1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/Statepoint.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Allocator.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/DebugCounter.h" 55 #include "llvm/Support/RecyclingAllocator.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 59 #include "llvm/Transforms/Utils/GuardUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <deque> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 #define DEBUG_TYPE "early-cse" 70 71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 72 STATISTIC(NumCSE, "Number of instructions CSE'd"); 73 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 74 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 75 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 76 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 77 78 DEBUG_COUNTER(CSECounter, "early-cse", 79 "Controls which instructions are removed"); 80 81 static cl::opt<unsigned> EarlyCSEMssaOptCap( 82 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 83 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 84 "for faster compile. Caps the MemorySSA clobbering calls.")); 85 86 static cl::opt<bool> EarlyCSEDebugHash( 87 "earlycse-debug-hash", cl::init(false), cl::Hidden, 88 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 89 "function is well-behaved w.r.t. its isEqual predicate")); 90 91 //===----------------------------------------------------------------------===// 92 // SimpleValue 93 //===----------------------------------------------------------------------===// 94 95 namespace { 96 97 /// Struct representing the available values in the scoped hash table. 98 struct SimpleValue { 99 Instruction *Inst; 100 101 SimpleValue(Instruction *I) : Inst(I) { 102 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 103 } 104 105 bool isSentinel() const { 106 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 107 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 108 } 109 110 static bool canHandle(Instruction *Inst) { 111 // This can only handle non-void readnone functions. 112 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 113 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 114 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 115 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 116 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 117 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 118 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 119 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 120 } 121 }; 122 123 } // end anonymous namespace 124 125 namespace llvm { 126 127 template <> struct DenseMapInfo<SimpleValue> { 128 static inline SimpleValue getEmptyKey() { 129 return DenseMapInfo<Instruction *>::getEmptyKey(); 130 } 131 132 static inline SimpleValue getTombstoneKey() { 133 return DenseMapInfo<Instruction *>::getTombstoneKey(); 134 } 135 136 static unsigned getHashValue(SimpleValue Val); 137 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 138 }; 139 140 } // end namespace llvm 141 142 /// Match a 'select' including an optional 'not's of the condition. 143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 144 Value *&B, 145 SelectPatternFlavor &Flavor) { 146 // Return false if V is not even a select. 147 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 148 return false; 149 150 // Look through a 'not' of the condition operand by swapping A/B. 151 Value *CondNot; 152 if (match(Cond, m_Not(m_Value(CondNot)))) { 153 Cond = CondNot; 154 std::swap(A, B); 155 } 156 157 // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's 158 // more powerful matchSelectPattern() because it may rely on instruction flags 159 // such as "nsw". That would be incompatible with the current hashing 160 // mechanism that may remove flags to increase the likelihood of CSE. 161 162 // These are the canonical forms of abs(X) and nabs(X) created by instcombine: 163 // %N = sub i32 0, %X 164 // %C = icmp slt i32 %X, 0 165 // %ABS = select i1 %C, i32 %N, i32 %X 166 // 167 // %N = sub i32 0, %X 168 // %C = icmp slt i32 %X, 0 169 // %NABS = select i1 %C, i32 %X, i32 %N 170 Flavor = SPF_UNKNOWN; 171 CmpInst::Predicate Pred; 172 if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) && 173 Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) { 174 // ABS: B < 0 ? -B : B 175 Flavor = SPF_ABS; 176 return true; 177 } 178 if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) && 179 Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) { 180 // NABS: A < 0 ? A : -A 181 Flavor = SPF_NABS; 182 return true; 183 } 184 185 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 186 // Check for commuted variants of min/max by swapping predicate. 187 // If we do not match the standard or commuted patterns, this is not a 188 // recognized form of min/max, but it is still a select, so return true. 189 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 190 return true; 191 Pred = ICmpInst::getSwappedPredicate(Pred); 192 } 193 194 switch (Pred) { 195 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 196 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 197 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 198 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 199 // Non-strict inequalities. 200 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 201 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 202 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 203 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 204 default: break; 205 } 206 207 return true; 208 } 209 210 static unsigned getHashValueImpl(SimpleValue Val) { 211 Instruction *Inst = Val.Inst; 212 // Hash in all of the operands as pointers. 213 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 214 Value *LHS = BinOp->getOperand(0); 215 Value *RHS = BinOp->getOperand(1); 216 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 217 std::swap(LHS, RHS); 218 219 return hash_combine(BinOp->getOpcode(), LHS, RHS); 220 } 221 222 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 223 // Compares can be commuted by swapping the comparands and 224 // updating the predicate. Choose the form that has the 225 // comparands in sorted order, or in the case of a tie, the 226 // one with the lower predicate. 227 Value *LHS = CI->getOperand(0); 228 Value *RHS = CI->getOperand(1); 229 CmpInst::Predicate Pred = CI->getPredicate(); 230 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 231 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 232 std::swap(LHS, RHS); 233 Pred = SwappedPred; 234 } 235 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 236 } 237 238 // Hash general selects to allow matching commuted true/false operands. 239 SelectPatternFlavor SPF; 240 Value *Cond, *A, *B; 241 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 242 // Hash min/max/abs (cmp + select) to allow for commuted operands. 243 // Min/max may also have non-canonical compare predicate (eg, the compare for 244 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 245 // compare. 246 // TODO: We should also detect FP min/max. 247 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 248 SPF == SPF_UMIN || SPF == SPF_UMAX) { 249 if (A > B) 250 std::swap(A, B); 251 return hash_combine(Inst->getOpcode(), SPF, A, B); 252 } 253 if (SPF == SPF_ABS || SPF == SPF_NABS) { 254 // ABS/NABS always puts the input in A and its negation in B. 255 return hash_combine(Inst->getOpcode(), SPF, A, B); 256 } 257 258 // Hash general selects to allow matching commuted true/false operands. 259 260 // If we do not have a compare as the condition, just hash in the condition. 261 CmpInst::Predicate Pred; 262 Value *X, *Y; 263 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 264 return hash_combine(Inst->getOpcode(), Cond, A, B); 265 266 // Similar to cmp normalization (above) - canonicalize the predicate value: 267 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 268 if (CmpInst::getInversePredicate(Pred) < Pred) { 269 Pred = CmpInst::getInversePredicate(Pred); 270 std::swap(A, B); 271 } 272 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 273 } 274 275 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 276 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 277 278 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 279 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 280 281 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 282 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 283 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 284 285 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 286 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 287 IVI->getOperand(1), 288 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 289 290 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 291 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 292 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 293 isa<FreezeInst>(Inst)) && 294 "Invalid/unknown instruction"); 295 296 // Handle intrinsics with commutative operands. 297 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 298 // 2 operands are commutative. 299 auto *II = dyn_cast<IntrinsicInst>(Inst); 300 if (II && II->isCommutative() && II->getNumArgOperands() == 2) { 301 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 302 if (LHS > RHS) 303 std::swap(LHS, RHS); 304 return hash_combine(II->getOpcode(), LHS, RHS); 305 } 306 307 // Mix in the opcode. 308 return hash_combine( 309 Inst->getOpcode(), 310 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 311 } 312 313 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 314 #ifndef NDEBUG 315 // If -earlycse-debug-hash was specified, return a constant -- this 316 // will force all hashing to collide, so we'll exhaustively search 317 // the table for a match, and the assertion in isEqual will fire if 318 // there's a bug causing equal keys to hash differently. 319 if (EarlyCSEDebugHash) 320 return 0; 321 #endif 322 return getHashValueImpl(Val); 323 } 324 325 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 326 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 327 328 if (LHS.isSentinel() || RHS.isSentinel()) 329 return LHSI == RHSI; 330 331 if (LHSI->getOpcode() != RHSI->getOpcode()) 332 return false; 333 if (LHSI->isIdenticalToWhenDefined(RHSI)) 334 return true; 335 336 // If we're not strictly identical, we still might be a commutable instruction 337 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 338 if (!LHSBinOp->isCommutative()) 339 return false; 340 341 assert(isa<BinaryOperator>(RHSI) && 342 "same opcode, but different instruction type?"); 343 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 344 345 // Commuted equality 346 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 347 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 348 } 349 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 350 assert(isa<CmpInst>(RHSI) && 351 "same opcode, but different instruction type?"); 352 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 353 // Commuted equality 354 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 355 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 356 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 357 } 358 359 // TODO: Extend this for >2 args by matching the trailing N-2 args. 360 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 361 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 362 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 363 LII->isCommutative() && LII->getNumArgOperands() == 2) { 364 return LII->getArgOperand(0) == RII->getArgOperand(1) && 365 LII->getArgOperand(1) == RII->getArgOperand(0); 366 } 367 368 // Min/max/abs can occur with commuted operands, non-canonical predicates, 369 // and/or non-canonical operands. 370 // Selects can be non-trivially equivalent via inverted conditions and swaps. 371 SelectPatternFlavor LSPF, RSPF; 372 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 373 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 374 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 375 if (LSPF == RSPF) { 376 // TODO: We should also detect FP min/max. 377 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 378 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 379 return ((LHSA == RHSA && LHSB == RHSB) || 380 (LHSA == RHSB && LHSB == RHSA)); 381 382 if (LSPF == SPF_ABS || LSPF == SPF_NABS) { 383 // Abs results are placed in a defined order by matchSelectPattern. 384 return LHSA == RHSA && LHSB == RHSB; 385 } 386 387 // select Cond, A, B <--> select not(Cond), B, A 388 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 389 return true; 390 } 391 392 // If the true/false operands are swapped and the conditions are compares 393 // with inverted predicates, the selects are equal: 394 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 395 // 396 // This also handles patterns with a double-negation in the sense of not + 397 // inverse, because we looked through a 'not' in the matching function and 398 // swapped A/B: 399 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 400 // 401 // This intentionally does NOT handle patterns with a double-negation in 402 // the sense of not + not, because doing so could result in values 403 // comparing 404 // as equal that hash differently in the min/max/abs cases like: 405 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 406 // ^ hashes as min ^ would not hash as min 407 // In the context of the EarlyCSE pass, however, such cases never reach 408 // this code, as we simplify the double-negation before hashing the second 409 // select (and so still succeed at CSEing them). 410 if (LHSA == RHSB && LHSB == RHSA) { 411 CmpInst::Predicate PredL, PredR; 412 Value *X, *Y; 413 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 414 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 415 CmpInst::getInversePredicate(PredL) == PredR) 416 return true; 417 } 418 } 419 420 return false; 421 } 422 423 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 424 // These comparisons are nontrivial, so assert that equality implies 425 // hash equality (DenseMap demands this as an invariant). 426 bool Result = isEqualImpl(LHS, RHS); 427 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 428 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 429 return Result; 430 } 431 432 //===----------------------------------------------------------------------===// 433 // CallValue 434 //===----------------------------------------------------------------------===// 435 436 namespace { 437 438 /// Struct representing the available call values in the scoped hash 439 /// table. 440 struct CallValue { 441 Instruction *Inst; 442 443 CallValue(Instruction *I) : Inst(I) { 444 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 445 } 446 447 bool isSentinel() const { 448 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 449 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 450 } 451 452 static bool canHandle(Instruction *Inst) { 453 // Don't value number anything that returns void. 454 if (Inst->getType()->isVoidTy()) 455 return false; 456 457 CallInst *CI = dyn_cast<CallInst>(Inst); 458 if (!CI || !CI->onlyReadsMemory()) 459 return false; 460 return true; 461 } 462 }; 463 464 } // end anonymous namespace 465 466 namespace llvm { 467 468 template <> struct DenseMapInfo<CallValue> { 469 static inline CallValue getEmptyKey() { 470 return DenseMapInfo<Instruction *>::getEmptyKey(); 471 } 472 473 static inline CallValue getTombstoneKey() { 474 return DenseMapInfo<Instruction *>::getTombstoneKey(); 475 } 476 477 static unsigned getHashValue(CallValue Val); 478 static bool isEqual(CallValue LHS, CallValue RHS); 479 }; 480 481 } // end namespace llvm 482 483 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 484 Instruction *Inst = Val.Inst; 485 486 // gc.relocate is 'special' call: its second and third operands are 487 // not real values, but indices into statepoint's argument list. 488 // Get values they point to. 489 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 490 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 491 GCR->getBasePtr(), GCR->getDerivedPtr()); 492 493 // Hash all of the operands as pointers and mix in the opcode. 494 return hash_combine( 495 Inst->getOpcode(), 496 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 497 } 498 499 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 500 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 501 if (LHS.isSentinel() || RHS.isSentinel()) 502 return LHSI == RHSI; 503 504 // See comment above in `getHashValue()`. 505 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 506 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 507 return GCR1->getOperand(0) == GCR2->getOperand(0) && 508 GCR1->getBasePtr() == GCR2->getBasePtr() && 509 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 510 511 return LHSI->isIdenticalTo(RHSI); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // EarlyCSE implementation 516 //===----------------------------------------------------------------------===// 517 518 namespace { 519 520 /// A simple and fast domtree-based CSE pass. 521 /// 522 /// This pass does a simple depth-first walk over the dominator tree, 523 /// eliminating trivially redundant instructions and using instsimplify to 524 /// canonicalize things as it goes. It is intended to be fast and catch obvious 525 /// cases so that instcombine and other passes are more effective. It is 526 /// expected that a later pass of GVN will catch the interesting/hard cases. 527 class EarlyCSE { 528 public: 529 const TargetLibraryInfo &TLI; 530 const TargetTransformInfo &TTI; 531 DominatorTree &DT; 532 AssumptionCache &AC; 533 const SimplifyQuery SQ; 534 MemorySSA *MSSA; 535 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 536 537 using AllocatorTy = 538 RecyclingAllocator<BumpPtrAllocator, 539 ScopedHashTableVal<SimpleValue, Value *>>; 540 using ScopedHTType = 541 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 542 AllocatorTy>; 543 544 /// A scoped hash table of the current values of all of our simple 545 /// scalar expressions. 546 /// 547 /// As we walk down the domtree, we look to see if instructions are in this: 548 /// if so, we replace them with what we find, otherwise we insert them so 549 /// that dominated values can succeed in their lookup. 550 ScopedHTType AvailableValues; 551 552 /// A scoped hash table of the current values of previously encountered 553 /// memory locations. 554 /// 555 /// This allows us to get efficient access to dominating loads or stores when 556 /// we have a fully redundant load. In addition to the most recent load, we 557 /// keep track of a generation count of the read, which is compared against 558 /// the current generation count. The current generation count is incremented 559 /// after every possibly writing memory operation, which ensures that we only 560 /// CSE loads with other loads that have no intervening store. Ordering 561 /// events (such as fences or atomic instructions) increment the generation 562 /// count as well; essentially, we model these as writes to all possible 563 /// locations. Note that atomic and/or volatile loads and stores can be 564 /// present the table; it is the responsibility of the consumer to inspect 565 /// the atomicity/volatility if needed. 566 struct LoadValue { 567 Instruction *DefInst = nullptr; 568 unsigned Generation = 0; 569 int MatchingId = -1; 570 bool IsAtomic = false; 571 572 LoadValue() = default; 573 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 574 bool IsAtomic) 575 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 576 IsAtomic(IsAtomic) {} 577 }; 578 579 using LoadMapAllocator = 580 RecyclingAllocator<BumpPtrAllocator, 581 ScopedHashTableVal<Value *, LoadValue>>; 582 using LoadHTType = 583 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 584 LoadMapAllocator>; 585 586 LoadHTType AvailableLoads; 587 588 // A scoped hash table mapping memory locations (represented as typed 589 // addresses) to generation numbers at which that memory location became 590 // (henceforth indefinitely) invariant. 591 using InvariantMapAllocator = 592 RecyclingAllocator<BumpPtrAllocator, 593 ScopedHashTableVal<MemoryLocation, unsigned>>; 594 using InvariantHTType = 595 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 596 InvariantMapAllocator>; 597 InvariantHTType AvailableInvariants; 598 599 /// A scoped hash table of the current values of read-only call 600 /// values. 601 /// 602 /// It uses the same generation count as loads. 603 using CallHTType = 604 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 605 CallHTType AvailableCalls; 606 607 /// This is the current generation of the memory value. 608 unsigned CurrentGeneration = 0; 609 610 /// Set up the EarlyCSE runner for a particular function. 611 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 612 const TargetTransformInfo &TTI, DominatorTree &DT, 613 AssumptionCache &AC, MemorySSA *MSSA) 614 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 615 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 616 617 bool run(); 618 619 private: 620 unsigned ClobberCounter = 0; 621 // Almost a POD, but needs to call the constructors for the scoped hash 622 // tables so that a new scope gets pushed on. These are RAII so that the 623 // scope gets popped when the NodeScope is destroyed. 624 class NodeScope { 625 public: 626 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 627 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 628 : Scope(AvailableValues), LoadScope(AvailableLoads), 629 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 630 NodeScope(const NodeScope &) = delete; 631 NodeScope &operator=(const NodeScope &) = delete; 632 633 private: 634 ScopedHTType::ScopeTy Scope; 635 LoadHTType::ScopeTy LoadScope; 636 InvariantHTType::ScopeTy InvariantScope; 637 CallHTType::ScopeTy CallScope; 638 }; 639 640 // Contains all the needed information to create a stack for doing a depth 641 // first traversal of the tree. This includes scopes for values, loads, and 642 // calls as well as the generation. There is a child iterator so that the 643 // children do not need to be store separately. 644 class StackNode { 645 public: 646 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 647 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 648 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 649 DomTreeNode::const_iterator end) 650 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 651 EndIter(end), 652 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 653 AvailableCalls) 654 {} 655 StackNode(const StackNode &) = delete; 656 StackNode &operator=(const StackNode &) = delete; 657 658 // Accessors. 659 unsigned currentGeneration() { return CurrentGeneration; } 660 unsigned childGeneration() { return ChildGeneration; } 661 void childGeneration(unsigned generation) { ChildGeneration = generation; } 662 DomTreeNode *node() { return Node; } 663 DomTreeNode::const_iterator childIter() { return ChildIter; } 664 665 DomTreeNode *nextChild() { 666 DomTreeNode *child = *ChildIter; 667 ++ChildIter; 668 return child; 669 } 670 671 DomTreeNode::const_iterator end() { return EndIter; } 672 bool isProcessed() { return Processed; } 673 void process() { Processed = true; } 674 675 private: 676 unsigned CurrentGeneration; 677 unsigned ChildGeneration; 678 DomTreeNode *Node; 679 DomTreeNode::const_iterator ChildIter; 680 DomTreeNode::const_iterator EndIter; 681 NodeScope Scopes; 682 bool Processed = false; 683 }; 684 685 /// Wrapper class to handle memory instructions, including loads, 686 /// stores and intrinsic loads and stores defined by the target. 687 class ParseMemoryInst { 688 public: 689 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 690 : Inst(Inst) { 691 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 692 IntrID = II->getIntrinsicID(); 693 if (TTI.getTgtMemIntrinsic(II, Info)) 694 return; 695 if (isHandledNonTargetIntrinsic(IntrID)) { 696 switch (IntrID) { 697 case Intrinsic::masked_load: 698 Info.PtrVal = Inst->getOperand(0); 699 Info.MatchingId = Intrinsic::masked_load; 700 Info.ReadMem = true; 701 Info.WriteMem = false; 702 Info.IsVolatile = false; 703 break; 704 case Intrinsic::masked_store: 705 Info.PtrVal = Inst->getOperand(1); 706 // Use the ID of masked load as the "matching id". This will 707 // prevent matching non-masked loads/stores with masked ones 708 // (which could be done), but at the moment, the code here 709 // does not support matching intrinsics with non-intrinsics, 710 // so keep the MatchingIds specific to masked instructions 711 // for now (TODO). 712 Info.MatchingId = Intrinsic::masked_load; 713 Info.ReadMem = false; 714 Info.WriteMem = true; 715 Info.IsVolatile = false; 716 break; 717 } 718 } 719 } 720 } 721 722 Instruction *get() { return Inst; } 723 const Instruction *get() const { return Inst; } 724 725 bool isLoad() const { 726 if (IntrID != 0) 727 return Info.ReadMem; 728 return isa<LoadInst>(Inst); 729 } 730 731 bool isStore() const { 732 if (IntrID != 0) 733 return Info.WriteMem; 734 return isa<StoreInst>(Inst); 735 } 736 737 bool isAtomic() const { 738 if (IntrID != 0) 739 return Info.Ordering != AtomicOrdering::NotAtomic; 740 return Inst->isAtomic(); 741 } 742 743 bool isUnordered() const { 744 if (IntrID != 0) 745 return Info.isUnordered(); 746 747 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 748 return LI->isUnordered(); 749 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 750 return SI->isUnordered(); 751 } 752 // Conservative answer 753 return !Inst->isAtomic(); 754 } 755 756 bool isVolatile() const { 757 if (IntrID != 0) 758 return Info.IsVolatile; 759 760 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 761 return LI->isVolatile(); 762 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 763 return SI->isVolatile(); 764 } 765 // Conservative answer 766 return true; 767 } 768 769 bool isInvariantLoad() const { 770 if (auto *LI = dyn_cast<LoadInst>(Inst)) 771 return LI->hasMetadata(LLVMContext::MD_invariant_load); 772 return false; 773 } 774 775 bool isValid() const { return getPointerOperand() != nullptr; } 776 777 // For regular (non-intrinsic) loads/stores, this is set to -1. For 778 // intrinsic loads/stores, the id is retrieved from the corresponding 779 // field in the MemIntrinsicInfo structure. That field contains 780 // non-negative values only. 781 int getMatchingId() const { 782 if (IntrID != 0) 783 return Info.MatchingId; 784 return -1; 785 } 786 787 Value *getPointerOperand() const { 788 if (IntrID != 0) 789 return Info.PtrVal; 790 return getLoadStorePointerOperand(Inst); 791 } 792 793 bool mayReadFromMemory() const { 794 if (IntrID != 0) 795 return Info.ReadMem; 796 return Inst->mayReadFromMemory(); 797 } 798 799 bool mayWriteToMemory() const { 800 if (IntrID != 0) 801 return Info.WriteMem; 802 return Inst->mayWriteToMemory(); 803 } 804 805 private: 806 Intrinsic::ID IntrID = 0; 807 MemIntrinsicInfo Info; 808 Instruction *Inst; 809 }; 810 811 // This function is to prevent accidentally passing a non-target 812 // intrinsic ID to TargetTransformInfo. 813 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 814 switch (ID) { 815 case Intrinsic::masked_load: 816 case Intrinsic::masked_store: 817 return true; 818 } 819 return false; 820 } 821 static bool isHandledNonTargetIntrinsic(const Value *V) { 822 if (auto *II = dyn_cast<IntrinsicInst>(V)) 823 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 824 return false; 825 } 826 827 bool processNode(DomTreeNode *Node); 828 829 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 830 const BasicBlock *BB, const BasicBlock *Pred); 831 832 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 833 unsigned CurrentGeneration); 834 835 bool overridingStores(const ParseMemoryInst &Earlier, 836 const ParseMemoryInst &Later); 837 838 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 839 if (auto *LI = dyn_cast<LoadInst>(Inst)) 840 return LI; 841 if (auto *SI = dyn_cast<StoreInst>(Inst)) 842 return SI->getValueOperand(); 843 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 844 auto *II = cast<IntrinsicInst>(Inst); 845 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 846 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 847 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 848 } 849 850 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 851 Type *ExpectedType) const { 852 switch (II->getIntrinsicID()) { 853 case Intrinsic::masked_load: 854 return II; 855 case Intrinsic::masked_store: 856 return II->getOperand(0); 857 } 858 return nullptr; 859 } 860 861 /// Return true if the instruction is known to only operate on memory 862 /// provably invariant in the given "generation". 863 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 864 865 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 866 Instruction *EarlierInst, Instruction *LaterInst); 867 868 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 869 const IntrinsicInst *Later) { 870 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 871 // Is Mask0 a submask of Mask1? 872 if (Mask0 == Mask1) 873 return true; 874 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 875 return false; 876 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 877 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 878 if (!Vec0 || !Vec1) 879 return false; 880 assert(Vec0->getType() == Vec1->getType() && 881 "Masks should have the same type"); 882 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 883 Constant *Elem0 = Vec0->getOperand(i); 884 Constant *Elem1 = Vec1->getOperand(i); 885 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 886 if (Int0 && Int0->isZero()) 887 continue; 888 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 889 if (Int1 && !Int1->isZero()) 890 continue; 891 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 892 return false; 893 if (Elem0 == Elem1) 894 continue; 895 return false; 896 } 897 return true; 898 }; 899 auto PtrOp = [](const IntrinsicInst *II) { 900 if (II->getIntrinsicID() == Intrinsic::masked_load) 901 return II->getOperand(0); 902 if (II->getIntrinsicID() == Intrinsic::masked_store) 903 return II->getOperand(1); 904 llvm_unreachable("Unexpected IntrinsicInst"); 905 }; 906 auto MaskOp = [](const IntrinsicInst *II) { 907 if (II->getIntrinsicID() == Intrinsic::masked_load) 908 return II->getOperand(2); 909 if (II->getIntrinsicID() == Intrinsic::masked_store) 910 return II->getOperand(3); 911 llvm_unreachable("Unexpected IntrinsicInst"); 912 }; 913 auto ThruOp = [](const IntrinsicInst *II) { 914 if (II->getIntrinsicID() == Intrinsic::masked_load) 915 return II->getOperand(3); 916 llvm_unreachable("Unexpected IntrinsicInst"); 917 }; 918 919 if (PtrOp(Earlier) != PtrOp(Later)) 920 return false; 921 922 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 923 Intrinsic::ID IDL = Later->getIntrinsicID(); 924 // We could really use specific intrinsic classes for masked loads 925 // and stores in IntrinsicInst.h. 926 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 927 // Trying to replace later masked load with the earlier one. 928 // Check that the pointers are the same, and 929 // - masks and pass-throughs are the same, or 930 // - replacee's pass-through is "undef" and replacer's mask is a 931 // super-set of the replacee's mask. 932 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 933 return true; 934 if (!isa<UndefValue>(ThruOp(Later))) 935 return false; 936 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 937 } 938 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 939 // Trying to replace a load of a stored value with the store's value. 940 // Check that the pointers are the same, and 941 // - load's mask is a subset of store's mask, and 942 // - load's pass-through is "undef". 943 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 944 return false; 945 return isa<UndefValue>(ThruOp(Later)); 946 } 947 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 948 // Trying to remove a store of the loaded value. 949 // Check that the pointers are the same, and 950 // - store's mask is a subset of the load's mask. 951 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 952 } 953 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 954 // Trying to remove a dead store (earlier). 955 // Check that the pointers are the same, 956 // - the to-be-removed store's mask is a subset of the other store's 957 // mask. 958 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 959 } 960 return false; 961 } 962 963 void removeMSSA(Instruction &Inst) { 964 if (!MSSA) 965 return; 966 if (VerifyMemorySSA) 967 MSSA->verifyMemorySSA(); 968 // Removing a store here can leave MemorySSA in an unoptimized state by 969 // creating MemoryPhis that have identical arguments and by creating 970 // MemoryUses whose defining access is not an actual clobber. The phi case 971 // is handled by MemorySSA when passing OptimizePhis = true to 972 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 973 // by MemorySSA's getClobberingMemoryAccess. 974 MSSAUpdater->removeMemoryAccess(&Inst, true); 975 } 976 }; 977 978 } // end anonymous namespace 979 980 /// Determine if the memory referenced by LaterInst is from the same heap 981 /// version as EarlierInst. 982 /// This is currently called in two scenarios: 983 /// 984 /// load p 985 /// ... 986 /// load p 987 /// 988 /// and 989 /// 990 /// x = load p 991 /// ... 992 /// store x, p 993 /// 994 /// in both cases we want to verify that there are no possible writes to the 995 /// memory referenced by p between the earlier and later instruction. 996 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 997 unsigned LaterGeneration, 998 Instruction *EarlierInst, 999 Instruction *LaterInst) { 1000 // Check the simple memory generation tracking first. 1001 if (EarlierGeneration == LaterGeneration) 1002 return true; 1003 1004 if (!MSSA) 1005 return false; 1006 1007 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1008 // read/write memory, then we can safely return true here. 1009 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1010 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1011 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1012 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1013 // with the default optimization pipeline. 1014 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1015 if (!EarlierMA) 1016 return true; 1017 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1018 if (!LaterMA) 1019 return true; 1020 1021 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1022 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1023 // EarlierInst and LaterInst and neither can any other write that potentially 1024 // clobbers LaterInst. 1025 MemoryAccess *LaterDef; 1026 if (ClobberCounter < EarlyCSEMssaOptCap) { 1027 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1028 ClobberCounter++; 1029 } else 1030 LaterDef = LaterMA->getDefiningAccess(); 1031 1032 return MSSA->dominates(LaterDef, EarlierMA); 1033 } 1034 1035 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1036 // A location loaded from with an invariant_load is assumed to *never* change 1037 // within the visible scope of the compilation. 1038 if (auto *LI = dyn_cast<LoadInst>(I)) 1039 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1040 return true; 1041 1042 auto MemLocOpt = MemoryLocation::getOrNone(I); 1043 if (!MemLocOpt) 1044 // "target" intrinsic forms of loads aren't currently known to 1045 // MemoryLocation::get. TODO 1046 return false; 1047 MemoryLocation MemLoc = *MemLocOpt; 1048 if (!AvailableInvariants.count(MemLoc)) 1049 return false; 1050 1051 // Is the generation at which this became invariant older than the 1052 // current one? 1053 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1054 } 1055 1056 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1057 const BranchInst *BI, const BasicBlock *BB, 1058 const BasicBlock *Pred) { 1059 assert(BI->isConditional() && "Should be a conditional branch!"); 1060 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1061 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1062 auto *TorF = (BI->getSuccessor(0) == BB) 1063 ? ConstantInt::getTrue(BB->getContext()) 1064 : ConstantInt::getFalse(BB->getContext()); 1065 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 1066 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 1067 return BOp->getOpcode() == Opcode; 1068 return false; 1069 }; 1070 // If the condition is AND operation, we can propagate its operands into the 1071 // true branch. If it is OR operation, we can propagate them into the false 1072 // branch. 1073 unsigned PropagateOpcode = 1074 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1075 1076 bool MadeChanges = false; 1077 SmallVector<Instruction *, 4> WorkList; 1078 SmallPtrSet<Instruction *, 4> Visited; 1079 WorkList.push_back(CondInst); 1080 while (!WorkList.empty()) { 1081 Instruction *Curr = WorkList.pop_back_val(); 1082 1083 AvailableValues.insert(Curr, TorF); 1084 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1085 << Curr->getName() << "' as " << *TorF << " in " 1086 << BB->getName() << "\n"); 1087 if (!DebugCounter::shouldExecute(CSECounter)) { 1088 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1089 } else { 1090 // Replace all dominated uses with the known value. 1091 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1092 BasicBlockEdge(Pred, BB))) { 1093 NumCSECVP += Count; 1094 MadeChanges = true; 1095 } 1096 } 1097 1098 if (MatchBinOp(Curr, PropagateOpcode)) 1099 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 1100 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1101 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1102 WorkList.push_back(OPI); 1103 } 1104 1105 return MadeChanges; 1106 } 1107 1108 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1109 unsigned CurrentGeneration) { 1110 if (InVal.DefInst == nullptr) 1111 return nullptr; 1112 if (InVal.MatchingId != MemInst.getMatchingId()) 1113 return nullptr; 1114 // We don't yet handle removing loads with ordering of any kind. 1115 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1116 return nullptr; 1117 // We can't replace an atomic load with one which isn't also atomic. 1118 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1119 return nullptr; 1120 // The value V returned from this function is used differently depending 1121 // on whether MemInst is a load or a store. If it's a load, we will replace 1122 // MemInst with V, if it's a store, we will check if V is the same as the 1123 // available value. 1124 bool MemInstMatching = !MemInst.isLoad(); 1125 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1126 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1127 1128 // Deal with non-target memory intrinsics. 1129 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1130 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1131 if (OtherNTI != MatchingNTI) 1132 return nullptr; 1133 if (OtherNTI && MatchingNTI) { 1134 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1135 cast<IntrinsicInst>(MemInst.get()))) 1136 return nullptr; 1137 } 1138 1139 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1140 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1141 MemInst.get())) 1142 return nullptr; 1143 return getOrCreateResult(Matching, Other->getType()); 1144 } 1145 1146 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1147 const ParseMemoryInst &Later) { 1148 // Can we remove Earlier store because of Later store? 1149 1150 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1151 "Violated invariant"); 1152 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1153 return false; 1154 if (Earlier.getMatchingId() != Later.getMatchingId()) 1155 return false; 1156 // At the moment, we don't remove ordered stores, but do remove 1157 // unordered atomic stores. There's no special requirement (for 1158 // unordered atomics) about removing atomic stores only in favor of 1159 // other atomic stores since we were going to execute the non-atomic 1160 // one anyway and the atomic one might never have become visible. 1161 if (!Earlier.isUnordered() || !Later.isUnordered()) 1162 return false; 1163 1164 // Deal with non-target memory intrinsics. 1165 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1166 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1167 if (ENTI && LNTI) 1168 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1169 cast<IntrinsicInst>(Later.get())); 1170 1171 // Because of the check above, at least one of them is false. 1172 // For now disallow matching intrinsics with non-intrinsics, 1173 // so assume that the stores match if neither is an intrinsic. 1174 return ENTI == LNTI; 1175 } 1176 1177 bool EarlyCSE::processNode(DomTreeNode *Node) { 1178 bool Changed = false; 1179 BasicBlock *BB = Node->getBlock(); 1180 1181 // If this block has a single predecessor, then the predecessor is the parent 1182 // of the domtree node and all of the live out memory values are still current 1183 // in this block. If this block has multiple predecessors, then they could 1184 // have invalidated the live-out memory values of our parent value. For now, 1185 // just be conservative and invalidate memory if this block has multiple 1186 // predecessors. 1187 if (!BB->getSinglePredecessor()) 1188 ++CurrentGeneration; 1189 1190 // If this node has a single predecessor which ends in a conditional branch, 1191 // we can infer the value of the branch condition given that we took this 1192 // path. We need the single predecessor to ensure there's not another path 1193 // which reaches this block where the condition might hold a different 1194 // value. Since we're adding this to the scoped hash table (like any other 1195 // def), it will have been popped if we encounter a future merge block. 1196 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1197 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1198 if (BI && BI->isConditional()) { 1199 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1200 if (CondInst && SimpleValue::canHandle(CondInst)) 1201 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1202 } 1203 } 1204 1205 /// LastStore - Keep track of the last non-volatile store that we saw... for 1206 /// as long as there in no instruction that reads memory. If we see a store 1207 /// to the same location, we delete the dead store. This zaps trivial dead 1208 /// stores which can occur in bitfield code among other things. 1209 Instruction *LastStore = nullptr; 1210 1211 // See if any instructions in the block can be eliminated. If so, do it. If 1212 // not, add them to AvailableValues. 1213 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 1214 // Dead instructions should just be removed. 1215 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1216 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1217 if (!DebugCounter::shouldExecute(CSECounter)) { 1218 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1219 continue; 1220 } 1221 1222 salvageKnowledge(&Inst, &AC); 1223 salvageDebugInfo(Inst); 1224 removeMSSA(Inst); 1225 Inst.eraseFromParent(); 1226 Changed = true; 1227 ++NumSimplify; 1228 continue; 1229 } 1230 1231 // Skip assume intrinsics, they don't really have side effects (although 1232 // they're marked as such to ensure preservation of control dependencies), 1233 // and this pass will not bother with its removal. However, we should mark 1234 // its condition as true for all dominated blocks. 1235 if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) { 1236 auto *CondI = 1237 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0)); 1238 if (CondI && SimpleValue::canHandle(CondI)) { 1239 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1240 << '\n'); 1241 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1242 } else 1243 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1244 continue; 1245 } 1246 1247 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1248 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1249 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1250 continue; 1251 } 1252 1253 // We can skip all invariant.start intrinsics since they only read memory, 1254 // and we can forward values across it. For invariant starts without 1255 // invariant ends, we can use the fact that the invariantness never ends to 1256 // start a scope in the current generaton which is true for all future 1257 // generations. Also, we dont need to consume the last store since the 1258 // semantics of invariant.start allow us to perform DSE of the last 1259 // store, if there was a store following invariant.start. Consider: 1260 // 1261 // store 30, i8* p 1262 // invariant.start(p) 1263 // store 40, i8* p 1264 // We can DSE the store to 30, since the store 40 to invariant location p 1265 // causes undefined behaviour. 1266 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1267 // If there are any uses, the scope might end. 1268 if (!Inst.use_empty()) 1269 continue; 1270 MemoryLocation MemLoc = 1271 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1272 // Don't start a scope if we already have a better one pushed 1273 if (!AvailableInvariants.count(MemLoc)) 1274 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1275 continue; 1276 } 1277 1278 if (isGuard(&Inst)) { 1279 if (auto *CondI = 1280 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1281 if (SimpleValue::canHandle(CondI)) { 1282 // Do we already know the actual value of this condition? 1283 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1284 // Is the condition known to be true? 1285 if (isa<ConstantInt>(KnownCond) && 1286 cast<ConstantInt>(KnownCond)->isOne()) { 1287 LLVM_DEBUG(dbgs() 1288 << "EarlyCSE removing guard: " << Inst << '\n'); 1289 salvageKnowledge(&Inst, &AC); 1290 removeMSSA(Inst); 1291 Inst.eraseFromParent(); 1292 Changed = true; 1293 continue; 1294 } else 1295 // Use the known value if it wasn't true. 1296 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1297 } 1298 // The condition we're on guarding here is true for all dominated 1299 // locations. 1300 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1301 } 1302 } 1303 1304 // Guard intrinsics read all memory, but don't write any memory. 1305 // Accordingly, don't update the generation but consume the last store (to 1306 // avoid an incorrect DSE). 1307 LastStore = nullptr; 1308 continue; 1309 } 1310 1311 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1312 // its simpler value. 1313 if (Value *V = SimplifyInstruction(&Inst, SQ)) { 1314 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1315 << '\n'); 1316 if (!DebugCounter::shouldExecute(CSECounter)) { 1317 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1318 } else { 1319 bool Killed = false; 1320 if (!Inst.use_empty()) { 1321 Inst.replaceAllUsesWith(V); 1322 Changed = true; 1323 } 1324 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1325 salvageKnowledge(&Inst, &AC); 1326 removeMSSA(Inst); 1327 Inst.eraseFromParent(); 1328 Changed = true; 1329 Killed = true; 1330 } 1331 if (Changed) 1332 ++NumSimplify; 1333 if (Killed) 1334 continue; 1335 } 1336 } 1337 1338 // If this is a simple instruction that we can value number, process it. 1339 if (SimpleValue::canHandle(&Inst)) { 1340 // See if the instruction has an available value. If so, use it. 1341 if (Value *V = AvailableValues.lookup(&Inst)) { 1342 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1343 << '\n'); 1344 if (!DebugCounter::shouldExecute(CSECounter)) { 1345 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1346 continue; 1347 } 1348 if (auto *I = dyn_cast<Instruction>(V)) 1349 I->andIRFlags(&Inst); 1350 Inst.replaceAllUsesWith(V); 1351 salvageKnowledge(&Inst, &AC); 1352 removeMSSA(Inst); 1353 Inst.eraseFromParent(); 1354 Changed = true; 1355 ++NumCSE; 1356 continue; 1357 } 1358 1359 // Otherwise, just remember that this value is available. 1360 AvailableValues.insert(&Inst, &Inst); 1361 continue; 1362 } 1363 1364 ParseMemoryInst MemInst(&Inst, TTI); 1365 // If this is a non-volatile load, process it. 1366 if (MemInst.isValid() && MemInst.isLoad()) { 1367 // (conservatively) we can't peak past the ordering implied by this 1368 // operation, but we can add this load to our set of available values 1369 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1370 LastStore = nullptr; 1371 ++CurrentGeneration; 1372 } 1373 1374 if (MemInst.isInvariantLoad()) { 1375 // If we pass an invariant load, we know that memory location is 1376 // indefinitely constant from the moment of first dereferenceability. 1377 // We conservatively treat the invariant_load as that moment. If we 1378 // pass a invariant load after already establishing a scope, don't 1379 // restart it since we want to preserve the earliest point seen. 1380 auto MemLoc = MemoryLocation::get(&Inst); 1381 if (!AvailableInvariants.count(MemLoc)) 1382 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1383 } 1384 1385 // If we have an available version of this load, and if it is the right 1386 // generation or the load is known to be from an invariant location, 1387 // replace this instruction. 1388 // 1389 // If either the dominating load or the current load are invariant, then 1390 // we can assume the current load loads the same value as the dominating 1391 // load. 1392 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1393 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1394 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1395 << " to: " << *InVal.DefInst << '\n'); 1396 if (!DebugCounter::shouldExecute(CSECounter)) { 1397 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1398 continue; 1399 } 1400 if (!Inst.use_empty()) 1401 Inst.replaceAllUsesWith(Op); 1402 salvageKnowledge(&Inst, &AC); 1403 removeMSSA(Inst); 1404 Inst.eraseFromParent(); 1405 Changed = true; 1406 ++NumCSELoad; 1407 continue; 1408 } 1409 1410 // Otherwise, remember that we have this instruction. 1411 AvailableLoads.insert(MemInst.getPointerOperand(), 1412 LoadValue(&Inst, CurrentGeneration, 1413 MemInst.getMatchingId(), 1414 MemInst.isAtomic())); 1415 LastStore = nullptr; 1416 continue; 1417 } 1418 1419 // If this instruction may read from memory or throw (and potentially read 1420 // from memory in the exception handler), forget LastStore. Load/store 1421 // intrinsics will indicate both a read and a write to memory. The target 1422 // may override this (e.g. so that a store intrinsic does not read from 1423 // memory, and thus will be treated the same as a regular store for 1424 // commoning purposes). 1425 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1426 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1427 LastStore = nullptr; 1428 1429 // If this is a read-only call, process it. 1430 if (CallValue::canHandle(&Inst)) { 1431 // If we have an available version of this call, and if it is the right 1432 // generation, replace this instruction. 1433 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1434 if (InVal.first != nullptr && 1435 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1436 &Inst)) { 1437 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1438 << " to: " << *InVal.first << '\n'); 1439 if (!DebugCounter::shouldExecute(CSECounter)) { 1440 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1441 continue; 1442 } 1443 if (!Inst.use_empty()) 1444 Inst.replaceAllUsesWith(InVal.first); 1445 salvageKnowledge(&Inst, &AC); 1446 removeMSSA(Inst); 1447 Inst.eraseFromParent(); 1448 Changed = true; 1449 ++NumCSECall; 1450 continue; 1451 } 1452 1453 // Otherwise, remember that we have this instruction. 1454 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1455 continue; 1456 } 1457 1458 // A release fence requires that all stores complete before it, but does 1459 // not prevent the reordering of following loads 'before' the fence. As a 1460 // result, we don't need to consider it as writing to memory and don't need 1461 // to advance the generation. We do need to prevent DSE across the fence, 1462 // but that's handled above. 1463 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1464 if (FI->getOrdering() == AtomicOrdering::Release) { 1465 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1466 continue; 1467 } 1468 1469 // write back DSE - If we write back the same value we just loaded from 1470 // the same location and haven't passed any intervening writes or ordering 1471 // operations, we can remove the write. The primary benefit is in allowing 1472 // the available load table to remain valid and value forward past where 1473 // the store originally was. 1474 if (MemInst.isValid() && MemInst.isStore()) { 1475 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1476 if (InVal.DefInst && 1477 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1478 // It is okay to have a LastStore to a different pointer here if MemorySSA 1479 // tells us that the load and store are from the same memory generation. 1480 // In that case, LastStore should keep its present value since we're 1481 // removing the current store. 1482 assert((!LastStore || 1483 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1484 MemInst.getPointerOperand() || 1485 MSSA) && 1486 "can't have an intervening store if not using MemorySSA!"); 1487 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1488 if (!DebugCounter::shouldExecute(CSECounter)) { 1489 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1490 continue; 1491 } 1492 salvageKnowledge(&Inst, &AC); 1493 removeMSSA(Inst); 1494 Inst.eraseFromParent(); 1495 Changed = true; 1496 ++NumDSE; 1497 // We can avoid incrementing the generation count since we were able 1498 // to eliminate this store. 1499 continue; 1500 } 1501 } 1502 1503 // Okay, this isn't something we can CSE at all. Check to see if it is 1504 // something that could modify memory. If so, our available memory values 1505 // cannot be used so bump the generation count. 1506 if (Inst.mayWriteToMemory()) { 1507 ++CurrentGeneration; 1508 1509 if (MemInst.isValid() && MemInst.isStore()) { 1510 // We do a trivial form of DSE if there are two stores to the same 1511 // location with no intervening loads. Delete the earlier store. 1512 if (LastStore) { 1513 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1514 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1515 << " due to: " << Inst << '\n'); 1516 if (!DebugCounter::shouldExecute(CSECounter)) { 1517 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1518 } else { 1519 salvageKnowledge(&Inst, &AC); 1520 removeMSSA(*LastStore); 1521 LastStore->eraseFromParent(); 1522 Changed = true; 1523 ++NumDSE; 1524 LastStore = nullptr; 1525 } 1526 } 1527 // fallthrough - we can exploit information about this store 1528 } 1529 1530 // Okay, we just invalidated anything we knew about loaded values. Try 1531 // to salvage *something* by remembering that the stored value is a live 1532 // version of the pointer. It is safe to forward from volatile stores 1533 // to non-volatile loads, so we don't have to check for volatility of 1534 // the store. 1535 AvailableLoads.insert(MemInst.getPointerOperand(), 1536 LoadValue(&Inst, CurrentGeneration, 1537 MemInst.getMatchingId(), 1538 MemInst.isAtomic())); 1539 1540 // Remember that this was the last unordered store we saw for DSE. We 1541 // don't yet handle DSE on ordered or volatile stores since we don't 1542 // have a good way to model the ordering requirement for following 1543 // passes once the store is removed. We could insert a fence, but 1544 // since fences are slightly stronger than stores in their ordering, 1545 // it's not clear this is a profitable transform. Another option would 1546 // be to merge the ordering with that of the post dominating store. 1547 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1548 LastStore = &Inst; 1549 else 1550 LastStore = nullptr; 1551 } 1552 } 1553 } 1554 1555 return Changed; 1556 } 1557 1558 bool EarlyCSE::run() { 1559 // Note, deque is being used here because there is significant performance 1560 // gains over vector when the container becomes very large due to the 1561 // specific access patterns. For more information see the mailing list 1562 // discussion on this: 1563 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1564 std::deque<StackNode *> nodesToProcess; 1565 1566 bool Changed = false; 1567 1568 // Process the root node. 1569 nodesToProcess.push_back(new StackNode( 1570 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1571 CurrentGeneration, DT.getRootNode(), 1572 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1573 1574 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1575 1576 // Process the stack. 1577 while (!nodesToProcess.empty()) { 1578 // Grab the first item off the stack. Set the current generation, remove 1579 // the node from the stack, and process it. 1580 StackNode *NodeToProcess = nodesToProcess.back(); 1581 1582 // Initialize class members. 1583 CurrentGeneration = NodeToProcess->currentGeneration(); 1584 1585 // Check if the node needs to be processed. 1586 if (!NodeToProcess->isProcessed()) { 1587 // Process the node. 1588 Changed |= processNode(NodeToProcess->node()); 1589 NodeToProcess->childGeneration(CurrentGeneration); 1590 NodeToProcess->process(); 1591 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1592 // Push the next child onto the stack. 1593 DomTreeNode *child = NodeToProcess->nextChild(); 1594 nodesToProcess.push_back( 1595 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1596 AvailableCalls, NodeToProcess->childGeneration(), 1597 child, child->begin(), child->end())); 1598 } else { 1599 // It has been processed, and there are no more children to process, 1600 // so delete it and pop it off the stack. 1601 delete NodeToProcess; 1602 nodesToProcess.pop_back(); 1603 } 1604 } // while (!nodes...) 1605 1606 return Changed; 1607 } 1608 1609 PreservedAnalyses EarlyCSEPass::run(Function &F, 1610 FunctionAnalysisManager &AM) { 1611 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1612 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1613 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1614 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1615 auto *MSSA = 1616 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1617 1618 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1619 1620 if (!CSE.run()) 1621 return PreservedAnalyses::all(); 1622 1623 PreservedAnalyses PA; 1624 PA.preserveSet<CFGAnalyses>(); 1625 PA.preserve<GlobalsAA>(); 1626 if (UseMemorySSA) 1627 PA.preserve<MemorySSAAnalysis>(); 1628 return PA; 1629 } 1630 1631 namespace { 1632 1633 /// A simple and fast domtree-based CSE pass. 1634 /// 1635 /// This pass does a simple depth-first walk over the dominator tree, 1636 /// eliminating trivially redundant instructions and using instsimplify to 1637 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1638 /// cases so that instcombine and other passes are more effective. It is 1639 /// expected that a later pass of GVN will catch the interesting/hard cases. 1640 template<bool UseMemorySSA> 1641 class EarlyCSELegacyCommonPass : public FunctionPass { 1642 public: 1643 static char ID; 1644 1645 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1646 if (UseMemorySSA) 1647 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1648 else 1649 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1650 } 1651 1652 bool runOnFunction(Function &F) override { 1653 if (skipFunction(F)) 1654 return false; 1655 1656 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1657 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1658 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1659 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1660 auto *MSSA = 1661 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1662 1663 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1664 1665 return CSE.run(); 1666 } 1667 1668 void getAnalysisUsage(AnalysisUsage &AU) const override { 1669 AU.addRequired<AssumptionCacheTracker>(); 1670 AU.addRequired<DominatorTreeWrapperPass>(); 1671 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1672 AU.addRequired<TargetTransformInfoWrapperPass>(); 1673 if (UseMemorySSA) { 1674 AU.addRequired<AAResultsWrapperPass>(); 1675 AU.addRequired<MemorySSAWrapperPass>(); 1676 AU.addPreserved<MemorySSAWrapperPass>(); 1677 } 1678 AU.addPreserved<GlobalsAAWrapperPass>(); 1679 AU.addPreserved<AAResultsWrapperPass>(); 1680 AU.setPreservesCFG(); 1681 } 1682 }; 1683 1684 } // end anonymous namespace 1685 1686 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1687 1688 template<> 1689 char EarlyCSELegacyPass::ID = 0; 1690 1691 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1692 false) 1693 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1694 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1695 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1696 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1697 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1698 1699 using EarlyCSEMemSSALegacyPass = 1700 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1701 1702 template<> 1703 char EarlyCSEMemSSALegacyPass::ID = 0; 1704 1705 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1706 if (UseMemorySSA) 1707 return new EarlyCSEMemSSALegacyPass(); 1708 else 1709 return new EarlyCSELegacyPass(); 1710 } 1711 1712 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1713 "Early CSE w/ MemorySSA", false, false) 1714 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1715 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1716 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1717 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1718 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1719 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1720 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1721 "Early CSE w/ MemorySSA", false, false) 1722