xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision 998cae653b8f92913a17fa94118033d81f2cc1f5)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/RecyclingAllocator.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include <deque>
36 using namespace llvm;
37 using namespace llvm::PatternMatch;
38 
39 #define DEBUG_TYPE "early-cse"
40 
41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
42 STATISTIC(NumCSE,      "Number of instructions CSE'd");
43 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
44 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
45 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
46 
47 //===----------------------------------------------------------------------===//
48 // SimpleValue
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52 /// \brief Struct representing the available values in the scoped hash table.
53 struct SimpleValue {
54   Instruction *Inst;
55 
56   SimpleValue(Instruction *I) : Inst(I) {
57     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
58   }
59 
60   bool isSentinel() const {
61     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
62            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
63   }
64 
65   static bool canHandle(Instruction *Inst) {
66     // This can only handle non-void readnone functions.
67     if (CallInst *CI = dyn_cast<CallInst>(Inst))
68       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
69     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
70            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
71            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
72            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
73            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
74   }
75 };
76 }
77 
78 namespace llvm {
79 template <> struct DenseMapInfo<SimpleValue> {
80   static inline SimpleValue getEmptyKey() {
81     return DenseMapInfo<Instruction *>::getEmptyKey();
82   }
83   static inline SimpleValue getTombstoneKey() {
84     return DenseMapInfo<Instruction *>::getTombstoneKey();
85   }
86   static unsigned getHashValue(SimpleValue Val);
87   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
88 };
89 }
90 
91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
92   Instruction *Inst = Val.Inst;
93   // Hash in all of the operands as pointers.
94   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
95     Value *LHS = BinOp->getOperand(0);
96     Value *RHS = BinOp->getOperand(1);
97     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
98       std::swap(LHS, RHS);
99 
100     if (isa<OverflowingBinaryOperator>(BinOp)) {
101       // Hash the overflow behavior
102       unsigned Overflow =
103           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
104           BinOp->hasNoUnsignedWrap() *
105               OverflowingBinaryOperator::NoUnsignedWrap;
106       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
107     }
108 
109     return hash_combine(BinOp->getOpcode(), LHS, RHS);
110   }
111 
112   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
113     Value *LHS = CI->getOperand(0);
114     Value *RHS = CI->getOperand(1);
115     CmpInst::Predicate Pred = CI->getPredicate();
116     if (Inst->getOperand(0) > Inst->getOperand(1)) {
117       std::swap(LHS, RHS);
118       Pred = CI->getSwappedPredicate();
119     }
120     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
121   }
122 
123   if (CastInst *CI = dyn_cast<CastInst>(Inst))
124     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
125 
126   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
127     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
128                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
129 
130   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
131     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
132                         IVI->getOperand(1),
133                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
134 
135   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
136           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
137           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
138           isa<ShuffleVectorInst>(Inst)) &&
139          "Invalid/unknown instruction");
140 
141   // Mix in the opcode.
142   return hash_combine(
143       Inst->getOpcode(),
144       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
145 }
146 
147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
148   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
149 
150   if (LHS.isSentinel() || RHS.isSentinel())
151     return LHSI == RHSI;
152 
153   if (LHSI->getOpcode() != RHSI->getOpcode())
154     return false;
155   if (LHSI->isIdenticalTo(RHSI))
156     return true;
157 
158   // If we're not strictly identical, we still might be a commutable instruction
159   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
160     if (!LHSBinOp->isCommutative())
161       return false;
162 
163     assert(isa<BinaryOperator>(RHSI) &&
164            "same opcode, but different instruction type?");
165     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
166 
167     // Check overflow attributes
168     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
169       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
170              "same opcode, but different operator type?");
171       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
172           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
173         return false;
174     }
175 
176     // Commuted equality
177     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
178            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
179   }
180   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
181     assert(isa<CmpInst>(RHSI) &&
182            "same opcode, but different instruction type?");
183     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
184     // Commuted equality
185     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
186            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
187            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
188   }
189 
190   return false;
191 }
192 
193 //===----------------------------------------------------------------------===//
194 // CallValue
195 //===----------------------------------------------------------------------===//
196 
197 namespace {
198 /// \brief Struct representing the available call values in the scoped hash
199 /// table.
200 struct CallValue {
201   Instruction *Inst;
202 
203   CallValue(Instruction *I) : Inst(I) {
204     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
205   }
206 
207   bool isSentinel() const {
208     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
209            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
210   }
211 
212   static bool canHandle(Instruction *Inst) {
213     // Don't value number anything that returns void.
214     if (Inst->getType()->isVoidTy())
215       return false;
216 
217     CallInst *CI = dyn_cast<CallInst>(Inst);
218     if (!CI || !CI->onlyReadsMemory())
219       return false;
220     return true;
221   }
222 };
223 }
224 
225 namespace llvm {
226 template <> struct DenseMapInfo<CallValue> {
227   static inline CallValue getEmptyKey() {
228     return DenseMapInfo<Instruction *>::getEmptyKey();
229   }
230   static inline CallValue getTombstoneKey() {
231     return DenseMapInfo<Instruction *>::getTombstoneKey();
232   }
233   static unsigned getHashValue(CallValue Val);
234   static bool isEqual(CallValue LHS, CallValue RHS);
235 };
236 }
237 
238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
239   Instruction *Inst = Val.Inst;
240   // Hash all of the operands as pointers and mix in the opcode.
241   return hash_combine(
242       Inst->getOpcode(),
243       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
244 }
245 
246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
247   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
248   if (LHS.isSentinel() || RHS.isSentinel())
249     return LHSI == RHSI;
250   return LHSI->isIdenticalTo(RHSI);
251 }
252 
253 //===----------------------------------------------------------------------===//
254 // EarlyCSE implementation
255 //===----------------------------------------------------------------------===//
256 
257 namespace {
258 /// \brief A simple and fast domtree-based CSE pass.
259 ///
260 /// This pass does a simple depth-first walk over the dominator tree,
261 /// eliminating trivially redundant instructions and using instsimplify to
262 /// canonicalize things as it goes. It is intended to be fast and catch obvious
263 /// cases so that instcombine and other passes are more effective. It is
264 /// expected that a later pass of GVN will catch the interesting/hard cases.
265 class EarlyCSE {
266 public:
267   const TargetLibraryInfo &TLI;
268   const TargetTransformInfo &TTI;
269   DominatorTree &DT;
270   AssumptionCache &AC;
271   typedef RecyclingAllocator<
272       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
273   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
274                           AllocatorTy> ScopedHTType;
275 
276   /// \brief A scoped hash table of the current values of all of our simple
277   /// scalar expressions.
278   ///
279   /// As we walk down the domtree, we look to see if instructions are in this:
280   /// if so, we replace them with what we find, otherwise we insert them so
281   /// that dominated values can succeed in their lookup.
282   ScopedHTType AvailableValues;
283 
284   /// \brief A scoped hash table of the current values of loads.
285   ///
286   /// This allows us to get efficient access to dominating loads when we have
287   /// a fully redundant load.  In addition to the most recent load, we keep
288   /// track of a generation count of the read, which is compared against the
289   /// current generation count.  The current generation count is incremented
290   /// after every possibly writing memory operation, which ensures that we only
291   /// CSE loads with other loads that have no intervening store.
292   struct LoadValue {
293     Value *Data;
294     unsigned Generation;
295     int MatchingId;
296     LoadValue() : Data(nullptr), Generation(0), MatchingId(-1) {}
297     LoadValue(Value *Data, unsigned Generation, unsigned MatchingId)
298         : Data(Data), Generation(Generation), MatchingId(MatchingId) {}
299   };
300   typedef RecyclingAllocator<BumpPtrAllocator,
301                              ScopedHashTableVal<Value *, LoadValue>>
302       LoadMapAllocator;
303   typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
304                           LoadMapAllocator> LoadHTType;
305   LoadHTType AvailableLoads;
306 
307   /// \brief A scoped hash table of the current values of read-only call
308   /// values.
309   ///
310   /// It uses the same generation count as loads.
311   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
312   CallHTType AvailableCalls;
313 
314   /// \brief This is the current generation of the memory value.
315   unsigned CurrentGeneration;
316 
317   /// \brief Set up the EarlyCSE runner for a particular function.
318   EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI,
319            DominatorTree &DT, AssumptionCache &AC)
320       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
321 
322   bool run();
323 
324 private:
325   // Almost a POD, but needs to call the constructors for the scoped hash
326   // tables so that a new scope gets pushed on. These are RAII so that the
327   // scope gets popped when the NodeScope is destroyed.
328   class NodeScope {
329   public:
330     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
331               CallHTType &AvailableCalls)
332         : Scope(AvailableValues), LoadScope(AvailableLoads),
333           CallScope(AvailableCalls) {}
334 
335   private:
336     NodeScope(const NodeScope &) = delete;
337     void operator=(const NodeScope &) = delete;
338 
339     ScopedHTType::ScopeTy Scope;
340     LoadHTType::ScopeTy LoadScope;
341     CallHTType::ScopeTy CallScope;
342   };
343 
344   // Contains all the needed information to create a stack for doing a depth
345   // first tranversal of the tree. This includes scopes for values, loads, and
346   // calls as well as the generation. There is a child iterator so that the
347   // children do not need to be store spearately.
348   class StackNode {
349   public:
350     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
351               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
352               DomTreeNode::iterator child, DomTreeNode::iterator end)
353         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
354           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
355           Processed(false) {}
356 
357     // Accessors.
358     unsigned currentGeneration() { return CurrentGeneration; }
359     unsigned childGeneration() { return ChildGeneration; }
360     void childGeneration(unsigned generation) { ChildGeneration = generation; }
361     DomTreeNode *node() { return Node; }
362     DomTreeNode::iterator childIter() { return ChildIter; }
363     DomTreeNode *nextChild() {
364       DomTreeNode *child = *ChildIter;
365       ++ChildIter;
366       return child;
367     }
368     DomTreeNode::iterator end() { return EndIter; }
369     bool isProcessed() { return Processed; }
370     void process() { Processed = true; }
371 
372   private:
373     StackNode(const StackNode &) = delete;
374     void operator=(const StackNode &) = delete;
375 
376     // Members.
377     unsigned CurrentGeneration;
378     unsigned ChildGeneration;
379     DomTreeNode *Node;
380     DomTreeNode::iterator ChildIter;
381     DomTreeNode::iterator EndIter;
382     NodeScope Scopes;
383     bool Processed;
384   };
385 
386   /// \brief Wrapper class to handle memory instructions, including loads,
387   /// stores and intrinsic loads and stores defined by the target.
388   class ParseMemoryInst {
389   public:
390     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
391       : IsTargetMemInst(false), Inst(Inst) {
392       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
393         if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1)
394           IsTargetMemInst = true;
395     }
396     bool isLoad() const {
397       if (IsTargetMemInst) return Info.ReadMem;
398       return isa<LoadInst>(Inst);
399     }
400     bool isStore() const {
401       if (IsTargetMemInst) return Info.WriteMem;
402       return isa<StoreInst>(Inst);
403     }
404     bool isSimple() const {
405       if (IsTargetMemInst) return Info.IsSimple;
406       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
407         return LI->isSimple();
408       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
409         return SI->isSimple();
410       }
411       return Inst->isAtomic();
412     }
413     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
414       return (getPointerOperand() == Inst.getPointerOperand() &&
415               getMatchingId() == Inst.getMatchingId());
416     }
417     bool isValid() const { return getPointerOperand() != nullptr; }
418 
419     // For regular (non-intrinsic) loads/stores, this is set to -1. For
420     // intrinsic loads/stores, the id is retrieved from the corresponding
421     // field in the MemIntrinsicInfo structure.  That field contains
422     // non-negative values only.
423     int getMatchingId() const {
424       if (IsTargetMemInst) return Info.MatchingId;
425       return -1;
426     }
427     Value *getPointerOperand() const {
428       if (IsTargetMemInst) return Info.PtrVal;
429       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
430         return LI->getPointerOperand();
431       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
432         return SI->getPointerOperand();
433       }
434       return nullptr;
435     }
436     bool mayReadFromMemory() const { return Inst->mayReadFromMemory(); }
437     bool mayWriteToMemory() const { return Inst->mayWriteToMemory(); }
438 
439   private:
440     bool IsTargetMemInst;
441     MemIntrinsicInfo Info;
442     Instruction *Inst;
443   };
444 
445   bool processNode(DomTreeNode *Node);
446 
447   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
448     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
449       return LI;
450     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
451       return SI->getValueOperand();
452     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
453     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
454                                                  ExpectedType);
455   }
456 };
457 }
458 
459 bool EarlyCSE::processNode(DomTreeNode *Node) {
460   BasicBlock *BB = Node->getBlock();
461 
462   // If this block has a single predecessor, then the predecessor is the parent
463   // of the domtree node and all of the live out memory values are still current
464   // in this block.  If this block has multiple predecessors, then they could
465   // have invalidated the live-out memory values of our parent value.  For now,
466   // just be conservative and invalidate memory if this block has multiple
467   // predecessors.
468   if (!BB->getSinglePredecessor())
469     ++CurrentGeneration;
470 
471   // If this node has a single predecessor which ends in a conditional branch,
472   // we can infer the value of the branch condition given that we took this
473   // path.  We need the single predeccesor to ensure there's not another path
474   // which reaches this block where the condition might hold a different
475   // value.  Since we're adding this to the scoped hash table (like any other
476   // def), it will have been popped if we encounter a future merge block.
477   if (BasicBlock *Pred = BB->getSinglePredecessor())
478     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
479       if (BI->isConditional())
480         if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
481           if (SimpleValue::canHandle(CondInst)) {
482             assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
483             auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
484               ConstantInt::getTrue(BB->getContext()) :
485               ConstantInt::getFalse(BB->getContext());
486             AvailableValues.insert(CondInst, ConditionalConstant);
487             DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
488                   << CondInst->getName() << "' as " << *ConditionalConstant
489                   << " in " << BB->getName() << "\n");
490             // Replace all dominated uses with the known value
491             replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
492                                      BasicBlockEdge(Pred, BB));
493           }
494 
495   /// LastStore - Keep track of the last non-volatile store that we saw... for
496   /// as long as there in no instruction that reads memory.  If we see a store
497   /// to the same location, we delete the dead store.  This zaps trivial dead
498   /// stores which can occur in bitfield code among other things.
499   Instruction *LastStore = nullptr;
500 
501   bool Changed = false;
502   const DataLayout &DL = BB->getModule()->getDataLayout();
503 
504   // See if any instructions in the block can be eliminated.  If so, do it.  If
505   // not, add them to AvailableValues.
506   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
507     Instruction *Inst = &*I++;
508 
509     // Dead instructions should just be removed.
510     if (isInstructionTriviallyDead(Inst, &TLI)) {
511       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
512       Inst->eraseFromParent();
513       Changed = true;
514       ++NumSimplify;
515       continue;
516     }
517 
518     // Skip assume intrinsics, they don't really have side effects (although
519     // they're marked as such to ensure preservation of control dependencies),
520     // and this pass will not disturb any of the assumption's control
521     // dependencies.
522     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
523       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
524       continue;
525     }
526 
527     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
528     // its simpler value.
529     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
530       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
531       Inst->replaceAllUsesWith(V);
532       Inst->eraseFromParent();
533       Changed = true;
534       ++NumSimplify;
535       continue;
536     }
537 
538     // If this is a simple instruction that we can value number, process it.
539     if (SimpleValue::canHandle(Inst)) {
540       // See if the instruction has an available value.  If so, use it.
541       if (Value *V = AvailableValues.lookup(Inst)) {
542         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
543         Inst->replaceAllUsesWith(V);
544         Inst->eraseFromParent();
545         Changed = true;
546         ++NumCSE;
547         continue;
548       }
549 
550       // Otherwise, just remember that this value is available.
551       AvailableValues.insert(Inst, Inst);
552       continue;
553     }
554 
555     ParseMemoryInst MemInst(Inst, TTI);
556     // If this is a non-volatile load, process it.
557     if (MemInst.isValid() && MemInst.isLoad()) {
558       // Ignore volatile or ordered loads.
559       if (!MemInst.isSimple()) {
560         LastStore = nullptr;
561         // Don't CSE across synchronization boundaries.
562         if (Inst->mayWriteToMemory())
563           ++CurrentGeneration;
564         continue;
565       }
566 
567       // If we have an available version of this load, and if it is the right
568       // generation, replace this instruction.
569       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
570       if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration &&
571           InVal.MatchingId == MemInst.getMatchingId()) {
572         Value *Op = getOrCreateResult(InVal.Data, Inst->getType());
573         if (Op != nullptr) {
574           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
575                        << "  to: " << *InVal.Data << '\n');
576           if (!Inst->use_empty())
577             Inst->replaceAllUsesWith(Op);
578           Inst->eraseFromParent();
579           Changed = true;
580           ++NumCSELoad;
581           continue;
582         }
583       }
584 
585       // Otherwise, remember that we have this instruction.
586       AvailableLoads.insert(
587           MemInst.getPointerOperand(),
588           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId()));
589       LastStore = nullptr;
590       continue;
591     }
592 
593     // If this instruction may read from memory, forget LastStore.
594     // Load/store intrinsics will indicate both a read and a write to
595     // memory.  The target may override this (e.g. so that a store intrinsic
596     // does not read  from memory, and thus will be treated the same as a
597     // regular store for commoning purposes).
598     if (Inst->mayReadFromMemory() &&
599         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
600       LastStore = nullptr;
601 
602     // If this is a read-only call, process it.
603     if (CallValue::canHandle(Inst)) {
604       // If we have an available version of this call, and if it is the right
605       // generation, replace this instruction.
606       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
607       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
608         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
609                      << "  to: " << *InVal.first << '\n');
610         if (!Inst->use_empty())
611           Inst->replaceAllUsesWith(InVal.first);
612         Inst->eraseFromParent();
613         Changed = true;
614         ++NumCSECall;
615         continue;
616       }
617 
618       // Otherwise, remember that we have this instruction.
619       AvailableCalls.insert(
620           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
621       continue;
622     }
623 
624     // A release fence requires that all stores complete before it, but does
625     // not prevent the reordering of following loads 'before' the fence.  As a
626     // result, we don't need to consider it as writing to memory and don't need
627     // to advance the generation.  We do need to prevent DSE across the fence,
628     // but that's handled above.
629     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
630       if (FI->getOrdering() == Release) {
631         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
632         continue;
633       }
634 
635     // Okay, this isn't something we can CSE at all.  Check to see if it is
636     // something that could modify memory.  If so, our available memory values
637     // cannot be used so bump the generation count.
638     if (Inst->mayWriteToMemory()) {
639       ++CurrentGeneration;
640 
641       if (MemInst.isValid() && MemInst.isStore()) {
642         // We do a trivial form of DSE if there are two stores to the same
643         // location with no intervening loads.  Delete the earlier store.
644         if (LastStore) {
645           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
646           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
647             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
648                          << "  due to: " << *Inst << '\n');
649             LastStore->eraseFromParent();
650             Changed = true;
651             ++NumDSE;
652             LastStore = nullptr;
653           }
654           // fallthrough - we can exploit information about this store
655         }
656 
657         // Okay, we just invalidated anything we knew about loaded values.  Try
658         // to salvage *something* by remembering that the stored value is a live
659         // version of the pointer.  It is safe to forward from volatile stores
660         // to non-volatile loads, so we don't have to check for volatility of
661         // the store.
662         AvailableLoads.insert(
663             MemInst.getPointerOperand(),
664             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId()));
665 
666         // Remember that this was the last normal store we saw for DSE.
667         if (MemInst.isSimple())
668           LastStore = Inst;
669       }
670     }
671   }
672 
673   return Changed;
674 }
675 
676 bool EarlyCSE::run() {
677   // Note, deque is being used here because there is significant performance
678   // gains over vector when the container becomes very large due to the
679   // specific access patterns. For more information see the mailing list
680   // discussion on this:
681   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
682   std::deque<StackNode *> nodesToProcess;
683 
684   bool Changed = false;
685 
686   // Process the root node.
687   nodesToProcess.push_back(new StackNode(
688       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
689       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
690 
691   // Save the current generation.
692   unsigned LiveOutGeneration = CurrentGeneration;
693 
694   // Process the stack.
695   while (!nodesToProcess.empty()) {
696     // Grab the first item off the stack. Set the current generation, remove
697     // the node from the stack, and process it.
698     StackNode *NodeToProcess = nodesToProcess.back();
699 
700     // Initialize class members.
701     CurrentGeneration = NodeToProcess->currentGeneration();
702 
703     // Check if the node needs to be processed.
704     if (!NodeToProcess->isProcessed()) {
705       // Process the node.
706       Changed |= processNode(NodeToProcess->node());
707       NodeToProcess->childGeneration(CurrentGeneration);
708       NodeToProcess->process();
709     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
710       // Push the next child onto the stack.
711       DomTreeNode *child = NodeToProcess->nextChild();
712       nodesToProcess.push_back(
713           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
714                         NodeToProcess->childGeneration(), child, child->begin(),
715                         child->end()));
716     } else {
717       // It has been processed, and there are no more children to process,
718       // so delete it and pop it off the stack.
719       delete NodeToProcess;
720       nodesToProcess.pop_back();
721     }
722   } // while (!nodes...)
723 
724   // Reset the current generation.
725   CurrentGeneration = LiveOutGeneration;
726 
727   return Changed;
728 }
729 
730 PreservedAnalyses EarlyCSEPass::run(Function &F,
731                                     AnalysisManager<Function> *AM) {
732   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
733   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
734   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
735   auto &AC = AM->getResult<AssumptionAnalysis>(F);
736 
737   EarlyCSE CSE(TLI, TTI, DT, AC);
738 
739   if (!CSE.run())
740     return PreservedAnalyses::all();
741 
742   // CSE preserves the dominator tree because it doesn't mutate the CFG.
743   // FIXME: Bundle this with other CFG-preservation.
744   PreservedAnalyses PA;
745   PA.preserve<DominatorTreeAnalysis>();
746   return PA;
747 }
748 
749 namespace {
750 /// \brief A simple and fast domtree-based CSE pass.
751 ///
752 /// This pass does a simple depth-first walk over the dominator tree,
753 /// eliminating trivially redundant instructions and using instsimplify to
754 /// canonicalize things as it goes. It is intended to be fast and catch obvious
755 /// cases so that instcombine and other passes are more effective. It is
756 /// expected that a later pass of GVN will catch the interesting/hard cases.
757 class EarlyCSELegacyPass : public FunctionPass {
758 public:
759   static char ID;
760 
761   EarlyCSELegacyPass() : FunctionPass(ID) {
762     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
763   }
764 
765   bool runOnFunction(Function &F) override {
766     if (skipOptnoneFunction(F))
767       return false;
768 
769     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
770     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
771     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
772     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
773 
774     EarlyCSE CSE(TLI, TTI, DT, AC);
775 
776     return CSE.run();
777   }
778 
779   void getAnalysisUsage(AnalysisUsage &AU) const override {
780     AU.addRequired<AssumptionCacheTracker>();
781     AU.addRequired<DominatorTreeWrapperPass>();
782     AU.addRequired<TargetLibraryInfoWrapperPass>();
783     AU.addRequired<TargetTransformInfoWrapperPass>();
784     AU.addPreserved<GlobalsAAWrapperPass>();
785     AU.setPreservesCFG();
786   }
787 };
788 }
789 
790 char EarlyCSELegacyPass::ID = 0;
791 
792 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
793 
794 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
795                       false)
796 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
797 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
798 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
799 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
800 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
801