1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 58 #include "llvm/Transforms/Utils/GuardUtils.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include <cassert> 61 #include <deque> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 using namespace llvm::PatternMatch; 67 68 #define DEBUG_TYPE "early-cse" 69 70 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 71 STATISTIC(NumCSE, "Number of instructions CSE'd"); 72 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 73 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 74 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 75 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 76 77 DEBUG_COUNTER(CSECounter, "early-cse", 78 "Controls which instructions are removed"); 79 80 static cl::opt<unsigned> EarlyCSEMssaOptCap( 81 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 82 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 83 "for faster compile. Caps the MemorySSA clobbering calls.")); 84 85 static cl::opt<bool> EarlyCSEDebugHash( 86 "earlycse-debug-hash", cl::init(false), cl::Hidden, 87 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 88 "function is well-behaved w.r.t. its isEqual predicate")); 89 90 //===----------------------------------------------------------------------===// 91 // SimpleValue 92 //===----------------------------------------------------------------------===// 93 94 namespace { 95 96 /// Struct representing the available values in the scoped hash table. 97 struct SimpleValue { 98 Instruction *Inst; 99 100 SimpleValue(Instruction *I) : Inst(I) { 101 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 102 } 103 104 bool isSentinel() const { 105 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 106 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 107 } 108 109 static bool canHandle(Instruction *Inst) { 110 // This can only handle non-void readnone functions. 111 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 112 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 113 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 114 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 115 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 116 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 117 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 118 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 119 } 120 }; 121 122 } // end anonymous namespace 123 124 namespace llvm { 125 126 template <> struct DenseMapInfo<SimpleValue> { 127 static inline SimpleValue getEmptyKey() { 128 return DenseMapInfo<Instruction *>::getEmptyKey(); 129 } 130 131 static inline SimpleValue getTombstoneKey() { 132 return DenseMapInfo<Instruction *>::getTombstoneKey(); 133 } 134 135 static unsigned getHashValue(SimpleValue Val); 136 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 137 }; 138 139 } // end namespace llvm 140 141 /// Match a 'select' including an optional 'not's of the condition. 142 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 143 Value *&B, 144 SelectPatternFlavor &Flavor) { 145 // Return false if V is not even a select. 146 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 147 return false; 148 149 // Look through a 'not' of the condition operand by swapping A/B. 150 Value *CondNot; 151 if (match(Cond, m_Not(m_Value(CondNot)))) { 152 Cond = CondNot; 153 std::swap(A, B); 154 } 155 156 // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's 157 // more powerful matchSelectPattern() because it may rely on instruction flags 158 // such as "nsw". That would be incompatible with the current hashing 159 // mechanism that may remove flags to increase the likelihood of CSE. 160 161 // These are the canonical forms of abs(X) and nabs(X) created by instcombine: 162 // %N = sub i32 0, %X 163 // %C = icmp slt i32 %X, 0 164 // %ABS = select i1 %C, i32 %N, i32 %X 165 // 166 // %N = sub i32 0, %X 167 // %C = icmp slt i32 %X, 0 168 // %NABS = select i1 %C, i32 %X, i32 %N 169 Flavor = SPF_UNKNOWN; 170 CmpInst::Predicate Pred; 171 if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) && 172 Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) { 173 // ABS: B < 0 ? -B : B 174 Flavor = SPF_ABS; 175 return true; 176 } 177 if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) && 178 Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) { 179 // NABS: A < 0 ? A : -A 180 Flavor = SPF_NABS; 181 return true; 182 } 183 184 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 185 // Check for commuted variants of min/max by swapping predicate. 186 // If we do not match the standard or commuted patterns, this is not a 187 // recognized form of min/max, but it is still a select, so return true. 188 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 189 return true; 190 Pred = ICmpInst::getSwappedPredicate(Pred); 191 } 192 193 switch (Pred) { 194 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 195 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 196 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 197 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 198 default: break; 199 } 200 201 return true; 202 } 203 204 static unsigned getHashValueImpl(SimpleValue Val) { 205 Instruction *Inst = Val.Inst; 206 // Hash in all of the operands as pointers. 207 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 208 Value *LHS = BinOp->getOperand(0); 209 Value *RHS = BinOp->getOperand(1); 210 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 211 std::swap(LHS, RHS); 212 213 return hash_combine(BinOp->getOpcode(), LHS, RHS); 214 } 215 216 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 217 // Compares can be commuted by swapping the comparands and 218 // updating the predicate. Choose the form that has the 219 // comparands in sorted order, or in the case of a tie, the 220 // one with the lower predicate. 221 Value *LHS = CI->getOperand(0); 222 Value *RHS = CI->getOperand(1); 223 CmpInst::Predicate Pred = CI->getPredicate(); 224 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 225 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 226 std::swap(LHS, RHS); 227 Pred = SwappedPred; 228 } 229 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 230 } 231 232 // Hash general selects to allow matching commuted true/false operands. 233 SelectPatternFlavor SPF; 234 Value *Cond, *A, *B; 235 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 236 // Hash min/max/abs (cmp + select) to allow for commuted operands. 237 // Min/max may also have non-canonical compare predicate (eg, the compare for 238 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 239 // compare. 240 // TODO: We should also detect FP min/max. 241 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 242 SPF == SPF_UMIN || SPF == SPF_UMAX) { 243 if (A > B) 244 std::swap(A, B); 245 return hash_combine(Inst->getOpcode(), SPF, A, B); 246 } 247 if (SPF == SPF_ABS || SPF == SPF_NABS) { 248 // ABS/NABS always puts the input in A and its negation in B. 249 return hash_combine(Inst->getOpcode(), SPF, A, B); 250 } 251 252 // Hash general selects to allow matching commuted true/false operands. 253 254 // If we do not have a compare as the condition, just hash in the condition. 255 CmpInst::Predicate Pred; 256 Value *X, *Y; 257 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 258 return hash_combine(Inst->getOpcode(), Cond, A, B); 259 260 // Similar to cmp normalization (above) - canonicalize the predicate value: 261 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 262 if (CmpInst::getInversePredicate(Pred) < Pred) { 263 Pred = CmpInst::getInversePredicate(Pred); 264 std::swap(A, B); 265 } 266 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 267 } 268 269 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 270 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 271 272 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 273 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 274 275 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 276 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 277 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 278 279 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 280 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 281 IVI->getOperand(1), 282 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 283 284 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 285 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 286 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 287 isa<FreezeInst>(Inst)) && 288 "Invalid/unknown instruction"); 289 290 // Mix in the opcode. 291 return hash_combine( 292 Inst->getOpcode(), 293 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 294 } 295 296 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 297 #ifndef NDEBUG 298 // If -earlycse-debug-hash was specified, return a constant -- this 299 // will force all hashing to collide, so we'll exhaustively search 300 // the table for a match, and the assertion in isEqual will fire if 301 // there's a bug causing equal keys to hash differently. 302 if (EarlyCSEDebugHash) 303 return 0; 304 #endif 305 return getHashValueImpl(Val); 306 } 307 308 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 309 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 310 311 if (LHS.isSentinel() || RHS.isSentinel()) 312 return LHSI == RHSI; 313 314 if (LHSI->getOpcode() != RHSI->getOpcode()) 315 return false; 316 if (LHSI->isIdenticalToWhenDefined(RHSI)) 317 return true; 318 319 // If we're not strictly identical, we still might be a commutable instruction 320 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 321 if (!LHSBinOp->isCommutative()) 322 return false; 323 324 assert(isa<BinaryOperator>(RHSI) && 325 "same opcode, but different instruction type?"); 326 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 327 328 // Commuted equality 329 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 330 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 331 } 332 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 333 assert(isa<CmpInst>(RHSI) && 334 "same opcode, but different instruction type?"); 335 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 336 // Commuted equality 337 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 338 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 339 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 340 } 341 342 // Min/max/abs can occur with commuted operands, non-canonical predicates, 343 // and/or non-canonical operands. 344 // Selects can be non-trivially equivalent via inverted conditions and swaps. 345 SelectPatternFlavor LSPF, RSPF; 346 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 347 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 348 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 349 if (LSPF == RSPF) { 350 // TODO: We should also detect FP min/max. 351 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 352 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 353 return ((LHSA == RHSA && LHSB == RHSB) || 354 (LHSA == RHSB && LHSB == RHSA)); 355 356 if (LSPF == SPF_ABS || LSPF == SPF_NABS) { 357 // Abs results are placed in a defined order by matchSelectPattern. 358 return LHSA == RHSA && LHSB == RHSB; 359 } 360 361 // select Cond, A, B <--> select not(Cond), B, A 362 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 363 return true; 364 } 365 366 // If the true/false operands are swapped and the conditions are compares 367 // with inverted predicates, the selects are equal: 368 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 369 // 370 // This also handles patterns with a double-negation in the sense of not + 371 // inverse, because we looked through a 'not' in the matching function and 372 // swapped A/B: 373 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 374 // 375 // This intentionally does NOT handle patterns with a double-negation in 376 // the sense of not + not, because doing so could result in values 377 // comparing 378 // as equal that hash differently in the min/max/abs cases like: 379 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 380 // ^ hashes as min ^ would not hash as min 381 // In the context of the EarlyCSE pass, however, such cases never reach 382 // this code, as we simplify the double-negation before hashing the second 383 // select (and so still succeed at CSEing them). 384 if (LHSA == RHSB && LHSB == RHSA) { 385 CmpInst::Predicate PredL, PredR; 386 Value *X, *Y; 387 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 388 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 389 CmpInst::getInversePredicate(PredL) == PredR) 390 return true; 391 } 392 } 393 394 return false; 395 } 396 397 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 398 // These comparisons are nontrivial, so assert that equality implies 399 // hash equality (DenseMap demands this as an invariant). 400 bool Result = isEqualImpl(LHS, RHS); 401 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 402 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 403 return Result; 404 } 405 406 //===----------------------------------------------------------------------===// 407 // CallValue 408 //===----------------------------------------------------------------------===// 409 410 namespace { 411 412 /// Struct representing the available call values in the scoped hash 413 /// table. 414 struct CallValue { 415 Instruction *Inst; 416 417 CallValue(Instruction *I) : Inst(I) { 418 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 419 } 420 421 bool isSentinel() const { 422 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 423 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 424 } 425 426 static bool canHandle(Instruction *Inst) { 427 // Don't value number anything that returns void. 428 if (Inst->getType()->isVoidTy()) 429 return false; 430 431 CallInst *CI = dyn_cast<CallInst>(Inst); 432 if (!CI || !CI->onlyReadsMemory()) 433 return false; 434 return true; 435 } 436 }; 437 438 } // end anonymous namespace 439 440 namespace llvm { 441 442 template <> struct DenseMapInfo<CallValue> { 443 static inline CallValue getEmptyKey() { 444 return DenseMapInfo<Instruction *>::getEmptyKey(); 445 } 446 447 static inline CallValue getTombstoneKey() { 448 return DenseMapInfo<Instruction *>::getTombstoneKey(); 449 } 450 451 static unsigned getHashValue(CallValue Val); 452 static bool isEqual(CallValue LHS, CallValue RHS); 453 }; 454 455 } // end namespace llvm 456 457 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 458 Instruction *Inst = Val.Inst; 459 // Hash all of the operands as pointers and mix in the opcode. 460 return hash_combine( 461 Inst->getOpcode(), 462 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 463 } 464 465 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 466 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 467 if (LHS.isSentinel() || RHS.isSentinel()) 468 return LHSI == RHSI; 469 return LHSI->isIdenticalTo(RHSI); 470 } 471 472 //===----------------------------------------------------------------------===// 473 // EarlyCSE implementation 474 //===----------------------------------------------------------------------===// 475 476 namespace { 477 478 /// A simple and fast domtree-based CSE pass. 479 /// 480 /// This pass does a simple depth-first walk over the dominator tree, 481 /// eliminating trivially redundant instructions and using instsimplify to 482 /// canonicalize things as it goes. It is intended to be fast and catch obvious 483 /// cases so that instcombine and other passes are more effective. It is 484 /// expected that a later pass of GVN will catch the interesting/hard cases. 485 class EarlyCSE { 486 public: 487 const TargetLibraryInfo &TLI; 488 const TargetTransformInfo &TTI; 489 DominatorTree &DT; 490 AssumptionCache &AC; 491 const SimplifyQuery SQ; 492 MemorySSA *MSSA; 493 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 494 495 using AllocatorTy = 496 RecyclingAllocator<BumpPtrAllocator, 497 ScopedHashTableVal<SimpleValue, Value *>>; 498 using ScopedHTType = 499 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 500 AllocatorTy>; 501 502 /// A scoped hash table of the current values of all of our simple 503 /// scalar expressions. 504 /// 505 /// As we walk down the domtree, we look to see if instructions are in this: 506 /// if so, we replace them with what we find, otherwise we insert them so 507 /// that dominated values can succeed in their lookup. 508 ScopedHTType AvailableValues; 509 510 /// A scoped hash table of the current values of previously encountered 511 /// memory locations. 512 /// 513 /// This allows us to get efficient access to dominating loads or stores when 514 /// we have a fully redundant load. In addition to the most recent load, we 515 /// keep track of a generation count of the read, which is compared against 516 /// the current generation count. The current generation count is incremented 517 /// after every possibly writing memory operation, which ensures that we only 518 /// CSE loads with other loads that have no intervening store. Ordering 519 /// events (such as fences or atomic instructions) increment the generation 520 /// count as well; essentially, we model these as writes to all possible 521 /// locations. Note that atomic and/or volatile loads and stores can be 522 /// present the table; it is the responsibility of the consumer to inspect 523 /// the atomicity/volatility if needed. 524 struct LoadValue { 525 Instruction *DefInst = nullptr; 526 unsigned Generation = 0; 527 int MatchingId = -1; 528 bool IsAtomic = false; 529 530 LoadValue() = default; 531 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 532 bool IsAtomic) 533 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 534 IsAtomic(IsAtomic) {} 535 }; 536 537 using LoadMapAllocator = 538 RecyclingAllocator<BumpPtrAllocator, 539 ScopedHashTableVal<Value *, LoadValue>>; 540 using LoadHTType = 541 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 542 LoadMapAllocator>; 543 544 LoadHTType AvailableLoads; 545 546 // A scoped hash table mapping memory locations (represented as typed 547 // addresses) to generation numbers at which that memory location became 548 // (henceforth indefinitely) invariant. 549 using InvariantMapAllocator = 550 RecyclingAllocator<BumpPtrAllocator, 551 ScopedHashTableVal<MemoryLocation, unsigned>>; 552 using InvariantHTType = 553 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 554 InvariantMapAllocator>; 555 InvariantHTType AvailableInvariants; 556 557 /// A scoped hash table of the current values of read-only call 558 /// values. 559 /// 560 /// It uses the same generation count as loads. 561 using CallHTType = 562 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 563 CallHTType AvailableCalls; 564 565 /// This is the current generation of the memory value. 566 unsigned CurrentGeneration = 0; 567 568 /// Set up the EarlyCSE runner for a particular function. 569 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 570 const TargetTransformInfo &TTI, DominatorTree &DT, 571 AssumptionCache &AC, MemorySSA *MSSA) 572 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 573 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 574 575 bool run(); 576 577 private: 578 unsigned ClobberCounter = 0; 579 // Almost a POD, but needs to call the constructors for the scoped hash 580 // tables so that a new scope gets pushed on. These are RAII so that the 581 // scope gets popped when the NodeScope is destroyed. 582 class NodeScope { 583 public: 584 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 585 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 586 : Scope(AvailableValues), LoadScope(AvailableLoads), 587 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 588 NodeScope(const NodeScope &) = delete; 589 NodeScope &operator=(const NodeScope &) = delete; 590 591 private: 592 ScopedHTType::ScopeTy Scope; 593 LoadHTType::ScopeTy LoadScope; 594 InvariantHTType::ScopeTy InvariantScope; 595 CallHTType::ScopeTy CallScope; 596 }; 597 598 // Contains all the needed information to create a stack for doing a depth 599 // first traversal of the tree. This includes scopes for values, loads, and 600 // calls as well as the generation. There is a child iterator so that the 601 // children do not need to be store separately. 602 class StackNode { 603 public: 604 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 605 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 606 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 607 DomTreeNode::iterator end) 608 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 609 EndIter(end), 610 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 611 AvailableCalls) 612 {} 613 StackNode(const StackNode &) = delete; 614 StackNode &operator=(const StackNode &) = delete; 615 616 // Accessors. 617 unsigned currentGeneration() { return CurrentGeneration; } 618 unsigned childGeneration() { return ChildGeneration; } 619 void childGeneration(unsigned generation) { ChildGeneration = generation; } 620 DomTreeNode *node() { return Node; } 621 DomTreeNode::iterator childIter() { return ChildIter; } 622 623 DomTreeNode *nextChild() { 624 DomTreeNode *child = *ChildIter; 625 ++ChildIter; 626 return child; 627 } 628 629 DomTreeNode::iterator end() { return EndIter; } 630 bool isProcessed() { return Processed; } 631 void process() { Processed = true; } 632 633 private: 634 unsigned CurrentGeneration; 635 unsigned ChildGeneration; 636 DomTreeNode *Node; 637 DomTreeNode::iterator ChildIter; 638 DomTreeNode::iterator EndIter; 639 NodeScope Scopes; 640 bool Processed = false; 641 }; 642 643 /// Wrapper class to handle memory instructions, including loads, 644 /// stores and intrinsic loads and stores defined by the target. 645 class ParseMemoryInst { 646 public: 647 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 648 : Inst(Inst) { 649 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 650 if (TTI.getTgtMemIntrinsic(II, Info)) 651 IsTargetMemInst = true; 652 } 653 654 bool isLoad() const { 655 if (IsTargetMemInst) return Info.ReadMem; 656 return isa<LoadInst>(Inst); 657 } 658 659 bool isStore() const { 660 if (IsTargetMemInst) return Info.WriteMem; 661 return isa<StoreInst>(Inst); 662 } 663 664 bool isAtomic() const { 665 if (IsTargetMemInst) 666 return Info.Ordering != AtomicOrdering::NotAtomic; 667 return Inst->isAtomic(); 668 } 669 670 bool isUnordered() const { 671 if (IsTargetMemInst) 672 return Info.isUnordered(); 673 674 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 675 return LI->isUnordered(); 676 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 677 return SI->isUnordered(); 678 } 679 // Conservative answer 680 return !Inst->isAtomic(); 681 } 682 683 bool isVolatile() const { 684 if (IsTargetMemInst) 685 return Info.IsVolatile; 686 687 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 688 return LI->isVolatile(); 689 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 690 return SI->isVolatile(); 691 } 692 // Conservative answer 693 return true; 694 } 695 696 bool isInvariantLoad() const { 697 if (auto *LI = dyn_cast<LoadInst>(Inst)) 698 return LI->hasMetadata(LLVMContext::MD_invariant_load); 699 return false; 700 } 701 702 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 703 return (getPointerOperand() == Inst.getPointerOperand() && 704 getMatchingId() == Inst.getMatchingId()); 705 } 706 707 bool isValid() const { return getPointerOperand() != nullptr; } 708 709 // For regular (non-intrinsic) loads/stores, this is set to -1. For 710 // intrinsic loads/stores, the id is retrieved from the corresponding 711 // field in the MemIntrinsicInfo structure. That field contains 712 // non-negative values only. 713 int getMatchingId() const { 714 if (IsTargetMemInst) return Info.MatchingId; 715 return -1; 716 } 717 718 Value *getPointerOperand() const { 719 if (IsTargetMemInst) return Info.PtrVal; 720 return getLoadStorePointerOperand(Inst); 721 } 722 723 bool mayReadFromMemory() const { 724 if (IsTargetMemInst) return Info.ReadMem; 725 return Inst->mayReadFromMemory(); 726 } 727 728 bool mayWriteToMemory() const { 729 if (IsTargetMemInst) return Info.WriteMem; 730 return Inst->mayWriteToMemory(); 731 } 732 733 private: 734 bool IsTargetMemInst = false; 735 MemIntrinsicInfo Info; 736 Instruction *Inst; 737 }; 738 739 bool processNode(DomTreeNode *Node); 740 741 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 742 const BasicBlock *BB, const BasicBlock *Pred); 743 744 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 745 if (auto *LI = dyn_cast<LoadInst>(Inst)) 746 return LI; 747 if (auto *SI = dyn_cast<StoreInst>(Inst)) 748 return SI->getValueOperand(); 749 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 750 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 751 ExpectedType); 752 } 753 754 /// Return true if the instruction is known to only operate on memory 755 /// provably invariant in the given "generation". 756 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 757 758 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 759 Instruction *EarlierInst, Instruction *LaterInst); 760 761 void removeMSSA(Instruction &Inst) { 762 if (!MSSA) 763 return; 764 if (VerifyMemorySSA) 765 MSSA->verifyMemorySSA(); 766 // Removing a store here can leave MemorySSA in an unoptimized state by 767 // creating MemoryPhis that have identical arguments and by creating 768 // MemoryUses whose defining access is not an actual clobber. The phi case 769 // is handled by MemorySSA when passing OptimizePhis = true to 770 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 771 // by MemorySSA's getClobberingMemoryAccess. 772 MSSAUpdater->removeMemoryAccess(&Inst, true); 773 } 774 }; 775 776 } // end anonymous namespace 777 778 /// Determine if the memory referenced by LaterInst is from the same heap 779 /// version as EarlierInst. 780 /// This is currently called in two scenarios: 781 /// 782 /// load p 783 /// ... 784 /// load p 785 /// 786 /// and 787 /// 788 /// x = load p 789 /// ... 790 /// store x, p 791 /// 792 /// in both cases we want to verify that there are no possible writes to the 793 /// memory referenced by p between the earlier and later instruction. 794 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 795 unsigned LaterGeneration, 796 Instruction *EarlierInst, 797 Instruction *LaterInst) { 798 // Check the simple memory generation tracking first. 799 if (EarlierGeneration == LaterGeneration) 800 return true; 801 802 if (!MSSA) 803 return false; 804 805 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 806 // read/write memory, then we can safely return true here. 807 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 808 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 809 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 810 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 811 // with the default optimization pipeline. 812 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 813 if (!EarlierMA) 814 return true; 815 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 816 if (!LaterMA) 817 return true; 818 819 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 820 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 821 // EarlierInst and LaterInst and neither can any other write that potentially 822 // clobbers LaterInst. 823 MemoryAccess *LaterDef; 824 if (ClobberCounter < EarlyCSEMssaOptCap) { 825 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 826 ClobberCounter++; 827 } else 828 LaterDef = LaterMA->getDefiningAccess(); 829 830 return MSSA->dominates(LaterDef, EarlierMA); 831 } 832 833 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 834 // A location loaded from with an invariant_load is assumed to *never* change 835 // within the visible scope of the compilation. 836 if (auto *LI = dyn_cast<LoadInst>(I)) 837 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 838 return true; 839 840 auto MemLocOpt = MemoryLocation::getOrNone(I); 841 if (!MemLocOpt) 842 // "target" intrinsic forms of loads aren't currently known to 843 // MemoryLocation::get. TODO 844 return false; 845 MemoryLocation MemLoc = *MemLocOpt; 846 if (!AvailableInvariants.count(MemLoc)) 847 return false; 848 849 // Is the generation at which this became invariant older than the 850 // current one? 851 return AvailableInvariants.lookup(MemLoc) <= GenAt; 852 } 853 854 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 855 const BranchInst *BI, const BasicBlock *BB, 856 const BasicBlock *Pred) { 857 assert(BI->isConditional() && "Should be a conditional branch!"); 858 assert(BI->getCondition() == CondInst && "Wrong condition?"); 859 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 860 auto *TorF = (BI->getSuccessor(0) == BB) 861 ? ConstantInt::getTrue(BB->getContext()) 862 : ConstantInt::getFalse(BB->getContext()); 863 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 864 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 865 return BOp->getOpcode() == Opcode; 866 return false; 867 }; 868 // If the condition is AND operation, we can propagate its operands into the 869 // true branch. If it is OR operation, we can propagate them into the false 870 // branch. 871 unsigned PropagateOpcode = 872 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 873 874 bool MadeChanges = false; 875 SmallVector<Instruction *, 4> WorkList; 876 SmallPtrSet<Instruction *, 4> Visited; 877 WorkList.push_back(CondInst); 878 while (!WorkList.empty()) { 879 Instruction *Curr = WorkList.pop_back_val(); 880 881 AvailableValues.insert(Curr, TorF); 882 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 883 << Curr->getName() << "' as " << *TorF << " in " 884 << BB->getName() << "\n"); 885 if (!DebugCounter::shouldExecute(CSECounter)) { 886 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 887 } else { 888 // Replace all dominated uses with the known value. 889 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 890 BasicBlockEdge(Pred, BB))) { 891 NumCSECVP += Count; 892 MadeChanges = true; 893 } 894 } 895 896 if (MatchBinOp(Curr, PropagateOpcode)) 897 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 898 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 899 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 900 WorkList.push_back(OPI); 901 } 902 903 return MadeChanges; 904 } 905 906 bool EarlyCSE::processNode(DomTreeNode *Node) { 907 bool Changed = false; 908 BasicBlock *BB = Node->getBlock(); 909 910 // If this block has a single predecessor, then the predecessor is the parent 911 // of the domtree node and all of the live out memory values are still current 912 // in this block. If this block has multiple predecessors, then they could 913 // have invalidated the live-out memory values of our parent value. For now, 914 // just be conservative and invalidate memory if this block has multiple 915 // predecessors. 916 if (!BB->getSinglePredecessor()) 917 ++CurrentGeneration; 918 919 // If this node has a single predecessor which ends in a conditional branch, 920 // we can infer the value of the branch condition given that we took this 921 // path. We need the single predecessor to ensure there's not another path 922 // which reaches this block where the condition might hold a different 923 // value. Since we're adding this to the scoped hash table (like any other 924 // def), it will have been popped if we encounter a future merge block. 925 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 926 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 927 if (BI && BI->isConditional()) { 928 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 929 if (CondInst && SimpleValue::canHandle(CondInst)) 930 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 931 } 932 } 933 934 /// LastStore - Keep track of the last non-volatile store that we saw... for 935 /// as long as there in no instruction that reads memory. If we see a store 936 /// to the same location, we delete the dead store. This zaps trivial dead 937 /// stores which can occur in bitfield code among other things. 938 Instruction *LastStore = nullptr; 939 940 // See if any instructions in the block can be eliminated. If so, do it. If 941 // not, add them to AvailableValues. 942 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 943 // Dead instructions should just be removed. 944 if (isInstructionTriviallyDead(&Inst, &TLI)) { 945 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 946 if (!DebugCounter::shouldExecute(CSECounter)) { 947 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 948 continue; 949 } 950 951 salvageKnowledge(&Inst); 952 salvageDebugInfoOrMarkUndef(Inst); 953 removeMSSA(Inst); 954 Inst.eraseFromParent(); 955 Changed = true; 956 ++NumSimplify; 957 continue; 958 } 959 960 // Skip assume intrinsics, they don't really have side effects (although 961 // they're marked as such to ensure preservation of control dependencies), 962 // and this pass will not bother with its removal. However, we should mark 963 // its condition as true for all dominated blocks. 964 if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) { 965 auto *CondI = 966 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0)); 967 if (CondI && SimpleValue::canHandle(CondI)) { 968 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 969 << '\n'); 970 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 971 } else 972 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 973 continue; 974 } 975 976 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 977 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 978 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 979 continue; 980 } 981 982 // We can skip all invariant.start intrinsics since they only read memory, 983 // and we can forward values across it. For invariant starts without 984 // invariant ends, we can use the fact that the invariantness never ends to 985 // start a scope in the current generaton which is true for all future 986 // generations. Also, we dont need to consume the last store since the 987 // semantics of invariant.start allow us to perform DSE of the last 988 // store, if there was a store following invariant.start. Consider: 989 // 990 // store 30, i8* p 991 // invariant.start(p) 992 // store 40, i8* p 993 // We can DSE the store to 30, since the store 40 to invariant location p 994 // causes undefined behaviour. 995 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 996 // If there are any uses, the scope might end. 997 if (!Inst.use_empty()) 998 continue; 999 MemoryLocation MemLoc = 1000 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1001 // Don't start a scope if we already have a better one pushed 1002 if (!AvailableInvariants.count(MemLoc)) 1003 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1004 continue; 1005 } 1006 1007 if (isGuard(&Inst)) { 1008 if (auto *CondI = 1009 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1010 if (SimpleValue::canHandle(CondI)) { 1011 // Do we already know the actual value of this condition? 1012 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1013 // Is the condition known to be true? 1014 if (isa<ConstantInt>(KnownCond) && 1015 cast<ConstantInt>(KnownCond)->isOne()) { 1016 LLVM_DEBUG(dbgs() 1017 << "EarlyCSE removing guard: " << Inst << '\n'); 1018 salvageKnowledge(&Inst); 1019 removeMSSA(Inst); 1020 Inst.eraseFromParent(); 1021 Changed = true; 1022 continue; 1023 } else 1024 // Use the known value if it wasn't true. 1025 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1026 } 1027 // The condition we're on guarding here is true for all dominated 1028 // locations. 1029 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1030 } 1031 } 1032 1033 // Guard intrinsics read all memory, but don't write any memory. 1034 // Accordingly, don't update the generation but consume the last store (to 1035 // avoid an incorrect DSE). 1036 LastStore = nullptr; 1037 continue; 1038 } 1039 1040 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1041 // its simpler value. 1042 if (Value *V = SimplifyInstruction(&Inst, SQ)) { 1043 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1044 << '\n'); 1045 if (!DebugCounter::shouldExecute(CSECounter)) { 1046 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1047 } else { 1048 bool Killed = false; 1049 if (!Inst.use_empty()) { 1050 Inst.replaceAllUsesWith(V); 1051 Changed = true; 1052 } 1053 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1054 salvageKnowledge(&Inst); 1055 removeMSSA(Inst); 1056 Inst.eraseFromParent(); 1057 Changed = true; 1058 Killed = true; 1059 } 1060 if (Changed) 1061 ++NumSimplify; 1062 if (Killed) 1063 continue; 1064 } 1065 } 1066 1067 // If this is a simple instruction that we can value number, process it. 1068 if (SimpleValue::canHandle(&Inst)) { 1069 // See if the instruction has an available value. If so, use it. 1070 if (Value *V = AvailableValues.lookup(&Inst)) { 1071 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1072 << '\n'); 1073 if (!DebugCounter::shouldExecute(CSECounter)) { 1074 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1075 continue; 1076 } 1077 if (auto *I = dyn_cast<Instruction>(V)) 1078 I->andIRFlags(&Inst); 1079 Inst.replaceAllUsesWith(V); 1080 salvageKnowledge(&Inst); 1081 removeMSSA(Inst); 1082 Inst.eraseFromParent(); 1083 Changed = true; 1084 ++NumCSE; 1085 continue; 1086 } 1087 1088 // Otherwise, just remember that this value is available. 1089 AvailableValues.insert(&Inst, &Inst); 1090 continue; 1091 } 1092 1093 ParseMemoryInst MemInst(&Inst, TTI); 1094 // If this is a non-volatile load, process it. 1095 if (MemInst.isValid() && MemInst.isLoad()) { 1096 // (conservatively) we can't peak past the ordering implied by this 1097 // operation, but we can add this load to our set of available values 1098 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1099 LastStore = nullptr; 1100 ++CurrentGeneration; 1101 } 1102 1103 if (MemInst.isInvariantLoad()) { 1104 // If we pass an invariant load, we know that memory location is 1105 // indefinitely constant from the moment of first dereferenceability. 1106 // We conservatively treat the invariant_load as that moment. If we 1107 // pass a invariant load after already establishing a scope, don't 1108 // restart it since we want to preserve the earliest point seen. 1109 auto MemLoc = MemoryLocation::get(&Inst); 1110 if (!AvailableInvariants.count(MemLoc)) 1111 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1112 } 1113 1114 // If we have an available version of this load, and if it is the right 1115 // generation or the load is known to be from an invariant location, 1116 // replace this instruction. 1117 // 1118 // If either the dominating load or the current load are invariant, then 1119 // we can assume the current load loads the same value as the dominating 1120 // load. 1121 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1122 if (InVal.DefInst != nullptr && 1123 InVal.MatchingId == MemInst.getMatchingId() && 1124 // We don't yet handle removing loads with ordering of any kind. 1125 !MemInst.isVolatile() && MemInst.isUnordered() && 1126 // We can't replace an atomic load with one which isn't also atomic. 1127 InVal.IsAtomic >= MemInst.isAtomic() && 1128 (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) || 1129 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1130 InVal.DefInst, &Inst))) { 1131 Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType()); 1132 if (Op != nullptr) { 1133 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1134 << " to: " << *InVal.DefInst << '\n'); 1135 if (!DebugCounter::shouldExecute(CSECounter)) { 1136 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1137 continue; 1138 } 1139 if (!Inst.use_empty()) 1140 Inst.replaceAllUsesWith(Op); 1141 salvageKnowledge(&Inst); 1142 removeMSSA(Inst); 1143 Inst.eraseFromParent(); 1144 Changed = true; 1145 ++NumCSELoad; 1146 continue; 1147 } 1148 } 1149 1150 // Otherwise, remember that we have this instruction. 1151 AvailableLoads.insert(MemInst.getPointerOperand(), 1152 LoadValue(&Inst, CurrentGeneration, 1153 MemInst.getMatchingId(), 1154 MemInst.isAtomic())); 1155 LastStore = nullptr; 1156 continue; 1157 } 1158 1159 // If this instruction may read from memory or throw (and potentially read 1160 // from memory in the exception handler), forget LastStore. Load/store 1161 // intrinsics will indicate both a read and a write to memory. The target 1162 // may override this (e.g. so that a store intrinsic does not read from 1163 // memory, and thus will be treated the same as a regular store for 1164 // commoning purposes). 1165 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1166 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1167 LastStore = nullptr; 1168 1169 // If this is a read-only call, process it. 1170 if (CallValue::canHandle(&Inst)) { 1171 // If we have an available version of this call, and if it is the right 1172 // generation, replace this instruction. 1173 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1174 if (InVal.first != nullptr && 1175 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1176 &Inst)) { 1177 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1178 << " to: " << *InVal.first << '\n'); 1179 if (!DebugCounter::shouldExecute(CSECounter)) { 1180 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1181 continue; 1182 } 1183 if (!Inst.use_empty()) 1184 Inst.replaceAllUsesWith(InVal.first); 1185 salvageKnowledge(&Inst); 1186 removeMSSA(Inst); 1187 Inst.eraseFromParent(); 1188 Changed = true; 1189 ++NumCSECall; 1190 continue; 1191 } 1192 1193 // Otherwise, remember that we have this instruction. 1194 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1195 continue; 1196 } 1197 1198 // A release fence requires that all stores complete before it, but does 1199 // not prevent the reordering of following loads 'before' the fence. As a 1200 // result, we don't need to consider it as writing to memory and don't need 1201 // to advance the generation. We do need to prevent DSE across the fence, 1202 // but that's handled above. 1203 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1204 if (FI->getOrdering() == AtomicOrdering::Release) { 1205 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1206 continue; 1207 } 1208 1209 // write back DSE - If we write back the same value we just loaded from 1210 // the same location and haven't passed any intervening writes or ordering 1211 // operations, we can remove the write. The primary benefit is in allowing 1212 // the available load table to remain valid and value forward past where 1213 // the store originally was. 1214 if (MemInst.isValid() && MemInst.isStore()) { 1215 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1216 if (InVal.DefInst && 1217 InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) && 1218 InVal.MatchingId == MemInst.getMatchingId() && 1219 // We don't yet handle removing stores with ordering of any kind. 1220 !MemInst.isVolatile() && MemInst.isUnordered() && 1221 (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) || 1222 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1223 InVal.DefInst, &Inst))) { 1224 // It is okay to have a LastStore to a different pointer here if MemorySSA 1225 // tells us that the load and store are from the same memory generation. 1226 // In that case, LastStore should keep its present value since we're 1227 // removing the current store. 1228 assert((!LastStore || 1229 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1230 MemInst.getPointerOperand() || 1231 MSSA) && 1232 "can't have an intervening store if not using MemorySSA!"); 1233 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1234 if (!DebugCounter::shouldExecute(CSECounter)) { 1235 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1236 continue; 1237 } 1238 salvageKnowledge(&Inst); 1239 removeMSSA(Inst); 1240 Inst.eraseFromParent(); 1241 Changed = true; 1242 ++NumDSE; 1243 // We can avoid incrementing the generation count since we were able 1244 // to eliminate this store. 1245 continue; 1246 } 1247 } 1248 1249 // Okay, this isn't something we can CSE at all. Check to see if it is 1250 // something that could modify memory. If so, our available memory values 1251 // cannot be used so bump the generation count. 1252 if (Inst.mayWriteToMemory()) { 1253 ++CurrentGeneration; 1254 1255 if (MemInst.isValid() && MemInst.isStore()) { 1256 // We do a trivial form of DSE if there are two stores to the same 1257 // location with no intervening loads. Delete the earlier store. 1258 // At the moment, we don't remove ordered stores, but do remove 1259 // unordered atomic stores. There's no special requirement (for 1260 // unordered atomics) about removing atomic stores only in favor of 1261 // other atomic stores since we were going to execute the non-atomic 1262 // one anyway and the atomic one might never have become visible. 1263 if (LastStore) { 1264 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1265 assert(LastStoreMemInst.isUnordered() && 1266 !LastStoreMemInst.isVolatile() && 1267 "Violated invariant"); 1268 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1269 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1270 << " due to: " << Inst << '\n'); 1271 if (!DebugCounter::shouldExecute(CSECounter)) { 1272 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1273 } else { 1274 salvageKnowledge(&Inst); 1275 removeMSSA(*LastStore); 1276 LastStore->eraseFromParent(); 1277 Changed = true; 1278 ++NumDSE; 1279 LastStore = nullptr; 1280 } 1281 } 1282 // fallthrough - we can exploit information about this store 1283 } 1284 1285 // Okay, we just invalidated anything we knew about loaded values. Try 1286 // to salvage *something* by remembering that the stored value is a live 1287 // version of the pointer. It is safe to forward from volatile stores 1288 // to non-volatile loads, so we don't have to check for volatility of 1289 // the store. 1290 AvailableLoads.insert(MemInst.getPointerOperand(), 1291 LoadValue(&Inst, CurrentGeneration, 1292 MemInst.getMatchingId(), 1293 MemInst.isAtomic())); 1294 1295 // Remember that this was the last unordered store we saw for DSE. We 1296 // don't yet handle DSE on ordered or volatile stores since we don't 1297 // have a good way to model the ordering requirement for following 1298 // passes once the store is removed. We could insert a fence, but 1299 // since fences are slightly stronger than stores in their ordering, 1300 // it's not clear this is a profitable transform. Another option would 1301 // be to merge the ordering with that of the post dominating store. 1302 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1303 LastStore = &Inst; 1304 else 1305 LastStore = nullptr; 1306 } 1307 } 1308 } 1309 1310 return Changed; 1311 } 1312 1313 bool EarlyCSE::run() { 1314 // Note, deque is being used here because there is significant performance 1315 // gains over vector when the container becomes very large due to the 1316 // specific access patterns. For more information see the mailing list 1317 // discussion on this: 1318 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1319 std::deque<StackNode *> nodesToProcess; 1320 1321 bool Changed = false; 1322 1323 // Process the root node. 1324 nodesToProcess.push_back(new StackNode( 1325 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1326 CurrentGeneration, DT.getRootNode(), 1327 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1328 1329 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1330 1331 // Process the stack. 1332 while (!nodesToProcess.empty()) { 1333 // Grab the first item off the stack. Set the current generation, remove 1334 // the node from the stack, and process it. 1335 StackNode *NodeToProcess = nodesToProcess.back(); 1336 1337 // Initialize class members. 1338 CurrentGeneration = NodeToProcess->currentGeneration(); 1339 1340 // Check if the node needs to be processed. 1341 if (!NodeToProcess->isProcessed()) { 1342 // Process the node. 1343 Changed |= processNode(NodeToProcess->node()); 1344 NodeToProcess->childGeneration(CurrentGeneration); 1345 NodeToProcess->process(); 1346 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1347 // Push the next child onto the stack. 1348 DomTreeNode *child = NodeToProcess->nextChild(); 1349 nodesToProcess.push_back( 1350 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1351 AvailableCalls, NodeToProcess->childGeneration(), 1352 child, child->begin(), child->end())); 1353 } else { 1354 // It has been processed, and there are no more children to process, 1355 // so delete it and pop it off the stack. 1356 delete NodeToProcess; 1357 nodesToProcess.pop_back(); 1358 } 1359 } // while (!nodes...) 1360 1361 return Changed; 1362 } 1363 1364 PreservedAnalyses EarlyCSEPass::run(Function &F, 1365 FunctionAnalysisManager &AM) { 1366 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1367 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1368 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1369 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1370 auto *MSSA = 1371 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1372 1373 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1374 1375 if (!CSE.run()) 1376 return PreservedAnalyses::all(); 1377 1378 PreservedAnalyses PA; 1379 PA.preserveSet<CFGAnalyses>(); 1380 PA.preserve<GlobalsAA>(); 1381 if (UseMemorySSA) 1382 PA.preserve<MemorySSAAnalysis>(); 1383 return PA; 1384 } 1385 1386 namespace { 1387 1388 /// A simple and fast domtree-based CSE pass. 1389 /// 1390 /// This pass does a simple depth-first walk over the dominator tree, 1391 /// eliminating trivially redundant instructions and using instsimplify to 1392 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1393 /// cases so that instcombine and other passes are more effective. It is 1394 /// expected that a later pass of GVN will catch the interesting/hard cases. 1395 template<bool UseMemorySSA> 1396 class EarlyCSELegacyCommonPass : public FunctionPass { 1397 public: 1398 static char ID; 1399 1400 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1401 if (UseMemorySSA) 1402 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1403 else 1404 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1405 } 1406 1407 bool runOnFunction(Function &F) override { 1408 if (skipFunction(F)) 1409 return false; 1410 1411 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1412 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1413 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1414 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1415 auto *MSSA = 1416 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1417 1418 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1419 1420 return CSE.run(); 1421 } 1422 1423 void getAnalysisUsage(AnalysisUsage &AU) const override { 1424 AU.addRequired<AssumptionCacheTracker>(); 1425 AU.addRequired<DominatorTreeWrapperPass>(); 1426 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1427 AU.addRequired<TargetTransformInfoWrapperPass>(); 1428 if (UseMemorySSA) { 1429 AU.addRequired<MemorySSAWrapperPass>(); 1430 AU.addPreserved<MemorySSAWrapperPass>(); 1431 } 1432 AU.addPreserved<GlobalsAAWrapperPass>(); 1433 AU.addPreserved<AAResultsWrapperPass>(); 1434 AU.setPreservesCFG(); 1435 } 1436 }; 1437 1438 } // end anonymous namespace 1439 1440 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1441 1442 template<> 1443 char EarlyCSELegacyPass::ID = 0; 1444 1445 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1446 false) 1447 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1448 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1449 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1450 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1451 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1452 1453 using EarlyCSEMemSSALegacyPass = 1454 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1455 1456 template<> 1457 char EarlyCSEMemSSALegacyPass::ID = 0; 1458 1459 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1460 if (UseMemorySSA) 1461 return new EarlyCSEMemSSALegacyPass(); 1462 else 1463 return new EarlyCSELegacyPass(); 1464 } 1465 1466 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1467 "Early CSE w/ MemorySSA", false, false) 1468 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1469 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1470 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1471 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1472 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1473 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1474 "Early CSE w/ MemorySSA", false, false) 1475