1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Pass.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/RecyclingAllocator.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include <deque> 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 #define DEBUG_TYPE "early-cse" 36 37 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 38 STATISTIC(NumCSE, "Number of instructions CSE'd"); 39 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 40 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 41 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 42 43 static unsigned getHash(const void *V) { 44 return DenseMapInfo<const void*>::getHashValue(V); 45 } 46 47 //===----------------------------------------------------------------------===// 48 // SimpleValue 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// \brief Struct representing the available values in the scoped hash table. 53 struct SimpleValue { 54 Instruction *Inst; 55 56 SimpleValue(Instruction *I) : Inst(I) { 57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 58 } 59 60 bool isSentinel() const { 61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 63 } 64 65 static bool canHandle(Instruction *Inst) { 66 // This can only handle non-void readnone functions. 67 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 74 } 75 }; 76 } 77 78 namespace llvm { 79 template <> struct DenseMapInfo<SimpleValue> { 80 static inline SimpleValue getEmptyKey() { 81 return DenseMapInfo<Instruction *>::getEmptyKey(); 82 } 83 static inline SimpleValue getTombstoneKey() { 84 return DenseMapInfo<Instruction *>::getTombstoneKey(); 85 } 86 static unsigned getHashValue(SimpleValue Val); 87 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 88 }; 89 } 90 91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 92 Instruction *Inst = Val.Inst; 93 // Hash in all of the operands as pointers. 94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 95 Value *LHS = BinOp->getOperand(0); 96 Value *RHS = BinOp->getOperand(1); 97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 98 std::swap(LHS, RHS); 99 100 if (isa<OverflowingBinaryOperator>(BinOp)) { 101 // Hash the overflow behavior 102 unsigned Overflow = 103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 104 BinOp->hasNoUnsignedWrap() * 105 OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && 139 "Invalid/unknown instruction"); 140 141 // Mix in the opcode. 142 return hash_combine( 143 Inst->getOpcode(), 144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 145 } 146 147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 149 150 if (LHS.isSentinel() || RHS.isSentinel()) 151 return LHSI == RHSI; 152 153 if (LHSI->getOpcode() != RHSI->getOpcode()) 154 return false; 155 if (LHSI->isIdenticalTo(RHSI)) 156 return true; 157 158 // If we're not strictly identical, we still might be a commutable instruction 159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 160 if (!LHSBinOp->isCommutative()) 161 return false; 162 163 assert(isa<BinaryOperator>(RHSI) && 164 "same opcode, but different instruction type?"); 165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 166 167 // Check overflow attributes 168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 170 "same opcode, but different operator type?"); 171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 173 return false; 174 } 175 176 // Commuted equality 177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 179 } 180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 181 assert(isa<CmpInst>(RHSI) && 182 "same opcode, but different instruction type?"); 183 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 184 // Commuted equality 185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 188 } 189 190 return false; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CallValue 195 //===----------------------------------------------------------------------===// 196 197 namespace { 198 /// \brief Struct representing the available call values in the scoped hash 199 /// table. 200 struct CallValue { 201 Instruction *Inst; 202 203 CallValue(Instruction *I) : Inst(I) { 204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 205 } 206 207 bool isSentinel() const { 208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 210 } 211 212 static bool canHandle(Instruction *Inst) { 213 // Don't value number anything that returns void. 214 if (Inst->getType()->isVoidTy()) 215 return false; 216 217 CallInst *CI = dyn_cast<CallInst>(Inst); 218 if (!CI || !CI->onlyReadsMemory()) 219 return false; 220 return true; 221 } 222 }; 223 } 224 225 namespace llvm { 226 template <> struct DenseMapInfo<CallValue> { 227 static inline CallValue getEmptyKey() { 228 return DenseMapInfo<Instruction *>::getEmptyKey(); 229 } 230 static inline CallValue getTombstoneKey() { 231 return DenseMapInfo<Instruction *>::getTombstoneKey(); 232 } 233 static unsigned getHashValue(CallValue Val); 234 static bool isEqual(CallValue LHS, CallValue RHS); 235 }; 236 } 237 238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 239 Instruction *Inst = Val.Inst; 240 // Hash in all of the operands as pointers. 241 unsigned Res = 0; 242 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) { 243 assert(!Inst->getOperand(i)->getType()->isMetadataTy() && 244 "Cannot value number calls with metadata operands"); 245 Res ^= getHash(Inst->getOperand(i)) << (i & 0xF); 246 } 247 248 // Mix in the opcode. 249 return (Res << 1) ^ Inst->getOpcode(); 250 } 251 252 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 253 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 254 if (LHS.isSentinel() || RHS.isSentinel()) 255 return LHSI == RHSI; 256 return LHSI->isIdenticalTo(RHSI); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // EarlyCSE pass. 261 //===----------------------------------------------------------------------===// 262 263 namespace { 264 265 /// \brief A simple and fast domtree-based CSE pass. 266 /// 267 /// This pass does a simple depth-first walk over the dominator tree, 268 /// eliminating trivially redundant instructions and using instsimplify to 269 /// canonicalize things as it goes. It is intended to be fast and catch obvious 270 /// cases so that instcombine and other passes are more effective. It is 271 /// expected that a later pass of GVN will catch the interesting/hard cases. 272 class EarlyCSE : public FunctionPass { 273 public: 274 const DataLayout *DL; 275 const TargetLibraryInfo *TLI; 276 DominatorTree *DT; 277 AssumptionCache *AC; 278 typedef RecyclingAllocator< 279 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 280 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 281 AllocatorTy> ScopedHTType; 282 283 /// \brief A scoped hash table of the current values of all of our simple 284 /// scalar expressions. 285 /// 286 /// As we walk down the domtree, we look to see if instructions are in this: 287 /// if so, we replace them with what we find, otherwise we insert them so 288 /// that dominated values can succeed in their lookup. 289 ScopedHTType *AvailableValues; 290 291 /// \brief A scoped hash table of the current values of loads. 292 /// 293 /// This allows us to get efficient access to dominating loads when we have 294 /// a fully redundant load. In addition to the most recent load, we keep 295 /// track of a generation count of the read, which is compared against the 296 /// current generation count. The current generation count is incremented 297 /// after every possibly writing memory operation, which ensures that we only 298 /// CSE loads with other loads that have no intervening store. 299 typedef RecyclingAllocator< 300 BumpPtrAllocator, 301 ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>> 302 LoadMapAllocator; 303 typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>, 304 DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType; 305 LoadHTType *AvailableLoads; 306 307 /// \brief A scoped hash table of the current values of read-only call 308 /// values. 309 /// 310 /// It uses the same generation count as loads. 311 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 312 CallHTType *AvailableCalls; 313 314 /// \brief This is the current generation of the memory value. 315 unsigned CurrentGeneration; 316 317 static char ID; 318 explicit EarlyCSE() : FunctionPass(ID) { 319 initializeEarlyCSEPass(*PassRegistry::getPassRegistry()); 320 } 321 322 bool runOnFunction(Function &F) override; 323 324 private: 325 // Almost a POD, but needs to call the constructors for the scoped hash 326 // tables so that a new scope gets pushed on. These are RAII so that the 327 // scope gets popped when the NodeScope is destroyed. 328 class NodeScope { 329 public: 330 NodeScope(ScopedHTType *availableValues, LoadHTType *availableLoads, 331 CallHTType *availableCalls) 332 : Scope(*availableValues), LoadScope(*availableLoads), 333 CallScope(*availableCalls) {} 334 335 private: 336 NodeScope(const NodeScope &) LLVM_DELETED_FUNCTION; 337 void operator=(const NodeScope &) LLVM_DELETED_FUNCTION; 338 339 ScopedHTType::ScopeTy Scope; 340 LoadHTType::ScopeTy LoadScope; 341 CallHTType::ScopeTy CallScope; 342 }; 343 344 // Contains all the needed information to create a stack for doing a depth 345 // first tranversal of the tree. This includes scopes for values, loads, and 346 // calls as well as the generation. There is a child iterator so that the 347 // children do not need to be store spearately. 348 class StackNode { 349 public: 350 StackNode(ScopedHTType *availableValues, LoadHTType *availableLoads, 351 CallHTType *availableCalls, unsigned cg, DomTreeNode *n, 352 DomTreeNode::iterator child, DomTreeNode::iterator end) 353 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 354 EndIter(end), Scopes(availableValues, availableLoads, availableCalls), 355 Processed(false) {} 356 357 // Accessors. 358 unsigned currentGeneration() { return CurrentGeneration; } 359 unsigned childGeneration() { return ChildGeneration; } 360 void childGeneration(unsigned generation) { ChildGeneration = generation; } 361 DomTreeNode *node() { return Node; } 362 DomTreeNode::iterator childIter() { return ChildIter; } 363 DomTreeNode *nextChild() { 364 DomTreeNode *child = *ChildIter; 365 ++ChildIter; 366 return child; 367 } 368 DomTreeNode::iterator end() { return EndIter; } 369 bool isProcessed() { return Processed; } 370 void process() { Processed = true; } 371 372 private: 373 StackNode(const StackNode &) LLVM_DELETED_FUNCTION; 374 void operator=(const StackNode &) LLVM_DELETED_FUNCTION; 375 376 // Members. 377 unsigned CurrentGeneration; 378 unsigned ChildGeneration; 379 DomTreeNode *Node; 380 DomTreeNode::iterator ChildIter; 381 DomTreeNode::iterator EndIter; 382 NodeScope Scopes; 383 bool Processed; 384 }; 385 386 bool processNode(DomTreeNode *Node); 387 388 void getAnalysisUsage(AnalysisUsage &AU) const override { 389 AU.addRequired<AssumptionCacheTracker>(); 390 AU.addRequired<DominatorTreeWrapperPass>(); 391 AU.addRequired<TargetLibraryInfoWrapperPass>(); 392 AU.setPreservesCFG(); 393 } 394 }; 395 } 396 397 char EarlyCSE::ID = 0; 398 399 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSE(); } 400 401 INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false) 402 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 403 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 404 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 405 INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false) 406 407 bool EarlyCSE::processNode(DomTreeNode *Node) { 408 BasicBlock *BB = Node->getBlock(); 409 410 // If this block has a single predecessor, then the predecessor is the parent 411 // of the domtree node and all of the live out memory values are still current 412 // in this block. If this block has multiple predecessors, then they could 413 // have invalidated the live-out memory values of our parent value. For now, 414 // just be conservative and invalidate memory if this block has multiple 415 // predecessors. 416 if (!BB->getSinglePredecessor()) 417 ++CurrentGeneration; 418 419 /// LastStore - Keep track of the last non-volatile store that we saw... for 420 /// as long as there in no instruction that reads memory. If we see a store 421 /// to the same location, we delete the dead store. This zaps trivial dead 422 /// stores which can occur in bitfield code among other things. 423 StoreInst *LastStore = nullptr; 424 425 bool Changed = false; 426 427 // See if any instructions in the block can be eliminated. If so, do it. If 428 // not, add them to AvailableValues. 429 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 430 Instruction *Inst = I++; 431 432 // Dead instructions should just be removed. 433 if (isInstructionTriviallyDead(Inst, TLI)) { 434 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 435 Inst->eraseFromParent(); 436 Changed = true; 437 ++NumSimplify; 438 continue; 439 } 440 441 // Skip assume intrinsics, they don't really have side effects (although 442 // they're marked as such to ensure preservation of control dependencies), 443 // and this pass will not disturb any of the assumption's control 444 // dependencies. 445 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 446 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 447 continue; 448 } 449 450 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 451 // its simpler value. 452 if (Value *V = SimplifyInstruction(Inst, DL, TLI, DT, AC)) { 453 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 454 Inst->replaceAllUsesWith(V); 455 Inst->eraseFromParent(); 456 Changed = true; 457 ++NumSimplify; 458 continue; 459 } 460 461 // If this is a simple instruction that we can value number, process it. 462 if (SimpleValue::canHandle(Inst)) { 463 // See if the instruction has an available value. If so, use it. 464 if (Value *V = AvailableValues->lookup(Inst)) { 465 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 466 Inst->replaceAllUsesWith(V); 467 Inst->eraseFromParent(); 468 Changed = true; 469 ++NumCSE; 470 continue; 471 } 472 473 // Otherwise, just remember that this value is available. 474 AvailableValues->insert(Inst, Inst); 475 continue; 476 } 477 478 // If this is a non-volatile load, process it. 479 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 480 // Ignore volatile loads. 481 if (!LI->isSimple()) { 482 LastStore = nullptr; 483 continue; 484 } 485 486 // If we have an available version of this load, and if it is the right 487 // generation, replace this instruction. 488 std::pair<Value *, unsigned> InVal = 489 AvailableLoads->lookup(Inst->getOperand(0)); 490 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 491 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 492 << " to: " << *InVal.first << '\n'); 493 if (!Inst->use_empty()) 494 Inst->replaceAllUsesWith(InVal.first); 495 Inst->eraseFromParent(); 496 Changed = true; 497 ++NumCSELoad; 498 continue; 499 } 500 501 // Otherwise, remember that we have this instruction. 502 AvailableLoads->insert(Inst->getOperand(0), std::pair<Value *, unsigned>( 503 Inst, CurrentGeneration)); 504 LastStore = nullptr; 505 continue; 506 } 507 508 // If this instruction may read from memory, forget LastStore. 509 if (Inst->mayReadFromMemory()) 510 LastStore = nullptr; 511 512 // If this is a read-only call, process it. 513 if (CallValue::canHandle(Inst)) { 514 // If we have an available version of this call, and if it is the right 515 // generation, replace this instruction. 516 std::pair<Value *, unsigned> InVal = AvailableCalls->lookup(Inst); 517 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 518 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 519 << " to: " << *InVal.first << '\n'); 520 if (!Inst->use_empty()) 521 Inst->replaceAllUsesWith(InVal.first); 522 Inst->eraseFromParent(); 523 Changed = true; 524 ++NumCSECall; 525 continue; 526 } 527 528 // Otherwise, remember that we have this instruction. 529 AvailableCalls->insert( 530 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 531 continue; 532 } 533 534 // Okay, this isn't something we can CSE at all. Check to see if it is 535 // something that could modify memory. If so, our available memory values 536 // cannot be used so bump the generation count. 537 if (Inst->mayWriteToMemory()) { 538 ++CurrentGeneration; 539 540 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 541 // We do a trivial form of DSE if there are two stores to the same 542 // location with no intervening loads. Delete the earlier store. 543 if (LastStore && 544 LastStore->getPointerOperand() == SI->getPointerOperand()) { 545 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 546 << " due to: " << *Inst << '\n'); 547 LastStore->eraseFromParent(); 548 Changed = true; 549 ++NumDSE; 550 LastStore = nullptr; 551 // fallthrough - we can exploit information about this store 552 } 553 554 // Okay, we just invalidated anything we knew about loaded values. Try 555 // to salvage *something* by remembering that the stored value is a live 556 // version of the pointer. It is safe to forward from volatile stores 557 // to non-volatile loads, so we don't have to check for volatility of 558 // the store. 559 AvailableLoads->insert(SI->getPointerOperand(), 560 std::pair<Value *, unsigned>( 561 SI->getValueOperand(), CurrentGeneration)); 562 563 // Remember that this was the last store we saw for DSE. 564 if (SI->isSimple()) 565 LastStore = SI; 566 } 567 } 568 } 569 570 return Changed; 571 } 572 573 bool EarlyCSE::runOnFunction(Function &F) { 574 if (skipOptnoneFunction(F)) 575 return false; 576 577 // Note, deque is being used here because there is significant performance 578 // gains over vector when the container becomes very large due to the 579 // specific access patterns. For more information see the mailing list 580 // discussion on this: 581 // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 582 std::deque<StackNode *> nodesToProcess; 583 584 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 585 DL = DLP ? &DLP->getDataLayout() : nullptr; 586 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 587 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 588 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 589 590 // Tables that the pass uses when walking the domtree. 591 ScopedHTType AVTable; 592 AvailableValues = &AVTable; 593 LoadHTType LoadTable; 594 AvailableLoads = &LoadTable; 595 CallHTType CallTable; 596 AvailableCalls = &CallTable; 597 598 CurrentGeneration = 0; 599 bool Changed = false; 600 601 // Process the root node. 602 nodesToProcess.push_back(new StackNode( 603 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 604 DT->getRootNode(), DT->getRootNode()->begin(), DT->getRootNode()->end())); 605 606 // Save the current generation. 607 unsigned LiveOutGeneration = CurrentGeneration; 608 609 // Process the stack. 610 while (!nodesToProcess.empty()) { 611 // Grab the first item off the stack. Set the current generation, remove 612 // the node from the stack, and process it. 613 StackNode *NodeToProcess = nodesToProcess.back(); 614 615 // Initialize class members. 616 CurrentGeneration = NodeToProcess->currentGeneration(); 617 618 // Check if the node needs to be processed. 619 if (!NodeToProcess->isProcessed()) { 620 // Process the node. 621 Changed |= processNode(NodeToProcess->node()); 622 NodeToProcess->childGeneration(CurrentGeneration); 623 NodeToProcess->process(); 624 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 625 // Push the next child onto the stack. 626 DomTreeNode *child = NodeToProcess->nextChild(); 627 nodesToProcess.push_back( 628 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 629 NodeToProcess->childGeneration(), child, child->begin(), 630 child->end())); 631 } else { 632 // It has been processed, and there are no more children to process, 633 // so delete it and pop it off the stack. 634 delete NodeToProcess; 635 nodesToProcess.pop_back(); 636 } 637 } // while (!nodes...) 638 639 // Reset the current generation. 640 CurrentGeneration = LiveOutGeneration; 641 642 return Changed; 643 } 644