1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include <deque> 36 using namespace llvm; 37 using namespace llvm::PatternMatch; 38 39 #define DEBUG_TYPE "early-cse" 40 41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 42 STATISTIC(NumCSE, "Number of instructions CSE'd"); 43 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 44 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 45 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 46 47 //===----------------------------------------------------------------------===// 48 // SimpleValue 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// \brief Struct representing the available values in the scoped hash table. 53 struct SimpleValue { 54 Instruction *Inst; 55 56 SimpleValue(Instruction *I) : Inst(I) { 57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 58 } 59 60 bool isSentinel() const { 61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 63 } 64 65 static bool canHandle(Instruction *Inst) { 66 // This can only handle non-void readnone functions. 67 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 74 } 75 }; 76 } 77 78 namespace llvm { 79 template <> struct DenseMapInfo<SimpleValue> { 80 static inline SimpleValue getEmptyKey() { 81 return DenseMapInfo<Instruction *>::getEmptyKey(); 82 } 83 static inline SimpleValue getTombstoneKey() { 84 return DenseMapInfo<Instruction *>::getTombstoneKey(); 85 } 86 static unsigned getHashValue(SimpleValue Val); 87 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 88 }; 89 } 90 91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 92 Instruction *Inst = Val.Inst; 93 // Hash in all of the operands as pointers. 94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 95 Value *LHS = BinOp->getOperand(0); 96 Value *RHS = BinOp->getOperand(1); 97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 98 std::swap(LHS, RHS); 99 100 if (isa<OverflowingBinaryOperator>(BinOp)) { 101 // Hash the overflow behavior 102 unsigned Overflow = 103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 104 BinOp->hasNoUnsignedWrap() * 105 OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && 139 "Invalid/unknown instruction"); 140 141 // Mix in the opcode. 142 return hash_combine( 143 Inst->getOpcode(), 144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 145 } 146 147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 149 150 if (LHS.isSentinel() || RHS.isSentinel()) 151 return LHSI == RHSI; 152 153 if (LHSI->getOpcode() != RHSI->getOpcode()) 154 return false; 155 if (LHSI->isIdenticalTo(RHSI)) 156 return true; 157 158 // If we're not strictly identical, we still might be a commutable instruction 159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 160 if (!LHSBinOp->isCommutative()) 161 return false; 162 163 assert(isa<BinaryOperator>(RHSI) && 164 "same opcode, but different instruction type?"); 165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 166 167 // Check overflow attributes 168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 170 "same opcode, but different operator type?"); 171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 173 return false; 174 } 175 176 // Commuted equality 177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 179 } 180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 181 assert(isa<CmpInst>(RHSI) && 182 "same opcode, but different instruction type?"); 183 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 184 // Commuted equality 185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 188 } 189 190 return false; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CallValue 195 //===----------------------------------------------------------------------===// 196 197 namespace { 198 /// \brief Struct representing the available call values in the scoped hash 199 /// table. 200 struct CallValue { 201 Instruction *Inst; 202 203 CallValue(Instruction *I) : Inst(I) { 204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 205 } 206 207 bool isSentinel() const { 208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 210 } 211 212 static bool canHandle(Instruction *Inst) { 213 // Don't value number anything that returns void. 214 if (Inst->getType()->isVoidTy()) 215 return false; 216 217 CallInst *CI = dyn_cast<CallInst>(Inst); 218 if (!CI || !CI->onlyReadsMemory()) 219 return false; 220 return true; 221 } 222 }; 223 } 224 225 namespace llvm { 226 template <> struct DenseMapInfo<CallValue> { 227 static inline CallValue getEmptyKey() { 228 return DenseMapInfo<Instruction *>::getEmptyKey(); 229 } 230 static inline CallValue getTombstoneKey() { 231 return DenseMapInfo<Instruction *>::getTombstoneKey(); 232 } 233 static unsigned getHashValue(CallValue Val); 234 static bool isEqual(CallValue LHS, CallValue RHS); 235 }; 236 } 237 238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 239 Instruction *Inst = Val.Inst; 240 // Hash all of the operands as pointers and mix in the opcode. 241 return hash_combine( 242 Inst->getOpcode(), 243 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 244 } 245 246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 247 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 248 if (LHS.isSentinel() || RHS.isSentinel()) 249 return LHSI == RHSI; 250 return LHSI->isIdenticalTo(RHSI); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // EarlyCSE implementation 255 //===----------------------------------------------------------------------===// 256 257 namespace { 258 /// \brief A simple and fast domtree-based CSE pass. 259 /// 260 /// This pass does a simple depth-first walk over the dominator tree, 261 /// eliminating trivially redundant instructions and using instsimplify to 262 /// canonicalize things as it goes. It is intended to be fast and catch obvious 263 /// cases so that instcombine and other passes are more effective. It is 264 /// expected that a later pass of GVN will catch the interesting/hard cases. 265 class EarlyCSE { 266 public: 267 const TargetLibraryInfo &TLI; 268 const TargetTransformInfo &TTI; 269 DominatorTree &DT; 270 AssumptionCache &AC; 271 typedef RecyclingAllocator< 272 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 273 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 274 AllocatorTy> ScopedHTType; 275 276 /// \brief A scoped hash table of the current values of all of our simple 277 /// scalar expressions. 278 /// 279 /// As we walk down the domtree, we look to see if instructions are in this: 280 /// if so, we replace them with what we find, otherwise we insert them so 281 /// that dominated values can succeed in their lookup. 282 ScopedHTType AvailableValues; 283 284 /// \brief A scoped hash table of the current values of loads. 285 /// 286 /// This allows us to get efficient access to dominating loads when we have 287 /// a fully redundant load. In addition to the most recent load, we keep 288 /// track of a generation count of the read, which is compared against the 289 /// current generation count. The current generation count is incremented 290 /// after every possibly writing memory operation, which ensures that we only 291 /// CSE loads with other loads that have no intervening store. 292 struct LoadValue { 293 Value *Data; 294 unsigned Generation; 295 int MatchingId; 296 LoadValue() : Data(nullptr), Generation(0), MatchingId(-1) {} 297 LoadValue(Value *Data, unsigned Generation, unsigned MatchingId) 298 : Data(Data), Generation(Generation), MatchingId(MatchingId) {} 299 }; 300 typedef RecyclingAllocator<BumpPtrAllocator, 301 ScopedHashTableVal<Value *, LoadValue>> 302 LoadMapAllocator; 303 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 304 LoadMapAllocator> LoadHTType; 305 LoadHTType AvailableLoads; 306 307 /// \brief A scoped hash table of the current values of read-only call 308 /// values. 309 /// 310 /// It uses the same generation count as loads. 311 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 312 CallHTType AvailableCalls; 313 314 /// \brief This is the current generation of the memory value. 315 unsigned CurrentGeneration; 316 317 /// \brief Set up the EarlyCSE runner for a particular function. 318 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 319 DominatorTree &DT, AssumptionCache &AC) 320 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} 321 322 bool run(); 323 324 private: 325 // Almost a POD, but needs to call the constructors for the scoped hash 326 // tables so that a new scope gets pushed on. These are RAII so that the 327 // scope gets popped when the NodeScope is destroyed. 328 class NodeScope { 329 public: 330 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 331 CallHTType &AvailableCalls) 332 : Scope(AvailableValues), LoadScope(AvailableLoads), 333 CallScope(AvailableCalls) {} 334 335 private: 336 NodeScope(const NodeScope &) = delete; 337 void operator=(const NodeScope &) = delete; 338 339 ScopedHTType::ScopeTy Scope; 340 LoadHTType::ScopeTy LoadScope; 341 CallHTType::ScopeTy CallScope; 342 }; 343 344 // Contains all the needed information to create a stack for doing a depth 345 // first tranversal of the tree. This includes scopes for values, loads, and 346 // calls as well as the generation. There is a child iterator so that the 347 // children do not need to be store spearately. 348 class StackNode { 349 public: 350 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 351 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 352 DomTreeNode::iterator child, DomTreeNode::iterator end) 353 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 354 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 355 Processed(false) {} 356 357 // Accessors. 358 unsigned currentGeneration() { return CurrentGeneration; } 359 unsigned childGeneration() { return ChildGeneration; } 360 void childGeneration(unsigned generation) { ChildGeneration = generation; } 361 DomTreeNode *node() { return Node; } 362 DomTreeNode::iterator childIter() { return ChildIter; } 363 DomTreeNode *nextChild() { 364 DomTreeNode *child = *ChildIter; 365 ++ChildIter; 366 return child; 367 } 368 DomTreeNode::iterator end() { return EndIter; } 369 bool isProcessed() { return Processed; } 370 void process() { Processed = true; } 371 372 private: 373 StackNode(const StackNode &) = delete; 374 void operator=(const StackNode &) = delete; 375 376 // Members. 377 unsigned CurrentGeneration; 378 unsigned ChildGeneration; 379 DomTreeNode *Node; 380 DomTreeNode::iterator ChildIter; 381 DomTreeNode::iterator EndIter; 382 NodeScope Scopes; 383 bool Processed; 384 }; 385 386 /// \brief Wrapper class to handle memory instructions, including loads, 387 /// stores and intrinsic loads and stores defined by the target. 388 class ParseMemoryInst { 389 public: 390 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 391 : IsTargetMemInst(false), Inst(Inst) { 392 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 393 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1) 394 IsTargetMemInst = true; 395 } 396 bool isLoad() const { 397 if (IsTargetMemInst) return Info.ReadMem; 398 return isa<LoadInst>(Inst); 399 } 400 bool isStore() const { 401 if (IsTargetMemInst) return Info.WriteMem; 402 return isa<StoreInst>(Inst); 403 } 404 bool isSimple() const { 405 if (IsTargetMemInst) return Info.IsSimple; 406 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 407 return LI->isSimple(); 408 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 409 return SI->isSimple(); 410 } 411 return Inst->isAtomic(); 412 } 413 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 414 return (getPointerOperand() == Inst.getPointerOperand() && 415 getMatchingId() == Inst.getMatchingId()); 416 } 417 bool isValid() const { return getPointerOperand() != nullptr; } 418 419 // For regular (non-intrinsic) loads/stores, this is set to -1. For 420 // intrinsic loads/stores, the id is retrieved from the corresponding 421 // field in the MemIntrinsicInfo structure. That field contains 422 // non-negative values only. 423 int getMatchingId() const { 424 if (IsTargetMemInst) return Info.MatchingId; 425 return -1; 426 } 427 Value *getPointerOperand() const { 428 if (IsTargetMemInst) return Info.PtrVal; 429 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 430 return LI->getPointerOperand(); 431 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 432 return SI->getPointerOperand(); 433 } 434 return nullptr; 435 } 436 bool mayReadFromMemory() const { return Inst->mayReadFromMemory(); } 437 bool mayWriteToMemory() const { return Inst->mayWriteToMemory(); } 438 439 private: 440 bool IsTargetMemInst; 441 MemIntrinsicInfo Info; 442 Instruction *Inst; 443 }; 444 445 bool processNode(DomTreeNode *Node); 446 447 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 448 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 449 return LI; 450 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 451 return SI->getValueOperand(); 452 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 453 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 454 ExpectedType); 455 } 456 }; 457 } 458 459 bool EarlyCSE::processNode(DomTreeNode *Node) { 460 BasicBlock *BB = Node->getBlock(); 461 462 // If this block has a single predecessor, then the predecessor is the parent 463 // of the domtree node and all of the live out memory values are still current 464 // in this block. If this block has multiple predecessors, then they could 465 // have invalidated the live-out memory values of our parent value. For now, 466 // just be conservative and invalidate memory if this block has multiple 467 // predecessors. 468 if (!BB->getSinglePredecessor()) 469 ++CurrentGeneration; 470 471 // If this node has a single predecessor which ends in a conditional branch, 472 // we can infer the value of the branch condition given that we took this 473 // path. We need the single predeccesor to ensure there's not another path 474 // which reaches this block where the condition might hold a different 475 // value. Since we're adding this to the scoped hash table (like any other 476 // def), it will have been popped if we encounter a future merge block. 477 if (BasicBlock *Pred = BB->getSinglePredecessor()) 478 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 479 if (BI->isConditional()) 480 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 481 if (SimpleValue::canHandle(CondInst)) { 482 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 483 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 484 ConstantInt::getTrue(BB->getContext()) : 485 ConstantInt::getFalse(BB->getContext()); 486 AvailableValues.insert(CondInst, ConditionalConstant); 487 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 488 << CondInst->getName() << "' as " << *ConditionalConstant 489 << " in " << BB->getName() << "\n"); 490 // Replace all dominated uses with the known value 491 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 492 BasicBlockEdge(Pred, BB)); 493 } 494 495 /// LastStore - Keep track of the last non-volatile store that we saw... for 496 /// as long as there in no instruction that reads memory. If we see a store 497 /// to the same location, we delete the dead store. This zaps trivial dead 498 /// stores which can occur in bitfield code among other things. 499 Instruction *LastStore = nullptr; 500 501 bool Changed = false; 502 const DataLayout &DL = BB->getModule()->getDataLayout(); 503 504 // See if any instructions in the block can be eliminated. If so, do it. If 505 // not, add them to AvailableValues. 506 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 507 Instruction *Inst = &*I++; 508 509 // Dead instructions should just be removed. 510 if (isInstructionTriviallyDead(Inst, &TLI)) { 511 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 512 Inst->eraseFromParent(); 513 Changed = true; 514 ++NumSimplify; 515 continue; 516 } 517 518 // Skip assume intrinsics, they don't really have side effects (although 519 // they're marked as such to ensure preservation of control dependencies), 520 // and this pass will not disturb any of the assumption's control 521 // dependencies. 522 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 523 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 524 continue; 525 } 526 527 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 528 // its simpler value. 529 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 530 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 531 Inst->replaceAllUsesWith(V); 532 Inst->eraseFromParent(); 533 Changed = true; 534 ++NumSimplify; 535 continue; 536 } 537 538 // If this is a simple instruction that we can value number, process it. 539 if (SimpleValue::canHandle(Inst)) { 540 // See if the instruction has an available value. If so, use it. 541 if (Value *V = AvailableValues.lookup(Inst)) { 542 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 543 Inst->replaceAllUsesWith(V); 544 Inst->eraseFromParent(); 545 Changed = true; 546 ++NumCSE; 547 continue; 548 } 549 550 // Otherwise, just remember that this value is available. 551 AvailableValues.insert(Inst, Inst); 552 continue; 553 } 554 555 ParseMemoryInst MemInst(Inst, TTI); 556 // If this is a non-volatile load, process it. 557 if (MemInst.isValid() && MemInst.isLoad()) { 558 // Ignore volatile or ordered loads. 559 if (!MemInst.isSimple()) { 560 LastStore = nullptr; 561 // Don't CSE across synchronization boundaries. 562 if (Inst->mayWriteToMemory()) 563 ++CurrentGeneration; 564 continue; 565 } 566 567 // If we have an available version of this load, and if it is the right 568 // generation, replace this instruction. 569 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 570 if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration && 571 InVal.MatchingId == MemInst.getMatchingId()) { 572 Value *Op = getOrCreateResult(InVal.Data, Inst->getType()); 573 if (Op != nullptr) { 574 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 575 << " to: " << *InVal.Data << '\n'); 576 if (!Inst->use_empty()) 577 Inst->replaceAllUsesWith(Op); 578 Inst->eraseFromParent(); 579 Changed = true; 580 ++NumCSELoad; 581 continue; 582 } 583 } 584 585 // Otherwise, remember that we have this instruction. 586 AvailableLoads.insert( 587 MemInst.getPointerOperand(), 588 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 589 LastStore = nullptr; 590 continue; 591 } 592 593 // If this instruction may read from memory, forget LastStore. 594 // Load/store intrinsics will indicate both a read and a write to 595 // memory. The target may override this (e.g. so that a store intrinsic 596 // does not read from memory, and thus will be treated the same as a 597 // regular store for commoning purposes). 598 if (Inst->mayReadFromMemory() && 599 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 600 LastStore = nullptr; 601 602 // If this is a read-only call, process it. 603 if (CallValue::canHandle(Inst)) { 604 // If we have an available version of this call, and if it is the right 605 // generation, replace this instruction. 606 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); 607 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 608 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 609 << " to: " << *InVal.first << '\n'); 610 if (!Inst->use_empty()) 611 Inst->replaceAllUsesWith(InVal.first); 612 Inst->eraseFromParent(); 613 Changed = true; 614 ++NumCSECall; 615 continue; 616 } 617 618 // Otherwise, remember that we have this instruction. 619 AvailableCalls.insert( 620 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 621 continue; 622 } 623 624 // A release fence requires that all stores complete before it, but does 625 // not prevent the reordering of following loads 'before' the fence. As a 626 // result, we don't need to consider it as writing to memory and don't need 627 // to advance the generation. We do need to prevent DSE across the fence, 628 // but that's handled above. 629 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 630 if (FI->getOrdering() == Release) { 631 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 632 continue; 633 } 634 635 // Okay, this isn't something we can CSE at all. Check to see if it is 636 // something that could modify memory. If so, our available memory values 637 // cannot be used so bump the generation count. 638 if (Inst->mayWriteToMemory()) { 639 ++CurrentGeneration; 640 641 if (MemInst.isValid() && MemInst.isStore()) { 642 // We do a trivial form of DSE if there are two stores to the same 643 // location with no intervening loads. Delete the earlier store. 644 if (LastStore) { 645 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 646 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 647 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 648 << " due to: " << *Inst << '\n'); 649 LastStore->eraseFromParent(); 650 Changed = true; 651 ++NumDSE; 652 LastStore = nullptr; 653 } 654 // fallthrough - we can exploit information about this store 655 } 656 657 // Okay, we just invalidated anything we knew about loaded values. Try 658 // to salvage *something* by remembering that the stored value is a live 659 // version of the pointer. It is safe to forward from volatile stores 660 // to non-volatile loads, so we don't have to check for volatility of 661 // the store. 662 AvailableLoads.insert( 663 MemInst.getPointerOperand(), 664 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 665 666 // Remember that this was the last normal store we saw for DSE. 667 if (MemInst.isSimple()) 668 LastStore = Inst; 669 } 670 } 671 } 672 673 return Changed; 674 } 675 676 bool EarlyCSE::run() { 677 // Note, deque is being used here because there is significant performance 678 // gains over vector when the container becomes very large due to the 679 // specific access patterns. For more information see the mailing list 680 // discussion on this: 681 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 682 std::deque<StackNode *> nodesToProcess; 683 684 bool Changed = false; 685 686 // Process the root node. 687 nodesToProcess.push_back(new StackNode( 688 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 689 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 690 691 // Save the current generation. 692 unsigned LiveOutGeneration = CurrentGeneration; 693 694 // Process the stack. 695 while (!nodesToProcess.empty()) { 696 // Grab the first item off the stack. Set the current generation, remove 697 // the node from the stack, and process it. 698 StackNode *NodeToProcess = nodesToProcess.back(); 699 700 // Initialize class members. 701 CurrentGeneration = NodeToProcess->currentGeneration(); 702 703 // Check if the node needs to be processed. 704 if (!NodeToProcess->isProcessed()) { 705 // Process the node. 706 Changed |= processNode(NodeToProcess->node()); 707 NodeToProcess->childGeneration(CurrentGeneration); 708 NodeToProcess->process(); 709 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 710 // Push the next child onto the stack. 711 DomTreeNode *child = NodeToProcess->nextChild(); 712 nodesToProcess.push_back( 713 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 714 NodeToProcess->childGeneration(), child, child->begin(), 715 child->end())); 716 } else { 717 // It has been processed, and there are no more children to process, 718 // so delete it and pop it off the stack. 719 delete NodeToProcess; 720 nodesToProcess.pop_back(); 721 } 722 } // while (!nodes...) 723 724 // Reset the current generation. 725 CurrentGeneration = LiveOutGeneration; 726 727 return Changed; 728 } 729 730 PreservedAnalyses EarlyCSEPass::run(Function &F, 731 AnalysisManager<Function> *AM) { 732 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 733 auto &TTI = AM->getResult<TargetIRAnalysis>(F); 734 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 735 auto &AC = AM->getResult<AssumptionAnalysis>(F); 736 737 EarlyCSE CSE(TLI, TTI, DT, AC); 738 739 if (!CSE.run()) 740 return PreservedAnalyses::all(); 741 742 // CSE preserves the dominator tree because it doesn't mutate the CFG. 743 // FIXME: Bundle this with other CFG-preservation. 744 PreservedAnalyses PA; 745 PA.preserve<DominatorTreeAnalysis>(); 746 return PA; 747 } 748 749 namespace { 750 /// \brief A simple and fast domtree-based CSE pass. 751 /// 752 /// This pass does a simple depth-first walk over the dominator tree, 753 /// eliminating trivially redundant instructions and using instsimplify to 754 /// canonicalize things as it goes. It is intended to be fast and catch obvious 755 /// cases so that instcombine and other passes are more effective. It is 756 /// expected that a later pass of GVN will catch the interesting/hard cases. 757 class EarlyCSELegacyPass : public FunctionPass { 758 public: 759 static char ID; 760 761 EarlyCSELegacyPass() : FunctionPass(ID) { 762 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 763 } 764 765 bool runOnFunction(Function &F) override { 766 if (skipOptnoneFunction(F)) 767 return false; 768 769 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 770 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 771 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 772 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 773 774 EarlyCSE CSE(TLI, TTI, DT, AC); 775 776 return CSE.run(); 777 } 778 779 void getAnalysisUsage(AnalysisUsage &AU) const override { 780 AU.addRequired<AssumptionCacheTracker>(); 781 AU.addRequired<DominatorTreeWrapperPass>(); 782 AU.addRequired<TargetLibraryInfoWrapperPass>(); 783 AU.addRequired<TargetTransformInfoWrapperPass>(); 784 AU.addPreserved<GlobalsAAWrapperPass>(); 785 AU.setPreservesCFG(); 786 } 787 }; 788 } 789 790 char EarlyCSELegacyPass::ID = 0; 791 792 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 793 794 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 795 false) 796 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 797 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 798 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 799 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 800 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 801