1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include <deque> 36 using namespace llvm; 37 using namespace llvm::PatternMatch; 38 39 #define DEBUG_TYPE "early-cse" 40 41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 42 STATISTIC(NumCSE, "Number of instructions CSE'd"); 43 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 44 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 45 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 46 47 //===----------------------------------------------------------------------===// 48 // SimpleValue 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// \brief Struct representing the available values in the scoped hash table. 53 struct SimpleValue { 54 Instruction *Inst; 55 56 SimpleValue(Instruction *I) : Inst(I) { 57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 58 } 59 60 bool isSentinel() const { 61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 63 } 64 65 static bool canHandle(Instruction *Inst) { 66 // This can only handle non-void readnone functions. 67 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 74 } 75 }; 76 } 77 78 namespace llvm { 79 template <> struct DenseMapInfo<SimpleValue> { 80 static inline SimpleValue getEmptyKey() { 81 return DenseMapInfo<Instruction *>::getEmptyKey(); 82 } 83 static inline SimpleValue getTombstoneKey() { 84 return DenseMapInfo<Instruction *>::getTombstoneKey(); 85 } 86 static unsigned getHashValue(SimpleValue Val); 87 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 88 }; 89 } 90 91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 92 Instruction *Inst = Val.Inst; 93 // Hash in all of the operands as pointers. 94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 95 Value *LHS = BinOp->getOperand(0); 96 Value *RHS = BinOp->getOperand(1); 97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 98 std::swap(LHS, RHS); 99 100 if (isa<OverflowingBinaryOperator>(BinOp)) { 101 // Hash the overflow behavior 102 unsigned Overflow = 103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 104 BinOp->hasNoUnsignedWrap() * 105 OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && 139 "Invalid/unknown instruction"); 140 141 // Mix in the opcode. 142 return hash_combine( 143 Inst->getOpcode(), 144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 145 } 146 147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 149 150 if (LHS.isSentinel() || RHS.isSentinel()) 151 return LHSI == RHSI; 152 153 if (LHSI->getOpcode() != RHSI->getOpcode()) 154 return false; 155 if (LHSI->isIdenticalTo(RHSI)) 156 return true; 157 158 // If we're not strictly identical, we still might be a commutable instruction 159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 160 if (!LHSBinOp->isCommutative()) 161 return false; 162 163 assert(isa<BinaryOperator>(RHSI) && 164 "same opcode, but different instruction type?"); 165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 166 167 // Check overflow attributes 168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 170 "same opcode, but different operator type?"); 171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 173 return false; 174 } 175 176 // Commuted equality 177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 179 } 180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 181 assert(isa<CmpInst>(RHSI) && 182 "same opcode, but different instruction type?"); 183 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 184 // Commuted equality 185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 188 } 189 190 return false; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CallValue 195 //===----------------------------------------------------------------------===// 196 197 namespace { 198 /// \brief Struct representing the available call values in the scoped hash 199 /// table. 200 struct CallValue { 201 Instruction *Inst; 202 203 CallValue(Instruction *I) : Inst(I) { 204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 205 } 206 207 bool isSentinel() const { 208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 210 } 211 212 static bool canHandle(Instruction *Inst) { 213 // Don't value number anything that returns void. 214 if (Inst->getType()->isVoidTy()) 215 return false; 216 217 CallInst *CI = dyn_cast<CallInst>(Inst); 218 if (!CI || !CI->onlyReadsMemory()) 219 return false; 220 return true; 221 } 222 }; 223 } 224 225 namespace llvm { 226 template <> struct DenseMapInfo<CallValue> { 227 static inline CallValue getEmptyKey() { 228 return DenseMapInfo<Instruction *>::getEmptyKey(); 229 } 230 static inline CallValue getTombstoneKey() { 231 return DenseMapInfo<Instruction *>::getTombstoneKey(); 232 } 233 static unsigned getHashValue(CallValue Val); 234 static bool isEqual(CallValue LHS, CallValue RHS); 235 }; 236 } 237 238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 239 Instruction *Inst = Val.Inst; 240 // Hash all of the operands as pointers and mix in the opcode. 241 return hash_combine( 242 Inst->getOpcode(), 243 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 244 } 245 246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 247 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 248 if (LHS.isSentinel() || RHS.isSentinel()) 249 return LHSI == RHSI; 250 return LHSI->isIdenticalTo(RHSI); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // EarlyCSE implementation 255 //===----------------------------------------------------------------------===// 256 257 namespace { 258 /// \brief A simple and fast domtree-based CSE pass. 259 /// 260 /// This pass does a simple depth-first walk over the dominator tree, 261 /// eliminating trivially redundant instructions and using instsimplify to 262 /// canonicalize things as it goes. It is intended to be fast and catch obvious 263 /// cases so that instcombine and other passes are more effective. It is 264 /// expected that a later pass of GVN will catch the interesting/hard cases. 265 class EarlyCSE { 266 public: 267 const TargetLibraryInfo &TLI; 268 const TargetTransformInfo &TTI; 269 DominatorTree &DT; 270 AssumptionCache &AC; 271 typedef RecyclingAllocator< 272 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 273 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 274 AllocatorTy> ScopedHTType; 275 276 /// \brief A scoped hash table of the current values of all of our simple 277 /// scalar expressions. 278 /// 279 /// As we walk down the domtree, we look to see if instructions are in this: 280 /// if so, we replace them with what we find, otherwise we insert them so 281 /// that dominated values can succeed in their lookup. 282 ScopedHTType AvailableValues; 283 284 /// A scoped hash table of the current values of previously encounted memory 285 /// locations. 286 /// 287 /// This allows us to get efficient access to dominating loads or stores when 288 /// we have a fully redundant load. In addition to the most recent load, we 289 /// keep track of a generation count of the read, which is compared against 290 /// the current generation count. The current generation count is incremented 291 /// after every possibly writing memory operation, which ensures that we only 292 /// CSE loads with other loads that have no intervening store. Ordering 293 /// events (such as fences or atomic instructions) increment the generation 294 /// count as well; essentially, we model these as writes to all possible 295 /// locations. Note that atomic and/or volatile loads and stores can be 296 /// present the table; it is the responsibility of the consumer to inspect 297 /// the atomicity/volatility if needed. 298 struct LoadValue { 299 Value *Data; 300 unsigned Generation; 301 int MatchingId; 302 bool IsAtomic; 303 LoadValue() 304 : Data(nullptr), Generation(0), MatchingId(-1), IsAtomic(false) {} 305 LoadValue(Value *Data, unsigned Generation, unsigned MatchingId, 306 bool IsAtomic) 307 : Data(Data), Generation(Generation), MatchingId(MatchingId), 308 IsAtomic(IsAtomic) {} 309 }; 310 typedef RecyclingAllocator<BumpPtrAllocator, 311 ScopedHashTableVal<Value *, LoadValue>> 312 LoadMapAllocator; 313 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 314 LoadMapAllocator> LoadHTType; 315 LoadHTType AvailableLoads; 316 317 /// \brief A scoped hash table of the current values of read-only call 318 /// values. 319 /// 320 /// It uses the same generation count as loads. 321 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 322 CallHTType AvailableCalls; 323 324 /// \brief This is the current generation of the memory value. 325 unsigned CurrentGeneration; 326 327 /// \brief Set up the EarlyCSE runner for a particular function. 328 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 329 DominatorTree &DT, AssumptionCache &AC) 330 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} 331 332 bool run(); 333 334 private: 335 // Almost a POD, but needs to call the constructors for the scoped hash 336 // tables so that a new scope gets pushed on. These are RAII so that the 337 // scope gets popped when the NodeScope is destroyed. 338 class NodeScope { 339 public: 340 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 341 CallHTType &AvailableCalls) 342 : Scope(AvailableValues), LoadScope(AvailableLoads), 343 CallScope(AvailableCalls) {} 344 345 private: 346 NodeScope(const NodeScope &) = delete; 347 void operator=(const NodeScope &) = delete; 348 349 ScopedHTType::ScopeTy Scope; 350 LoadHTType::ScopeTy LoadScope; 351 CallHTType::ScopeTy CallScope; 352 }; 353 354 // Contains all the needed information to create a stack for doing a depth 355 // first tranversal of the tree. This includes scopes for values, loads, and 356 // calls as well as the generation. There is a child iterator so that the 357 // children do not need to be store spearately. 358 class StackNode { 359 public: 360 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 361 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 362 DomTreeNode::iterator child, DomTreeNode::iterator end) 363 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 364 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 365 Processed(false) {} 366 367 // Accessors. 368 unsigned currentGeneration() { return CurrentGeneration; } 369 unsigned childGeneration() { return ChildGeneration; } 370 void childGeneration(unsigned generation) { ChildGeneration = generation; } 371 DomTreeNode *node() { return Node; } 372 DomTreeNode::iterator childIter() { return ChildIter; } 373 DomTreeNode *nextChild() { 374 DomTreeNode *child = *ChildIter; 375 ++ChildIter; 376 return child; 377 } 378 DomTreeNode::iterator end() { return EndIter; } 379 bool isProcessed() { return Processed; } 380 void process() { Processed = true; } 381 382 private: 383 StackNode(const StackNode &) = delete; 384 void operator=(const StackNode &) = delete; 385 386 // Members. 387 unsigned CurrentGeneration; 388 unsigned ChildGeneration; 389 DomTreeNode *Node; 390 DomTreeNode::iterator ChildIter; 391 DomTreeNode::iterator EndIter; 392 NodeScope Scopes; 393 bool Processed; 394 }; 395 396 /// \brief Wrapper class to handle memory instructions, including loads, 397 /// stores and intrinsic loads and stores defined by the target. 398 class ParseMemoryInst { 399 public: 400 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 401 : IsTargetMemInst(false), Inst(Inst) { 402 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 403 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1) 404 IsTargetMemInst = true; 405 } 406 bool isLoad() const { 407 if (IsTargetMemInst) return Info.ReadMem; 408 return isa<LoadInst>(Inst); 409 } 410 bool isStore() const { 411 if (IsTargetMemInst) return Info.WriteMem; 412 return isa<StoreInst>(Inst); 413 } 414 bool isSimple() const { 415 if (IsTargetMemInst) return Info.IsSimple; 416 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 417 return LI->isSimple(); 418 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 419 return SI->isSimple(); 420 } 421 return Inst->isAtomic(); 422 } 423 bool isAtomic() const { 424 if (IsTargetMemInst) { 425 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 426 return false; 427 } 428 return Inst->isAtomic(); 429 } 430 bool isUnordered() const { 431 if (IsTargetMemInst) { 432 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 433 return true; 434 } 435 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 436 return LI->isUnordered(); 437 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 438 return SI->isUnordered(); 439 } 440 // Conservative answer 441 return !Inst->isAtomic(); 442 } 443 444 bool isVolatile() const { 445 if (IsTargetMemInst) { 446 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 447 return false; 448 } 449 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 450 return LI->isVolatile(); 451 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 452 return SI->isVolatile(); 453 } 454 // Conservative answer 455 return true; 456 } 457 458 459 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 460 return (getPointerOperand() == Inst.getPointerOperand() && 461 getMatchingId() == Inst.getMatchingId()); 462 } 463 bool isValid() const { return getPointerOperand() != nullptr; } 464 465 // For regular (non-intrinsic) loads/stores, this is set to -1. For 466 // intrinsic loads/stores, the id is retrieved from the corresponding 467 // field in the MemIntrinsicInfo structure. That field contains 468 // non-negative values only. 469 int getMatchingId() const { 470 if (IsTargetMemInst) return Info.MatchingId; 471 return -1; 472 } 473 Value *getPointerOperand() const { 474 if (IsTargetMemInst) return Info.PtrVal; 475 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 476 return LI->getPointerOperand(); 477 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 478 return SI->getPointerOperand(); 479 } 480 return nullptr; 481 } 482 bool mayReadFromMemory() const { 483 if (IsTargetMemInst) return Info.ReadMem; 484 return Inst->mayReadFromMemory(); 485 } 486 bool mayWriteToMemory() const { 487 if (IsTargetMemInst) return Info.WriteMem; 488 return Inst->mayWriteToMemory(); 489 } 490 491 private: 492 bool IsTargetMemInst; 493 MemIntrinsicInfo Info; 494 Instruction *Inst; 495 }; 496 497 bool processNode(DomTreeNode *Node); 498 499 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 500 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 501 return LI; 502 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 503 return SI->getValueOperand(); 504 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 505 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 506 ExpectedType); 507 } 508 }; 509 } 510 511 bool EarlyCSE::processNode(DomTreeNode *Node) { 512 BasicBlock *BB = Node->getBlock(); 513 514 // If this block has a single predecessor, then the predecessor is the parent 515 // of the domtree node and all of the live out memory values are still current 516 // in this block. If this block has multiple predecessors, then they could 517 // have invalidated the live-out memory values of our parent value. For now, 518 // just be conservative and invalidate memory if this block has multiple 519 // predecessors. 520 if (!BB->getSinglePredecessor()) 521 ++CurrentGeneration; 522 523 // If this node has a single predecessor which ends in a conditional branch, 524 // we can infer the value of the branch condition given that we took this 525 // path. We need the single predeccesor to ensure there's not another path 526 // which reaches this block where the condition might hold a different 527 // value. Since we're adding this to the scoped hash table (like any other 528 // def), it will have been popped if we encounter a future merge block. 529 if (BasicBlock *Pred = BB->getSinglePredecessor()) 530 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 531 if (BI->isConditional()) 532 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 533 if (SimpleValue::canHandle(CondInst)) { 534 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 535 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 536 ConstantInt::getTrue(BB->getContext()) : 537 ConstantInt::getFalse(BB->getContext()); 538 AvailableValues.insert(CondInst, ConditionalConstant); 539 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 540 << CondInst->getName() << "' as " << *ConditionalConstant 541 << " in " << BB->getName() << "\n"); 542 // Replace all dominated uses with the known value 543 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 544 BasicBlockEdge(Pred, BB)); 545 } 546 547 /// LastStore - Keep track of the last non-volatile store that we saw... for 548 /// as long as there in no instruction that reads memory. If we see a store 549 /// to the same location, we delete the dead store. This zaps trivial dead 550 /// stores which can occur in bitfield code among other things. 551 Instruction *LastStore = nullptr; 552 553 bool Changed = false; 554 const DataLayout &DL = BB->getModule()->getDataLayout(); 555 556 // See if any instructions in the block can be eliminated. If so, do it. If 557 // not, add them to AvailableValues. 558 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 559 Instruction *Inst = &*I++; 560 561 // Dead instructions should just be removed. 562 if (isInstructionTriviallyDead(Inst, &TLI)) { 563 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 564 Inst->eraseFromParent(); 565 Changed = true; 566 ++NumSimplify; 567 continue; 568 } 569 570 // Skip assume intrinsics, they don't really have side effects (although 571 // they're marked as such to ensure preservation of control dependencies), 572 // and this pass will not disturb any of the assumption's control 573 // dependencies. 574 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 575 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 576 continue; 577 } 578 579 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 580 // its simpler value. 581 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 582 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 583 Inst->replaceAllUsesWith(V); 584 Inst->eraseFromParent(); 585 Changed = true; 586 ++NumSimplify; 587 continue; 588 } 589 590 // If this is a simple instruction that we can value number, process it. 591 if (SimpleValue::canHandle(Inst)) { 592 // See if the instruction has an available value. If so, use it. 593 if (Value *V = AvailableValues.lookup(Inst)) { 594 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 595 Inst->replaceAllUsesWith(V); 596 Inst->eraseFromParent(); 597 Changed = true; 598 ++NumCSE; 599 continue; 600 } 601 602 // Otherwise, just remember that this value is available. 603 AvailableValues.insert(Inst, Inst); 604 continue; 605 } 606 607 ParseMemoryInst MemInst(Inst, TTI); 608 // If this is a non-volatile load, process it. 609 if (MemInst.isValid() && MemInst.isLoad()) { 610 // (conservatively) we can't peak past the ordering implied by this 611 // operation, but we can add this load to our set of available values 612 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 613 LastStore = nullptr; 614 ++CurrentGeneration; 615 } 616 617 // If we have an available version of this load, and if it is the right 618 // generation, replace this instruction. 619 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 620 if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration && 621 InVal.MatchingId == MemInst.getMatchingId() && 622 // We don't yet handle removing loads with ordering of any kind. 623 !MemInst.isVolatile() && MemInst.isUnordered() && 624 // We can't replace an atomic load with one which isn't also atomic. 625 InVal.IsAtomic >= MemInst.isAtomic()) { 626 Value *Op = getOrCreateResult(InVal.Data, Inst->getType()); 627 if (Op != nullptr) { 628 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 629 << " to: " << *InVal.Data << '\n'); 630 if (!Inst->use_empty()) 631 Inst->replaceAllUsesWith(Op); 632 Inst->eraseFromParent(); 633 Changed = true; 634 ++NumCSELoad; 635 continue; 636 } 637 } 638 639 // Otherwise, remember that we have this instruction. 640 AvailableLoads.insert( 641 MemInst.getPointerOperand(), 642 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 643 MemInst.isAtomic())); 644 LastStore = nullptr; 645 continue; 646 } 647 648 // If this instruction may read from memory, forget LastStore. 649 // Load/store intrinsics will indicate both a read and a write to 650 // memory. The target may override this (e.g. so that a store intrinsic 651 // does not read from memory, and thus will be treated the same as a 652 // regular store for commoning purposes). 653 if (Inst->mayReadFromMemory() && 654 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 655 LastStore = nullptr; 656 657 // If this is a read-only call, process it. 658 if (CallValue::canHandle(Inst)) { 659 // If we have an available version of this call, and if it is the right 660 // generation, replace this instruction. 661 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); 662 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 663 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 664 << " to: " << *InVal.first << '\n'); 665 if (!Inst->use_empty()) 666 Inst->replaceAllUsesWith(InVal.first); 667 Inst->eraseFromParent(); 668 Changed = true; 669 ++NumCSECall; 670 continue; 671 } 672 673 // Otherwise, remember that we have this instruction. 674 AvailableCalls.insert( 675 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 676 continue; 677 } 678 679 // A release fence requires that all stores complete before it, but does 680 // not prevent the reordering of following loads 'before' the fence. As a 681 // result, we don't need to consider it as writing to memory and don't need 682 // to advance the generation. We do need to prevent DSE across the fence, 683 // but that's handled above. 684 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 685 if (FI->getOrdering() == Release) { 686 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 687 continue; 688 } 689 690 // Okay, this isn't something we can CSE at all. Check to see if it is 691 // something that could modify memory. If so, our available memory values 692 // cannot be used so bump the generation count. 693 if (Inst->mayWriteToMemory()) { 694 ++CurrentGeneration; 695 696 if (MemInst.isValid() && MemInst.isStore()) { 697 // We do a trivial form of DSE if there are two stores to the same 698 // location with no intervening loads. Delete the earlier store. Note 699 // that we can delete an earlier simple store even if the following one 700 // is ordered/volatile/atomic store. 701 if (LastStore) { 702 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 703 assert(LastStoreMemInst.isSimple() && "Violated invariant"); 704 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 705 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 706 << " due to: " << *Inst << '\n'); 707 LastStore->eraseFromParent(); 708 Changed = true; 709 ++NumDSE; 710 LastStore = nullptr; 711 } 712 // fallthrough - we can exploit information about this store 713 } 714 715 // Okay, we just invalidated anything we knew about loaded values. Try 716 // to salvage *something* by remembering that the stored value is a live 717 // version of the pointer. It is safe to forward from volatile stores 718 // to non-volatile loads, so we don't have to check for volatility of 719 // the store. 720 AvailableLoads.insert( 721 MemInst.getPointerOperand(), 722 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 723 MemInst.isAtomic())); 724 725 // Remember that this was the last normal store we saw for DSE. 726 // Note that we can't delete an earlier atomic or volatile store in 727 // favor of a later one which isn't. We could in principal remove an 728 // earlier unordered store if the later one is also unordered. 729 if (MemInst.isSimple()) 730 LastStore = Inst; 731 else 732 LastStore = nullptr; 733 } 734 } 735 } 736 737 return Changed; 738 } 739 740 bool EarlyCSE::run() { 741 // Note, deque is being used here because there is significant performance 742 // gains over vector when the container becomes very large due to the 743 // specific access patterns. For more information see the mailing list 744 // discussion on this: 745 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 746 std::deque<StackNode *> nodesToProcess; 747 748 bool Changed = false; 749 750 // Process the root node. 751 nodesToProcess.push_back(new StackNode( 752 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 753 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 754 755 // Save the current generation. 756 unsigned LiveOutGeneration = CurrentGeneration; 757 758 // Process the stack. 759 while (!nodesToProcess.empty()) { 760 // Grab the first item off the stack. Set the current generation, remove 761 // the node from the stack, and process it. 762 StackNode *NodeToProcess = nodesToProcess.back(); 763 764 // Initialize class members. 765 CurrentGeneration = NodeToProcess->currentGeneration(); 766 767 // Check if the node needs to be processed. 768 if (!NodeToProcess->isProcessed()) { 769 // Process the node. 770 Changed |= processNode(NodeToProcess->node()); 771 NodeToProcess->childGeneration(CurrentGeneration); 772 NodeToProcess->process(); 773 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 774 // Push the next child onto the stack. 775 DomTreeNode *child = NodeToProcess->nextChild(); 776 nodesToProcess.push_back( 777 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 778 NodeToProcess->childGeneration(), child, child->begin(), 779 child->end())); 780 } else { 781 // It has been processed, and there are no more children to process, 782 // so delete it and pop it off the stack. 783 delete NodeToProcess; 784 nodesToProcess.pop_back(); 785 } 786 } // while (!nodes...) 787 788 // Reset the current generation. 789 CurrentGeneration = LiveOutGeneration; 790 791 return Changed; 792 } 793 794 PreservedAnalyses EarlyCSEPass::run(Function &F, 795 AnalysisManager<Function> *AM) { 796 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 797 auto &TTI = AM->getResult<TargetIRAnalysis>(F); 798 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 799 auto &AC = AM->getResult<AssumptionAnalysis>(F); 800 801 EarlyCSE CSE(TLI, TTI, DT, AC); 802 803 if (!CSE.run()) 804 return PreservedAnalyses::all(); 805 806 // CSE preserves the dominator tree because it doesn't mutate the CFG. 807 // FIXME: Bundle this with other CFG-preservation. 808 PreservedAnalyses PA; 809 PA.preserve<DominatorTreeAnalysis>(); 810 return PA; 811 } 812 813 namespace { 814 /// \brief A simple and fast domtree-based CSE pass. 815 /// 816 /// This pass does a simple depth-first walk over the dominator tree, 817 /// eliminating trivially redundant instructions and using instsimplify to 818 /// canonicalize things as it goes. It is intended to be fast and catch obvious 819 /// cases so that instcombine and other passes are more effective. It is 820 /// expected that a later pass of GVN will catch the interesting/hard cases. 821 class EarlyCSELegacyPass : public FunctionPass { 822 public: 823 static char ID; 824 825 EarlyCSELegacyPass() : FunctionPass(ID) { 826 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 827 } 828 829 bool runOnFunction(Function &F) override { 830 if (skipOptnoneFunction(F)) 831 return false; 832 833 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 834 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 835 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 836 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 837 838 EarlyCSE CSE(TLI, TTI, DT, AC); 839 840 return CSE.run(); 841 } 842 843 void getAnalysisUsage(AnalysisUsage &AU) const override { 844 AU.addRequired<AssumptionCacheTracker>(); 845 AU.addRequired<DominatorTreeWrapperPass>(); 846 AU.addRequired<TargetLibraryInfoWrapperPass>(); 847 AU.addRequired<TargetTransformInfoWrapperPass>(); 848 AU.addPreserved<GlobalsAAWrapperPass>(); 849 AU.setPreservesCFG(); 850 } 851 }; 852 } 853 854 char EarlyCSELegacyPass::ID = 0; 855 856 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 857 858 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 859 false) 860 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 861 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 862 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 863 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 864 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 865