl(RHS));
437   return Result;
438 }
439 
440 //===----------------------------------------------------------------------===//
441 // CallValue
442 //===----------------------------------------------------------------------===//
443 
444 namespace {
445 
446 /// Struct representing the available call values in the scoped hash
447 /// table.
448 struct CallValue {
449   Instruction *Inst;
450 
451   CallValue(Instruction *I) : Inst(I) {
452     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
453   }
454 
455   bool isSentinel() const {
456     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
457            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
458   }
459 
460   static bool canHandle(Instruction *Inst) {
461     // Don't value number anything that returns void.
462     if (Inst->getType()->isVoidTy())
463       return false;
464 
465     CallInst *CI = dyn_cast<CallInst>(Inst);
466     if (!CI || !CI->onlyReadsMemory())
467       return false;
468     return true;
469   }
470 };
471 
472 } // end anonymous namespace
473 
474 namespace llvm {
475 
476 template <> struct DenseMapInfo<CallValue> {
477   static inline CallValue getEmptyKey() {
478     return DenseMapInfo<Instruction *>::getEmptyKey();
479   }
480 
481   static inline CallValue getTombstoneKey() {
482     return DenseMapInfo<Instruction *>::getTombstoneKey();
483   }
484 
485   static unsigned getHashValue(CallValue Val);
486   static bool isEqual(CallValue LHS, CallValue RHS);
487 };
488 
489 } // end namespace llvm
490 
491 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
492   Instruction *Inst = Val.Inst;
493 
494   // gc.relocate is 'special' call: its second and third operands are
495   // not real values, but indices into statepoint's argument list.
496   // Get values they point to.
497   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
498     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
499                         GCR->getBasePtr(), GCR->getDerivedPtr());
500 
501   // Hash all of the operands as pointers and mix in the opcode.
502   return hash_combine(
503       Inst->getOpcode(),
504       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
505 }
506 
507 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
508   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
509   if (LHS.isSentinel() || RHS.isSentinel())
510     return LHSI == RHSI;
511 
512   // See comment above in `getHashValue()`.
513   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
514     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
515       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
516              GCR1->getBasePtr() == GCR2->getBasePtr() &&
517              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
518 
519   return LHSI->isIdenticalTo(RHSI);
520 }
521 
522 //===----------------------------------------------------------------------===//
523 // EarlyCSE implementation
524 //===----------------------------------------------------------------------===//
525 
526 namespace {
527 
528 /// A simple and fast domtree-based CSE pass.
529 ///
530 /// This pass does a simple depth-first walk over the dominator tree,
531 /// eliminating trivially redundant instructions and using instsimplify to
532 /// canonicalize things as it goes. It is intended to be fast and catch obvious
533 /// cases so that instcombine and other passes are more effective. It is
534 /// expected that a later pass of GVN will catch the interesting/hard cases.
535 class EarlyCSE {
536 public:
537   const TargetLibraryInfo &TLI;
538   const TargetTransformInfo &TTI;
539   DominatorTree &DT;
540   AssumptionCache &AC;
541   const SimplifyQuery SQ;
542   MemorySSA *MSSA;
543   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
544 
545   using AllocatorTy =
546       RecyclingAllocator<BumpPtrAllocator,
547                          ScopedHashTableVal<SimpleValue, Value *>>;
548   using ScopedHTType =
549       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
550                       AllocatorTy>;
551 
552   /// A scoped hash table of the current values of all of our simple
553   /// scalar expressions.
554   ///
555   /// As we walk down the domtree, we look to see if instructions are in this:
556   /// if so, we replace them with what we find, otherwise we insert them so
557   /// that dominated values can succeed in their lookup.
558   ScopedHTType AvailableValues;
559 
560   /// A scoped hash table of the current values of previously encountered
561   /// memory locations.
562   ///
563   /// This allows us to get efficient access to dominating loads or stores when
564   /// we have a fully redundant load.  In addition to the most recent load, we
565   /// keep track of a generation count of the read, which is compared against
566   /// the current generation count.  The current generation count is incremented
567   /// after every possibly writing memory operation, which ensures that we only
568   /// CSE loads with other loads that have no intervening store.  Ordering
569   /// events (such as fences or atomic instructions) increment the generation
570   /// count as well; essentially, we model these as writes to all possible
571   /// locations.  Note that atomic and/or volatile loads and stores can be
572   /// present the table; it is the responsibility of the consumer to inspect
573   /// the atomicity/volatility if needed.
574   struct LoadValue {
575     Instruction *DefInst = nullptr;
576     unsigned Generation = 0;
577     int MatchingId = -1;
578     bool IsAtomic = false;
579 
580     LoadValue() = default;
581     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
582               bool IsAtomic)
583         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
584           IsAtomic(IsAtomic) {}
585   };
586 
587   using LoadMapAllocator =
588       RecyclingAllocator<BumpPtrAllocator,
589                          ScopedHashTableVal<Value *, LoadValue>>;
590   using LoadHTType =
591       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
592                       LoadMapAllocator>;
593 
594   LoadHTType AvailableLoads;
595 
596   // A scoped hash table mapping memory locations (represented as typed
597   // addresses) to generation numbers at which that memory location became
598   // (henceforth indefinitely) invariant.
599   using InvariantMapAllocator =
600       RecyclingAllocator<BumpPtrAllocator,
601                          ScopedHashTableVal<MemoryLocation, unsigned>>;
602   using InvariantHTType =
603       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
604                       InvariantMapAllocator>;
605   InvariantHTType AvailableInvariants;
606 
607   /// A scoped hash table of the current values of read-only call
608   /// values.
609   ///
610   /// It uses the same generation count as loads.
611   using CallHTType =
612       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
613   CallHTType AvailableCalls;
614 
615   /// This is the current generation of the memory value.
616   unsigned CurrentGeneration = 0;
617 
618   /// Set up the EarlyCSE runner for a particular function.
619   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
620            const TargetTransformInfo &TTI, DominatorTree &DT,
621            AssumptionCache &AC, MemorySSA *MSSA)
622       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
623         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
624 
625   bool run();
626 
627 private:
628   unsigned ClobberCounter = 0;
629   // Almost a POD, but needs to call the constructors for the scoped hash
630   // tables so that a new scope gets pushed on. These are RAII so that the
631   // scope gets popped when the NodeScope is destroyed.
632   class NodeScope {
633   public:
634     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
635               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
636       : Scope(AvailableValues), LoadScope(AvailableLoads),
637         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
638     NodeScope(const NodeScope &) = delete;
639     NodeScope &operator=(const NodeScope &) = delete;
640 
641   private:
642     ScopedHTType::ScopeTy Scope;
643     LoadHTType::ScopeTy LoadScope;
644     InvariantHTType::ScopeTy InvariantScope;
645     CallHTType::ScopeTy CallScope;
646   };
647 
648   // Contains all the needed information to create a stack for doing a depth
649   // first traversal of the tree. This includes scopes for values, loads, and
650   // calls as well as the generation. There is a child iterator so that the
651   // children do not need to be store separately.
652   class StackNode {
653   public:
654     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
655               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
656               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
657               DomTreeNode::const_iterator end)
658         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
659           EndIter(end),
660           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
661                  AvailableCalls)
662           {}
663     StackNode(const StackNode &) = delete;
664     StackNode &operator=(const StackNode &) = delete;
665 
666     // Accessors.
667     unsigned currentGeneration() { return CurrentGeneration; }
668     unsigned childGeneration() { return ChildGeneration; }
669     void childGeneration(unsigned generation) { ChildGeneration = generation; }
670     DomTreeNode *node() { return Node; }
671     DomTreeNode::const_iterator childIter() { return ChildIter; }
672 
673     DomTreeNode *nextChild() {
674       DomTreeNode *child = *ChildIter;
675       ++ChildIter;
676       return child;
677     }
678 
679     DomTreeNode::const_iterator end() { return EndIter; }
680     bool isProcessed() { return Processed; }
681     void process() { Processed = true; }
682 
683   private:
684     unsigned CurrentGeneration;
685     unsigned ChildGeneration;
686     DomTreeNode *Node;
687     DomTreeNode::const_iterator ChildIter;
688     DomTreeNode::const_iterator EndIter;
689     NodeScope Scopes;
690     bool Processed = false;
691   };
692 
693   /// Wrapper class to handle memory instructions, including loads,
694   /// stores and intrinsic loads and stores defined by the target.
695   class ParseMemoryInst {
696   public:
697     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
698       : Inst(Inst) {
699       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
700         if (TTI.getTgtMemIntrinsic(II, Info))
701           IsTargetMemInst = true;
702     }
703 
704     bool isLoad() const {
705       if (IsTargetMemInst) return Info.ReadMem;
706       return isa<LoadInst>(Inst);
707     }
708 
709     bool isStore() const {
710       if (IsTargetMemInst) return Info.WriteMem;
711       return isa<StoreInst>(Inst);
712     }
713 
714     bool isAtomic() const {
715       if (IsTargetMemInst)
716         return Info.Ordering != AtomicOrdering::NotAtomic;
717       return Inst->isAtomic();
718     }
719 
720     bool isUnordered() const {
721       if (IsTargetMemInst)
722         return Info.isUnordered();
723 
724       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
725         return LI->isUnordered();
726       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
727         return SI->isUnordered();
728       }
729       // Conservative answer
730       return !Inst->isAtomic();
731     }
732 
733     bool isVolatile() const {
734       if (IsTargetMemInst)
735         return Info.IsVolatile;
736 
737       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
738         return LI->isVolatile();
739       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
740         return SI->isVolatile();
741       }
742       // Conservative answer
743       return true;
744     }
745 
746     bool isInvariantLoad() const {
747       if (auto *LI = dyn_cast<LoadInst>(Inst))
748         return LI->hasMetadata(LLVMContext::MD_invariant_load);
749       return false;
750     }
751 
752     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
753       return (getPointerOperand() == Inst.getPointerOperand() &&
754               getMatchingId() == Inst.getMatchingId());
755     }
756 
757     bool isValid() const { return getPointerOperand() != nullptr; }
758 
759     // For regular (non-intrinsic) loads/stores, this is set to -1. For
760     // intrinsic loads/stores, the id is retrieved from the corresponding
761     // field in the MemIntrinsicInfo structure.  That field contains
762     // non-negative values only.
763     int getMatchingId() const {
764       if (IsTargetMemInst) return Info.MatchingId;
765       return -1;
766     }
767 
768     Value *getPointerOperand() const {
769       if (IsTargetMemInst) return Info.PtrVal;
770       return getLoadStorePointerOperand(Inst);
771     }
772 
773     bool mayReadFromMemory() const {
774       if (IsTargetMemInst) return Info.ReadMem;
775       return Inst->mayReadFromMemory();
776     }
777 
778     bool mayWriteToMemory() const {
779       if (IsTargetMemInst) return Info.WriteMem;
780       return Inst->mayWriteToMemory();
781     }
782 
783   private:
784     bool IsTargetMemInst = false;
785     MemIntrinsicInfo Info;
786     Instruction *Inst;
787   };
788 
789   bool processNode(DomTreeNode *Node);
790 
791   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
792                              const BasicBlock *BB, const BasicBlock *Pred);
793 
794   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
795     if (auto *LI = dyn_cast<LoadInst>(Inst))
796       return LI;
797     if (auto *SI = dyn_cast<StoreInst>(Inst))
798       return SI->getValueOperand();
799     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
800     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
801                                                  ExpectedType);
802   }
803 
804   /// Return true if the instruction is known to only operate on memory
805   /// provably invariant in the given "generation".
806   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
807 
808   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
809                            Instruction *EarlierInst, Instruction *LaterInst);
810 
811   void removeMSSA(Instruction &Inst) {
812     if (!MSSA)
813       return;
814     if (VerifyMemorySSA)
815       MSSA->verifyMemorySSA();
816     // Removing a store here can leave MemorySSA in an unoptimized state by
817     // creating MemoryPhis that have identical arguments and by creating
818     // MemoryUses whose defining access is not an actual clobber. The phi case
819     // is handled by MemorySSA when passing OptimizePhis = true to
820     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
821     // by MemorySSA's getClobberingMemoryAccess.
822     MSSAUpdater->removeMemoryAccess(&Inst, true);
823   }
824 };
825 
826 } // end anonymous namespace
827 
828 /// Determine if the memory referenced by LaterInst is from the same heap
829 /// version as EarlierInst.
830 /// This is currently called in two scenarios:
831 ///
832 ///   load p
833 ///   ...
834 ///   load p
835 ///
836 /// and
837 ///
838 ///   x = load p
839 ///   ...
840 ///   store x, p
841 ///
842 /// in both cases we want to verify that there are no possible writes to the
843 /// memory referenced by p between the earlier and later instruction.
844 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
845                                    unsigned LaterGeneration,
846                                    Instruction *EarlierInst,
847                                    Instruction *LaterInst) {
848   // Check the simple memory generation tracking first.
849   if (EarlierGeneration == LaterGeneration)
850     return true;
851 
852   if (!MSSA)
853     return false;
854 
855   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
856   // read/write memory, then we can safely return true here.
857   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
858   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
859   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
860   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
861   // with the default optimization pipeline.
862   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
863   if (!EarlierMA)
864     return true;
865   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
866   if (!LaterMA)
867     return true;
868 
869   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
870   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
871   // EarlierInst and LaterInst and neither can any other write that potentially
872   // clobbers LaterInst.
873   MemoryAccess *LaterDef;
874   if (ClobberCounter < EarlyCSEMssaOptCap) {
875     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
876     ClobberCounter++;
877   } else
878     LaterDef = LaterMA->getDefiningAccess();
879 
880   return MSSA->dominates(LaterDef, EarlierMA);
881 }
882 
883 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
884   // A location loaded from with an invariant_load is assumed to *never* change
885   // within the visible scope of the compilation.
886   if (auto *LI = dyn_cast<LoadInst>(I))
887     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
888       return true;
889 
890   auto MemLocOpt = MemoryLocation::getOrNone(I);
891   if (!MemLocOpt)
892     // "target" intrinsic forms of loads aren't currently known to
893     // MemoryLocation::get.  TODO
894     return false;
895   MemoryLocation MemLoc = *MemLocOpt;
896   if (!AvailableInvariants.count(MemLoc))
897     return false;
898 
899   // Is the generation at which this became invariant older than the
900   // current one?
901   return AvailableInvariants.lookup(MemLoc) <= GenAt;
902 }
903 
904 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
905                                      const BranchInst *BI, const BasicBlock *BB,
906                                      const BasicBlock *Pred) {
907   assert(BI->isConditional() && "Should be a conditional branch!");
908   assert(BI->getCondition() == CondInst && "Wrong condition?");
909   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
910   auto *TorF = (BI->getSuccessor(0) == BB)
911                    ? ConstantInt::getTrue(BB->getContext())
912                    : ConstantInt::getFalse(BB->getContext());
913   auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
914     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
915       return BOp->getOpcode() == Opcode;
916     return false;
917   };
918   // If the condition is AND operation, we can propagate its operands into the
919   // true branch. If it is OR operation, we can propagate them into the false
920   // branch.
921   unsigned PropagateOpcode =
922       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
923 
924   bool MadeChanges = false;
925   SmallVector<Instruction *, 4> WorkList;
926   SmallPtrSet<Instruction *, 4> Visited;
927   WorkList.push_back(CondInst);
928   while (!WorkList.empty()) {
929     Instruction *Curr = WorkList.pop_back_val();
930 
931     AvailableValues.insert(Curr, TorF);
932     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
933                       << Curr->getName() << "' as " << *TorF << " in "
934                       << BB->getName() << "\n");
935     if (!DebugCounter::shouldExecute(CSECounter)) {
936       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
937     } else {
938       // Replace all dominated uses with the known value.
939       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
940                                                     BasicBlockEdge(Pred, BB))) {
941         NumCSECVP += Count;
942         MadeChanges = true;
943       }
944     }
945 
946     if (MatchBinOp(Curr, PropagateOpcode))
947       for (auto &Op : cast<BinaryOperator>(Curr)->operands())
948         if (Instruction *OPI = dyn_cast<Instruction>(Op))
949           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
950             WorkList.push_back(OPI);
951   }
952 
953   return MadeChanges;
954 }
955 
956 bool EarlyCSE::processNode(DomTreeNode *Node) {
957   bool Changed = false;
958   BasicBlock *BB = Node->getBlock();
959 
960   // If this block has a single predecessor, then the predecessor is the parent
961   // of the domtree node and all of the live out memory values are still current
962   // in this block.  If this block has multiple predecessors, then they could
963   // have invalidated the live-out memory values of our parent value.  For now,
964   // just be conservative and invalidate memory if this block has multiple
965   // predecessors.
966   if (!BB->getSinglePredecessor())
967     ++CurrentGeneration;
968 
969   // If this node has a single predecessor which ends in a conditional branch,
970   // we can infer the value of the branch condition given that we took this
971   // path.  We need the single predecessor to ensure there's not another path
972   // which reaches this block where the condition might hold a different
973   // value.  Since we're adding this to the scoped hash table (like any other
974   // def), it will have been popped if we encounter a future merge block.
975   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
976     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
977     if (BI && BI->isConditional()) {
978       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
979       if (CondInst && SimpleValue::canHandle(CondInst))
980         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
981     }
982   }
983 
984   /// LastStore - Keep track of the last non-volatile store that we saw... for
985   /// as long as there in no instruction that reads memory.  If we see a store
986   /// to the same location, we delete the dead store.  This zaps trivial dead
987   /// stores which can occur in bitfield code among other things.
988   Instruction *LastStore = nullptr;
989 
990   // See if any instructions in the block can be eliminated.  If so, do it.  If
991   // not, add them to AvailableValues.
992   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
993     // Dead instructions should just be removed.
994     if (isInstructionTriviallyDead(&Inst, &TLI)) {
995       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
996       if (!DebugCounter::shouldExecute(CSECounter)) {
997         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
998         continue;
999       }
1000 
1001       salvageKnowledge(&Inst, &AC);
1002       salvageDebugInfo(Inst);
1003       removeMSSA(Inst);
1004       Inst.eraseFromParent();
1005       Changed = true;
1006       ++NumSimplify;
1007       continue;
1008     }
1009 
1010     // Skip assume intrinsics, they don't really have side effects (although
1011     // they're marked as such to ensure preservation of control dependencies),
1012     // and this pass will not bother with its removal. However, we should mark
1013     // its condition as true for all dominated blocks.
1014     if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
1015       auto *CondI =
1016           dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
1017       if (CondI && SimpleValue::canHandle(CondI)) {
1018         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1019                           << '\n');
1020         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1021       } else
1022         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1023       continue;
1024     }
1025 
1026     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1027     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1028       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1029       continue;
1030     }
1031 
1032     // We can skip all invariant.start intrinsics since they only read memory,
1033     // and we can forward values across it. For invariant starts without
1034     // invariant ends, we can use the fact that the invariantness never ends to
1035     // start a scope in the current generaton which is true for all future
1036     // generations.  Also, we dont need to consume the last store since the
1037     // semantics of invariant.start allow us to perform   DSE of the last
1038     // store, if there was a store following invariant.start. Consider:
1039     //
1040     // store 30, i8* p
1041     // invariant.start(p)
1042     // store 40, i8* p
1043     // We can DSE the store to 30, since the store 40 to invariant location p
1044     // causes undefined behaviour.
1045     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1046       // If there are any uses, the scope might end.
1047       if (!Inst.use_empty())
1048         continue;
1049       MemoryLocation MemLoc =
1050           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1051       // Don't start a scope if we already have a better one pushed
1052       if (!AvailableInvariants.count(MemLoc))
1053         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1054       continue;
1055     }
1056 
1057     if (isGuard(&Inst)) {
1058       if (auto *CondI =
1059               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1060         if (SimpleValue::canHandle(CondI)) {
1061           // Do we already know the actual value of this condition?
1062           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1063             // Is the condition known to be true?
1064             if (isa<ConstantInt>(KnownCond) &&
1065                 cast<ConstantInt>(KnownCond)->isOne()) {
1066               LLVM_DEBUG(dbgs()
1067                          << "EarlyCSE removing guard: " << Inst << '\n');
1068               salvageKnowledge(&Inst, &AC);
1069               removeMSSA(Inst);
1070               Inst.eraseFromParent();
1071               Changed = true;
1072               continue;
1073             } else
1074               // Use the known value if it wasn't true.
1075               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1076           }
1077           // The condition we're on guarding here is true for all dominated
1078           // locations.
1079           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1080         }
1081       }
1082 
1083       // Guard intrinsics read all memory, but don't write any memory.
1084       // Accordingly, don't update the generation but consume the last store (to
1085       // avoid an incorrect DSE).
1086       LastStore = nullptr;
1087       continue;
1088     }
1089 
1090     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1091     // its simpler value.
1092     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1093       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1094                         << '\n');
1095       if (!DebugCounter::shouldExecute(CSECounter)) {
1096         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1097       } else {
1098         bool Killed = false;
1099         if (!Inst.use_empty()) {
1100           Inst.replaceAllUsesWith(V);
1101           Changed = true;
1102         }
1103         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1104           salvageKnowledge(&Inst, &AC);
1105           removeMSSA(Inst);
1106           Inst.eraseFromParent();
1107           Changed = true;
1108           Killed = true;
1109         }
1110         if (Changed)
1111           ++NumSimplify;
1112         if (Killed)
1113           continue;
1114       }
1115     }
1116 
1117     // If this is a simple instruction that we can value number, process it.
1118     if (SimpleValue::canHandle(&Inst)) {
1119       // See if the instruction has an available value.  If so, use it.
1120       if (Value *V = AvailableValues.lookup(&Inst)) {
1121         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1122                           << '\n');
1123         if (!DebugCounter::shouldExecute(CSECounter)) {
1124           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1125           continue;
1126         }
1127         if (auto *I = dyn_cast<Instruction>(V))
1128           I->andIRFlags(&Inst);
1129         Inst.replaceAllUsesWith(V);
1130         salvageKnowledge(&Inst, &AC);
1131         removeMSSA(Inst);
1132         Inst.eraseFromParent();
1133         Changed = true;
1134         ++NumCSE;
1135         continue;
1136       }
1137 
1138       // Otherwise, just remember that this value is available.
1139       AvailableValues.insert(&Inst, &Inst);
1140       continue;
1141     }
1142 
1143     ParseMemoryInst MemInst(&Inst, TTI);
1144     // If this is a non-volatile load, process it.
1145     if (MemInst.isValid() && MemInst.isLoad()) {
1146       // (conservatively) we can't peak past the ordering implied by this
1147       // operation, but we can add this load to our set of available values
1148       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1149         LastStore = nullptr;
1150         ++CurrentGeneration;
1151       }
1152 
1153       if (MemInst.isInvariantLoad()) {
1154         // If we pass an invariant load, we know that memory location is
1155         // indefinitely constant from the moment of first dereferenceability.
1156         // We conservatively treat the invariant_load as that moment.  If we
1157         // pass a invariant load after already establishing a scope, don't
1158         // restart it since we want to preserve the earliest point seen.
1159         auto MemLoc = MemoryLocation::get(&Inst);
1160         if (!AvailableInvariants.count(MemLoc))
1161           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1162       }
1163 
1164       // If we have an available version of this load, and if it is the right
1165       // generation or the load is known to be from an invariant location,
1166       // replace this instruction.
1167       //
1168       // If either the dominating load or the current load are invariant, then
1169       // we can assume the current load loads the same value as the dominating
1170       // load.
1171       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1172       if (InVal.DefInst != nullptr &&
1173           InVal.MatchingId == MemInst.getMatchingId() &&
1174           // We don't yet handle removing loads with ordering of any kind.
1175           !MemInst.isVolatile() && MemInst.isUnordered() &&
1176           // We can't replace an atomic load with one which isn't also atomic.
1177           InVal.IsAtomic >= MemInst.isAtomic() &&
1178           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1179            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1180                                InVal.DefInst, &Inst))) {
1181         Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType());
1182         if (Op != nullptr) {
1183           LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1184                             << "  to: " << *InVal.DefInst << '\n');
1185           if (!DebugCounter::shouldExecute(CSECounter)) {
1186             LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1187             continue;
1188           }
1189           if (!Inst.use_empty())
1190             Inst.replaceAllUsesWith(Op);
1191           salvageKnowledge(&Inst, &AC);
1192           removeMSSA(Inst);
1193           Inst.eraseFromParent();
1194           Changed = true;
1195           ++NumCSELoad;
1196           continue;
1197         }
1198       }
1199 
1200       // Otherwise, remember that we have this instruction.
1201       AvailableLoads.insert(MemInst.getPointerOperand(),
1202                             LoadValue(&Inst, CurrentGeneration,
1203                                       MemInst.getMatchingId(),
1204                                       MemInst.isAtomic()));
1205       LastStore = nullptr;
1206       continue;
1207     }
1208 
1209     // If this instruction may read from memory or throw (and potentially read
1210     // from memory in the exception handler), forget LastStore.  Load/store
1211     // intrinsics will indicate both a read and a write to memory.  The target
1212     // may override this (e.g. so that a store intrinsic does not read from
1213     // memory, and thus will be treated the same as a regular store for
1214     // commoning purposes).
1215     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1216         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1217       LastStore = nullptr;
1218 
1219     // If this is a read-only call, process it.
1220     if (CallValue::canHandle(&Inst)) {
1221       // If we have an available version of this call, and if it is the right
1222       // generation, replace this instruction.
1223       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1224       if (InVal.first != nullptr &&
1225           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1226                               &Inst)) {
1227         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1228                           << "  to: " << *InVal.first << '\n');
1229         if (!DebugCounter::shouldExecute(CSECounter)) {
1230           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1231           continue;
1232         }
1233         if (!Inst.use_empty())
1234           Inst.replaceAllUsesWith(InVal.first);
1235         salvageKnowledge(&Inst, &AC);
1236         removeMSSA(Inst);
1237         Inst.eraseFromParent();
1238         Changed = true;
1239         ++NumCSECall;
1240         continue;
1241       }
1242 
1243       // Otherwise, remember that we have this instruction.
1244       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1245       continue;
1246     }
1247 
1248     // A release fence requires that all stores complete before it, but does
1249     // not prevent the reordering of following loads 'before' the fence.  As a
1250     // result, we don't need to consider it as writing to memory and don't need
1251     // to advance the generation.  We do need to prevent DSE across the fence,
1252     // but that's handled above.
1253     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1254       if (FI->getOrdering() == AtomicOrdering::Release) {
1255         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1256         continue;
1257       }
1258 
1259     // write back DSE - If we write back the same value we just loaded from
1260     // the same location and haven't passed any intervening writes or ordering
1261     // operations, we can remove the write.  The primary benefit is in allowing
1262     // the available load table to remain valid and value forward past where
1263     // the store originally was.
1264     if (MemInst.isValid() && MemInst.isStore()) {
1265       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1266       if (InVal.DefInst &&
1267           InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) &&
1268           InVal.MatchingId == MemInst.getMatchingId() &&
1269           // We don't yet handle removing stores with ordering of any kind.
1270           !MemInst.isVolatile() && MemInst.isUnordered() &&
1271           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1272            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1273                                InVal.DefInst, &Inst))) {
1274         // It is okay to have a LastStore to a different pointer here if MemorySSA
1275         // tells us that the load and store are from the same memory generation.
1276         // In that case, LastStore should keep its present value since we're
1277         // removing the current store.
1278         assert((!LastStore ||
1279                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1280                     MemInst.getPointerOperand() ||
1281                 MSSA) &&
1282                "can't have an intervening store if not using MemorySSA!");
1283         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1284         if (!DebugCounter::shouldExecute(CSECounter)) {
1285           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1286           continue;
1287         }
1288         salvageKnowledge(&Inst, &AC);
1289         removeMSSA(Inst);
1290         Inst.eraseFromParent();
1291         Changed = true;
1292         ++NumDSE;
1293         // We can avoid incrementing the generation count since we were able
1294         // to eliminate this store.
1295         continue;
1296       }
1297     }
1298 
1299     // Okay, this isn't something we can CSE at all.  Check to see if it is
1300     // something that could modify memory.  If so, our available memory values
1301     // cannot be used so bump the generation count.
1302     if (Inst.mayWriteToMemory()) {
1303       ++CurrentGeneration;
1304 
1305       if (MemInst.isValid() && MemInst.isStore()) {
1306         // We do a trivial form of DSE if there are two stores to the same
1307         // location with no intervening loads.  Delete the earlier store.
1308         // At the moment, we don't remove ordered stores, but do remove
1309         // unordered atomic stores.  There's no special requirement (for
1310         // unordered atomics) about removing atomic stores only in favor of
1311         // other atomic stores since we were going to execute the non-atomic
1312         // one anyway and the atomic one might never have become visible.
1313         if (LastStore) {
1314           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1315           assert(LastStoreMemInst.isUnordered() &&
1316                  !LastStoreMemInst.isVolatile() &&
1317                  "Violated invariant");
1318           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1319             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1320                               << "  due to: " << Inst << '\n');
1321             if (!DebugCounter::shouldExecute(CSECounter)) {
1322               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1323             } else {
1324               salvageKnowledge(&Inst, &AC);
1325               removeMSSA(*LastStore);
1326               LastStore->eraseFromParent();
1327               Changed = true;
1328               ++NumDSE;
1329               LastStore = nullptr;
1330             }
1331           }
1332           // fallthrough - we can exploit information about this store
1333         }
1334 
1335         // Okay, we just invalidated anything we knew about loaded values.  Try
1336         // to salvage *something* by remembering that the stored value is a live
1337         // version of the pointer.  It is safe to forward from volatile stores
1338         // to non-volatile loads, so we don't have to check for volatility of
1339         // the store.
1340         AvailableLoads.insert(MemInst.getPointerOperand(),
1341                               LoadValue(&Inst, CurrentGeneration,
1342                                         MemInst.getMatchingId(),
1343                                         MemInst.isAtomic()));
1344 
1345         // Remember that this was the last unordered store we saw for DSE. We
1346         // don't yet handle DSE on ordered or volatile stores since we don't
1347         // have a good way to model the ordering requirement for following
1348         // passes  once the store is removed.  We could insert a fence, but
1349         // since fences are slightly stronger than stores in their ordering,
1350         // it's not clear this is a profitable transform. Another option would
1351         // be to merge the ordering with that of the post dominating store.
1352         if (MemInst.isUnordered() && !MemInst.isVolatile())
1353           LastStore = &Inst;
1354         else
1355           LastStore = nullptr;
1356       }
1357     }
1358   }
1359 
1360   return Changed;
1361 }
1362 
1363 bool EarlyCSE::run() {
1364   // Note, deque is being used here because there is significant performance
1365   // gains over vector when the container becomes very large due to the
1366   // specific access patterns. For more information see the mailing list
1367   // discussion on this:
1368   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1369   std::deque<StackNode *> nodesToProcess;
1370 
1371   bool Changed = false;
1372 
1373   // Process the root node.
1374   nodesToProcess.push_back(new StackNode(
1375       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1376       CurrentGeneration, DT.getRootNode(),
1377       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1378 
1379   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1380 
1381   // Process the stack.
1382   while (!nodesToProcess.empty()) {
1383     // Grab the first item off the stack. Set the current generation, remove
1384     // the node from the stack, and process it.
1385     StackNode *NodeToProcess = nodesToProcess.back();
1386 
1387     // Initialize class members.
1388     CurrentGeneration = NodeToProcess->currentGeneration();
1389 
1390     // Check if the node needs to be processed.
1391     if (!NodeToProcess->isProcessed()) {
1392       // Process the node.
1393       Changed |= processNode(NodeToProcess->node());
1394       NodeToProcess->childGeneration(CurrentGeneration);
1395       NodeToProcess->process();
1396     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1397       // Push the next child onto the stack.
1398       DomTreeNode *child = NodeToProcess->nextChild();
1399       nodesToProcess.push_back(
1400           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1401                         AvailableCalls, NodeToProcess->childGeneration(),
1402                         child, child->begin(), child->end()));
1403     } else {
1404       // It has been processed, and there are no more children to process,
1405       // so delete it and pop it off the stack.
1406       delete NodeToProcess;
1407       nodesToProcess.pop_back();
1408     }
1409   } // while (!nodes...)
1410 
1411   return Changed;
1412 }
1413 
1414 PreservedAnalyses EarlyCSEPass::run(Function &F,
1415                                     FunctionAnalysisManager &AM) {
1416   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1417   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1418   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1419   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1420   auto *MSSA =
1421       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1422 
1423   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1424 
1425   if (!CSE.run())
1426     return PreservedAnalyses::all();
1427 
1428   PreservedAnalyses PA;
1429   PA.preserveSet<CFGAnalyses>();
1430   PA.preserve<GlobalsAA>();
1431   if (UseMemorySSA)
1432     PA.preserve<MemorySSAAnalysis>();
1433   return PA;
1434 }
1435 
1436 namespace {
1437 
1438 /// A simple and fast domtree-based CSE pass.
1439 ///
1440 /// This pass does a simple depth-first walk over the dominator tree,
1441 /// eliminating trivially redundant instructions and using instsimplify to
1442 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1443 /// cases so that instcombine and other passes are more effective. It is
1444 /// expected that a later pass of GVN will catch the interesting/hard cases.
1445 template<bool UseMemorySSA>
1446 class EarlyCSELegacyCommonPass : public FunctionPass {
1447 public:
1448   static char ID;
1449 
1450   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1451     if (UseMemorySSA)
1452       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1453     else
1454       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1455   }
1456 
1457   bool runOnFunction(Function &F) override {
1458     if (skipFunction(F))
1459       return false;
1460 
1461     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1462     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1463     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1464     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1465     auto *MSSA =
1466         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1467 
1468     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1469 
1470     return CSE.run();
1471   }
1472 
1473   void getAnalysisUsage(AnalysisUsage &AU) const override {
1474     AU.addRequired<AssumptionCacheTracker>();
1475     AU.addRequired<DominatorTreeWrapperPass>();
1476     AU.addRequired<TargetLibraryInfoWrapperPass>();
1477     AU.addRequired<TargetTransformInfoWrapperPass>();
1478     if (UseMemorySSA) {
1479       AU.addRequired<AAResultsWrapperPass>();
1480       AU.addRequired<MemorySSAWrapperPass>();
1481       AU.addPreserved<MemorySSAWrapperPass>();
1482     }
1483     AU.addPreserved<GlobalsAAWrapperPass>();
1484     AU.addPreserved<AAResultsWrapperPass>();
1485     AU.setPreservesCFG();
1486   }
1487 };
1488 
1489 } // end anonymous namespace
1490 
1491 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1492 
1493 template<>
1494 char EarlyCSELegacyPass::ID = 0;
1495 
1496 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1497                       false)
1498 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1499 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1500 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1501 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1502 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1503 
1504 using EarlyCSEMemSSALegacyPass =
1505     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1506 
1507 template<>
1508 char EarlyCSEMemSSALegacyPass::ID = 0;
1509 
1510 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1511   if (UseMemorySSA)
1512     return new EarlyCSEMemSSALegacyPass();
1513   else
1514     return new EarlyCSELegacyPass();
1515 }
1516 
1517 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1518                       "Early CSE w/ MemorySSA", false, false)
1519 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1520 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1521 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1522 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1523 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1524 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1525 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1526                     "Early CSE w/ MemorySSA", false, false)
1527