1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include <deque> 36 using namespace llvm; 37 using namespace llvm::PatternMatch; 38 39 #define DEBUG_TYPE "early-cse" 40 41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 42 STATISTIC(NumCSE, "Number of instructions CSE'd"); 43 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 44 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 45 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 46 47 //===----------------------------------------------------------------------===// 48 // SimpleValue 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// \brief Struct representing the available values in the scoped hash table. 53 struct SimpleValue { 54 Instruction *Inst; 55 56 SimpleValue(Instruction *I) : Inst(I) { 57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 58 } 59 60 bool isSentinel() const { 61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 63 } 64 65 static bool canHandle(Instruction *Inst) { 66 // This can only handle non-void readnone functions. 67 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 74 } 75 }; 76 } 77 78 namespace llvm { 79 template <> struct DenseMapInfo<SimpleValue> { 80 static inline SimpleValue getEmptyKey() { 81 return DenseMapInfo<Instruction *>::getEmptyKey(); 82 } 83 static inline SimpleValue getTombstoneKey() { 84 return DenseMapInfo<Instruction *>::getTombstoneKey(); 85 } 86 static unsigned getHashValue(SimpleValue Val); 87 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 88 }; 89 } 90 91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 92 Instruction *Inst = Val.Inst; 93 // Hash in all of the operands as pointers. 94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 95 Value *LHS = BinOp->getOperand(0); 96 Value *RHS = BinOp->getOperand(1); 97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 98 std::swap(LHS, RHS); 99 100 if (isa<OverflowingBinaryOperator>(BinOp)) { 101 // Hash the overflow behavior 102 unsigned Overflow = 103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 104 BinOp->hasNoUnsignedWrap() * 105 OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && 139 "Invalid/unknown instruction"); 140 141 // Mix in the opcode. 142 return hash_combine( 143 Inst->getOpcode(), 144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 145 } 146 147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 149 150 if (LHS.isSentinel() || RHS.isSentinel()) 151 return LHSI == RHSI; 152 153 if (LHSI->getOpcode() != RHSI->getOpcode()) 154 return false; 155 if (LHSI->isIdenticalTo(RHSI)) 156 return true; 157 158 // If we're not strictly identical, we still might be a commutable instruction 159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 160 if (!LHSBinOp->isCommutative()) 161 return false; 162 163 assert(isa<BinaryOperator>(RHSI) && 164 "same opcode, but different instruction type?"); 165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 166 167 // Check overflow attributes 168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 170 "same opcode, but different operator type?"); 171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 173 return false; 174 } 175 176 // Commuted equality 177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 179 } 180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 181 assert(isa<CmpInst>(RHSI) && 182 "same opcode, but different instruction type?"); 183 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 184 // Commuted equality 185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 188 } 189 190 return false; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CallValue 195 //===----------------------------------------------------------------------===// 196 197 namespace { 198 /// \brief Struct representing the available call values in the scoped hash 199 /// table. 200 struct CallValue { 201 Instruction *Inst; 202 203 CallValue(Instruction *I) : Inst(I) { 204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 205 } 206 207 bool isSentinel() const { 208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 210 } 211 212 static bool canHandle(Instruction *Inst) { 213 // Don't value number anything that returns void. 214 if (Inst->getType()->isVoidTy()) 215 return false; 216 217 CallInst *CI = dyn_cast<CallInst>(Inst); 218 if (!CI || !CI->onlyReadsMemory()) 219 return false; 220 return true; 221 } 222 }; 223 } 224 225 namespace llvm { 226 template <> struct DenseMapInfo<CallValue> { 227 static inline CallValue getEmptyKey() { 228 return DenseMapInfo<Instruction *>::getEmptyKey(); 229 } 230 static inline CallValue getTombstoneKey() { 231 return DenseMapInfo<Instruction *>::getTombstoneKey(); 232 } 233 static unsigned getHashValue(CallValue Val); 234 static bool isEqual(CallValue LHS, CallValue RHS); 235 }; 236 } 237 238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 239 Instruction *Inst = Val.Inst; 240 // Hash all of the operands as pointers and mix in the opcode. 241 return hash_combine( 242 Inst->getOpcode(), 243 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 244 } 245 246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 247 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 248 if (LHS.isSentinel() || RHS.isSentinel()) 249 return LHSI == RHSI; 250 return LHSI->isIdenticalTo(RHSI); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // EarlyCSE implementation 255 //===----------------------------------------------------------------------===// 256 257 namespace { 258 /// \brief A simple and fast domtree-based CSE pass. 259 /// 260 /// This pass does a simple depth-first walk over the dominator tree, 261 /// eliminating trivially redundant instructions and using instsimplify to 262 /// canonicalize things as it goes. It is intended to be fast and catch obvious 263 /// cases so that instcombine and other passes are more effective. It is 264 /// expected that a later pass of GVN will catch the interesting/hard cases. 265 class EarlyCSE { 266 public: 267 Function &F; 268 const TargetLibraryInfo &TLI; 269 const TargetTransformInfo &TTI; 270 DominatorTree &DT; 271 AssumptionCache &AC; 272 typedef RecyclingAllocator< 273 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 274 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 275 AllocatorTy> ScopedHTType; 276 277 /// \brief A scoped hash table of the current values of all of our simple 278 /// scalar expressions. 279 /// 280 /// As we walk down the domtree, we look to see if instructions are in this: 281 /// if so, we replace them with what we find, otherwise we insert them so 282 /// that dominated values can succeed in their lookup. 283 ScopedHTType AvailableValues; 284 285 /// \brief A scoped hash table of the current values of loads. 286 /// 287 /// This allows us to get efficient access to dominating loads when we have 288 /// a fully redundant load. In addition to the most recent load, we keep 289 /// track of a generation count of the read, which is compared against the 290 /// current generation count. The current generation count is incremented 291 /// after every possibly writing memory operation, which ensures that we only 292 /// CSE loads with other loads that have no intervening store. 293 struct LoadValue { 294 Value *Data; 295 unsigned Generation; 296 int MatchingId; 297 LoadValue() : Data(nullptr), Generation(0), MatchingId(-1) {} 298 LoadValue(Value *Data, unsigned Generation, unsigned MatchingId) 299 : Data(Data), Generation(Generation), MatchingId(MatchingId) {} 300 }; 301 typedef RecyclingAllocator<BumpPtrAllocator, 302 ScopedHashTableVal<Value *, LoadValue>> 303 LoadMapAllocator; 304 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 305 LoadMapAllocator> LoadHTType; 306 LoadHTType AvailableLoads; 307 308 /// \brief A scoped hash table of the current values of read-only call 309 /// values. 310 /// 311 /// It uses the same generation count as loads. 312 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 313 CallHTType AvailableCalls; 314 315 /// \brief This is the current generation of the memory value. 316 unsigned CurrentGeneration; 317 318 /// \brief Set up the EarlyCSE runner for a particular function. 319 EarlyCSE(Function &F, const TargetLibraryInfo &TLI, 320 const TargetTransformInfo &TTI, DominatorTree &DT, 321 AssumptionCache &AC) 322 : F(F), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} 323 324 bool run(); 325 326 private: 327 // Almost a POD, but needs to call the constructors for the scoped hash 328 // tables so that a new scope gets pushed on. These are RAII so that the 329 // scope gets popped when the NodeScope is destroyed. 330 class NodeScope { 331 public: 332 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 333 CallHTType &AvailableCalls) 334 : Scope(AvailableValues), LoadScope(AvailableLoads), 335 CallScope(AvailableCalls) {} 336 337 private: 338 NodeScope(const NodeScope &) = delete; 339 void operator=(const NodeScope &) = delete; 340 341 ScopedHTType::ScopeTy Scope; 342 LoadHTType::ScopeTy LoadScope; 343 CallHTType::ScopeTy CallScope; 344 }; 345 346 // Contains all the needed information to create a stack for doing a depth 347 // first tranversal of the tree. This includes scopes for values, loads, and 348 // calls as well as the generation. There is a child iterator so that the 349 // children do not need to be store spearately. 350 class StackNode { 351 public: 352 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 353 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 354 DomTreeNode::iterator child, DomTreeNode::iterator end) 355 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 356 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 357 Processed(false) {} 358 359 // Accessors. 360 unsigned currentGeneration() { return CurrentGeneration; } 361 unsigned childGeneration() { return ChildGeneration; } 362 void childGeneration(unsigned generation) { ChildGeneration = generation; } 363 DomTreeNode *node() { return Node; } 364 DomTreeNode::iterator childIter() { return ChildIter; } 365 DomTreeNode *nextChild() { 366 DomTreeNode *child = *ChildIter; 367 ++ChildIter; 368 return child; 369 } 370 DomTreeNode::iterator end() { return EndIter; } 371 bool isProcessed() { return Processed; } 372 void process() { Processed = true; } 373 374 private: 375 StackNode(const StackNode &) = delete; 376 void operator=(const StackNode &) = delete; 377 378 // Members. 379 unsigned CurrentGeneration; 380 unsigned ChildGeneration; 381 DomTreeNode *Node; 382 DomTreeNode::iterator ChildIter; 383 DomTreeNode::iterator EndIter; 384 NodeScope Scopes; 385 bool Processed; 386 }; 387 388 /// \brief Wrapper class to handle memory instructions, including loads, 389 /// stores and intrinsic loads and stores defined by the target. 390 class ParseMemoryInst { 391 public: 392 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 393 : Load(false), Store(false), Vol(false), MayReadFromMemory(false), 394 MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) { 395 MayReadFromMemory = Inst->mayReadFromMemory(); 396 MayWriteToMemory = Inst->mayWriteToMemory(); 397 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 398 MemIntrinsicInfo Info; 399 if (!TTI.getTgtMemIntrinsic(II, Info)) 400 return; 401 if (Info.NumMemRefs == 1) { 402 Store = Info.WriteMem; 403 Load = Info.ReadMem; 404 MatchingId = Info.MatchingId; 405 MayReadFromMemory = Info.ReadMem; 406 MayWriteToMemory = Info.WriteMem; 407 Vol = Info.Vol; 408 Ptr = Info.PtrVal; 409 } 410 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 411 Load = true; 412 Vol = !LI->isSimple(); 413 Ptr = LI->getPointerOperand(); 414 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 415 Store = true; 416 Vol = !SI->isSimple(); 417 Ptr = SI->getPointerOperand(); 418 } 419 } 420 bool isLoad() const { return Load; } 421 bool isStore() const { return Store; } 422 bool isVolatile() const { return Vol; } 423 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 424 return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId; 425 } 426 bool isValid() const { return Ptr != nullptr; } 427 int getMatchingId() const { return MatchingId; } 428 Value *getPtr() const { return Ptr; } 429 bool mayReadFromMemory() const { return MayReadFromMemory; } 430 bool mayWriteToMemory() const { return MayWriteToMemory; } 431 432 private: 433 bool Load; 434 bool Store; 435 bool Vol; 436 bool MayReadFromMemory; 437 bool MayWriteToMemory; 438 // For regular (non-intrinsic) loads/stores, this is set to -1. For 439 // intrinsic loads/stores, the id is retrieved from the corresponding 440 // field in the MemIntrinsicInfo structure. That field contains 441 // non-negative values only. 442 int MatchingId; 443 Value *Ptr; 444 }; 445 446 bool processNode(DomTreeNode *Node); 447 448 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 449 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 450 return LI; 451 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 452 return SI->getValueOperand(); 453 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 454 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 455 ExpectedType); 456 } 457 }; 458 } 459 460 bool EarlyCSE::processNode(DomTreeNode *Node) { 461 BasicBlock *BB = Node->getBlock(); 462 463 // If this block has a single predecessor, then the predecessor is the parent 464 // of the domtree node and all of the live out memory values are still current 465 // in this block. If this block has multiple predecessors, then they could 466 // have invalidated the live-out memory values of our parent value. For now, 467 // just be conservative and invalidate memory if this block has multiple 468 // predecessors. 469 if (!BB->getSinglePredecessor()) 470 ++CurrentGeneration; 471 472 // If this node has a single predecessor which ends in a conditional branch, 473 // we can infer the value of the branch condition given that we took this 474 // path. We need the single predeccesor to ensure there's not another path 475 // which reaches this block where the condition might hold a different 476 // value. Since we're adding this to the scoped hash table (like any other 477 // def), it will have been popped if we encounter a future merge block. 478 if (BasicBlock *Pred = BB->getSinglePredecessor()) 479 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 480 if (BI->isConditional()) 481 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 482 if (SimpleValue::canHandle(CondInst)) { 483 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 484 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 485 ConstantInt::getTrue(BB->getContext()) : 486 ConstantInt::getFalse(BB->getContext()); 487 AvailableValues.insert(CondInst, ConditionalConstant); 488 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 489 << CondInst->getName() << "' as " << *ConditionalConstant 490 << " in " << BB->getName() << "\n"); 491 // Replace all dominated uses with the known value 492 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 493 BasicBlockEdge(Pred, BB)); 494 } 495 496 /// LastStore - Keep track of the last non-volatile store that we saw... for 497 /// as long as there in no instruction that reads memory. If we see a store 498 /// to the same location, we delete the dead store. This zaps trivial dead 499 /// stores which can occur in bitfield code among other things. 500 Instruction *LastStore = nullptr; 501 502 bool Changed = false; 503 const DataLayout &DL = BB->getModule()->getDataLayout(); 504 505 // See if any instructions in the block can be eliminated. If so, do it. If 506 // not, add them to AvailableValues. 507 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 508 Instruction *Inst = I++; 509 510 // Dead instructions should just be removed. 511 if (isInstructionTriviallyDead(Inst, &TLI)) { 512 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 513 Inst->eraseFromParent(); 514 Changed = true; 515 ++NumSimplify; 516 continue; 517 } 518 519 // Skip assume intrinsics, they don't really have side effects (although 520 // they're marked as such to ensure preservation of control dependencies), 521 // and this pass will not disturb any of the assumption's control 522 // dependencies. 523 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 524 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 525 continue; 526 } 527 528 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 529 // its simpler value. 530 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 531 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 532 Inst->replaceAllUsesWith(V); 533 Inst->eraseFromParent(); 534 Changed = true; 535 ++NumSimplify; 536 continue; 537 } 538 539 // If this is a simple instruction that we can value number, process it. 540 if (SimpleValue::canHandle(Inst)) { 541 // See if the instruction has an available value. If so, use it. 542 if (Value *V = AvailableValues.lookup(Inst)) { 543 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 544 Inst->replaceAllUsesWith(V); 545 Inst->eraseFromParent(); 546 Changed = true; 547 ++NumCSE; 548 continue; 549 } 550 551 // Otherwise, just remember that this value is available. 552 AvailableValues.insert(Inst, Inst); 553 continue; 554 } 555 556 ParseMemoryInst MemInst(Inst, TTI); 557 // If this is a non-volatile load, process it. 558 if (MemInst.isValid() && MemInst.isLoad()) { 559 // Ignore volatile loads. 560 if (MemInst.isVolatile()) { 561 LastStore = nullptr; 562 // Don't CSE across synchronization boundaries. 563 if (Inst->mayWriteToMemory()) 564 ++CurrentGeneration; 565 continue; 566 } 567 568 // If we have an available version of this load, and if it is the right 569 // generation, replace this instruction. 570 LoadValue InVal = AvailableLoads.lookup(MemInst.getPtr()); 571 if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration && 572 InVal.MatchingId == MemInst.getMatchingId()) { 573 Value *Op = getOrCreateResult(InVal.Data, Inst->getType()); 574 if (Op != nullptr) { 575 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 576 << " to: " << *InVal.Data << '\n'); 577 if (!Inst->use_empty()) 578 Inst->replaceAllUsesWith(Op); 579 Inst->eraseFromParent(); 580 Changed = true; 581 ++NumCSELoad; 582 continue; 583 } 584 } 585 586 // Otherwise, remember that we have this instruction. 587 AvailableLoads.insert( 588 MemInst.getPtr(), 589 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 590 LastStore = nullptr; 591 continue; 592 } 593 594 // If this instruction may read from memory, forget LastStore. 595 // Load/store intrinsics will indicate both a read and a write to 596 // memory. The target may override this (e.g. so that a store intrinsic 597 // does not read from memory, and thus will be treated the same as a 598 // regular store for commoning purposes). 599 if (Inst->mayReadFromMemory() && 600 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 601 LastStore = nullptr; 602 603 // If this is a read-only call, process it. 604 if (CallValue::canHandle(Inst)) { 605 // If we have an available version of this call, and if it is the right 606 // generation, replace this instruction. 607 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); 608 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 609 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 610 << " to: " << *InVal.first << '\n'); 611 if (!Inst->use_empty()) 612 Inst->replaceAllUsesWith(InVal.first); 613 Inst->eraseFromParent(); 614 Changed = true; 615 ++NumCSECall; 616 continue; 617 } 618 619 // Otherwise, remember that we have this instruction. 620 AvailableCalls.insert( 621 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 622 continue; 623 } 624 625 // A release fence requires that all stores complete before it, but does 626 // not prevent the reordering of following loads 'before' the fence. As a 627 // result, we don't need to consider it as writing to memory and don't need 628 // to advance the generation. We do need to prevent DSE across the fence, 629 // but that's handled above. 630 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 631 if (FI->getOrdering() == Release) { 632 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 633 continue; 634 } 635 636 // Okay, this isn't something we can CSE at all. Check to see if it is 637 // something that could modify memory. If so, our available memory values 638 // cannot be used so bump the generation count. 639 if (Inst->mayWriteToMemory()) { 640 ++CurrentGeneration; 641 642 if (MemInst.isValid() && MemInst.isStore()) { 643 // We do a trivial form of DSE if there are two stores to the same 644 // location with no intervening loads. Delete the earlier store. 645 if (LastStore) { 646 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 647 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 648 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 649 << " due to: " << *Inst << '\n'); 650 LastStore->eraseFromParent(); 651 Changed = true; 652 ++NumDSE; 653 LastStore = nullptr; 654 } 655 // fallthrough - we can exploit information about this store 656 } 657 658 // Okay, we just invalidated anything we knew about loaded values. Try 659 // to salvage *something* by remembering that the stored value is a live 660 // version of the pointer. It is safe to forward from volatile stores 661 // to non-volatile loads, so we don't have to check for volatility of 662 // the store. 663 AvailableLoads.insert( 664 MemInst.getPtr(), 665 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 666 667 // Remember that this was the last store we saw for DSE. 668 if (!MemInst.isVolatile()) 669 LastStore = Inst; 670 } 671 } 672 } 673 674 return Changed; 675 } 676 677 bool EarlyCSE::run() { 678 // Note, deque is being used here because there is significant performance 679 // gains over vector when the container becomes very large due to the 680 // specific access patterns. For more information see the mailing list 681 // discussion on this: 682 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 683 std::deque<StackNode *> nodesToProcess; 684 685 bool Changed = false; 686 687 // Process the root node. 688 nodesToProcess.push_back(new StackNode( 689 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 690 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 691 692 // Save the current generation. 693 unsigned LiveOutGeneration = CurrentGeneration; 694 695 // Process the stack. 696 while (!nodesToProcess.empty()) { 697 // Grab the first item off the stack. Set the current generation, remove 698 // the node from the stack, and process it. 699 StackNode *NodeToProcess = nodesToProcess.back(); 700 701 // Initialize class members. 702 CurrentGeneration = NodeToProcess->currentGeneration(); 703 704 // Check if the node needs to be processed. 705 if (!NodeToProcess->isProcessed()) { 706 // Process the node. 707 Changed |= processNode(NodeToProcess->node()); 708 NodeToProcess->childGeneration(CurrentGeneration); 709 NodeToProcess->process(); 710 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 711 // Push the next child onto the stack. 712 DomTreeNode *child = NodeToProcess->nextChild(); 713 nodesToProcess.push_back( 714 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 715 NodeToProcess->childGeneration(), child, child->begin(), 716 child->end())); 717 } else { 718 // It has been processed, and there are no more children to process, 719 // so delete it and pop it off the stack. 720 delete NodeToProcess; 721 nodesToProcess.pop_back(); 722 } 723 } // while (!nodes...) 724 725 // Reset the current generation. 726 CurrentGeneration = LiveOutGeneration; 727 728 return Changed; 729 } 730 731 PreservedAnalyses EarlyCSEPass::run(Function &F, 732 AnalysisManager<Function> *AM) { 733 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 734 auto &TTI = AM->getResult<TargetIRAnalysis>(F); 735 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 736 auto &AC = AM->getResult<AssumptionAnalysis>(F); 737 738 EarlyCSE CSE(F, TLI, TTI, DT, AC); 739 740 if (!CSE.run()) 741 return PreservedAnalyses::all(); 742 743 // CSE preserves the dominator tree because it doesn't mutate the CFG. 744 // FIXME: Bundle this with other CFG-preservation. 745 PreservedAnalyses PA; 746 PA.preserve<DominatorTreeAnalysis>(); 747 return PA; 748 } 749 750 namespace { 751 /// \brief A simple and fast domtree-based CSE pass. 752 /// 753 /// This pass does a simple depth-first walk over the dominator tree, 754 /// eliminating trivially redundant instructions and using instsimplify to 755 /// canonicalize things as it goes. It is intended to be fast and catch obvious 756 /// cases so that instcombine and other passes are more effective. It is 757 /// expected that a later pass of GVN will catch the interesting/hard cases. 758 class EarlyCSELegacyPass : public FunctionPass { 759 public: 760 static char ID; 761 762 EarlyCSELegacyPass() : FunctionPass(ID) { 763 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 764 } 765 766 bool runOnFunction(Function &F) override { 767 if (skipOptnoneFunction(F)) 768 return false; 769 770 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 771 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 772 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 773 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 774 775 EarlyCSE CSE(F, TLI, TTI, DT, AC); 776 777 return CSE.run(); 778 } 779 780 void getAnalysisUsage(AnalysisUsage &AU) const override { 781 AU.addRequired<AssumptionCacheTracker>(); 782 AU.addRequired<DominatorTreeWrapperPass>(); 783 AU.addRequired<TargetLibraryInfoWrapperPass>(); 784 AU.addRequired<TargetTransformInfoWrapperPass>(); 785 AU.addPreserved<GlobalsAAWrapperPass>(); 786 AU.setPreservesCFG(); 787 } 788 }; 789 } 790 791 char EarlyCSELegacyPass::ID = 0; 792 793 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 794 795 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 796 false) 797 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 798 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 799 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 800 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 801 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 802