1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 DEBUG_COUNTER(CSECounter, "early-cse", 73 "Controls which instructions are removed"); 74 75 static cl::opt<unsigned> EarlyCSEMssaOptCap( 76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 78 "for faster compile. Caps the MemorySSA clobbering calls.")); 79 80 static cl::opt<bool> EarlyCSEDebugHash( 81 "earlycse-debug-hash", cl::init(false), cl::Hidden, 82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 83 "function is well-behaved w.r.t. its isEqual predicate")); 84 85 //===----------------------------------------------------------------------===// 86 // SimpleValue 87 //===----------------------------------------------------------------------===// 88 89 namespace { 90 91 /// Struct representing the available values in the scoped hash table. 92 struct SimpleValue { 93 Instruction *Inst; 94 95 SimpleValue(Instruction *I) : Inst(I) { 96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 97 } 98 99 bool isSentinel() const { 100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 102 } 103 104 static bool canHandle(Instruction *Inst) { 105 // This can only handle non-void readnone functions. 106 // Also handled are constrained intrinsic that look like the types 107 // of instruction handled below (UnaryOperator, etc.). 108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 109 if (Function *F = CI->getCalledFunction()) { 110 switch ((Intrinsic::ID)F->getIntrinsicID()) { 111 case Intrinsic::experimental_constrained_fadd: 112 case Intrinsic::experimental_constrained_fsub: 113 case Intrinsic::experimental_constrained_fmul: 114 case Intrinsic::experimental_constrained_fdiv: 115 case Intrinsic::experimental_constrained_frem: 116 case Intrinsic::experimental_constrained_fptosi: 117 case Intrinsic::experimental_constrained_sitofp: 118 case Intrinsic::experimental_constrained_fptoui: 119 case Intrinsic::experimental_constrained_uitofp: 120 case Intrinsic::experimental_constrained_fcmp: 121 case Intrinsic::experimental_constrained_fcmps: { 122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 123 if (CFP->getExceptionBehavior() && 124 CFP->getExceptionBehavior() == fp::ebStrict) 125 return false; 126 // Since we CSE across function calls we must not allow 127 // the rounding mode to change. 128 if (CFP->getRoundingMode() && 129 CFP->getRoundingMode() == RoundingMode::Dynamic) 130 return false; 131 return true; 132 } 133 } 134 } 135 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 136 } 137 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 138 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 139 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 140 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 141 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 142 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 143 } 144 }; 145 146 } // end anonymous namespace 147 148 namespace llvm { 149 150 template <> struct DenseMapInfo<SimpleValue> { 151 static inline SimpleValue getEmptyKey() { 152 return DenseMapInfo<Instruction *>::getEmptyKey(); 153 } 154 155 static inline SimpleValue getTombstoneKey() { 156 return DenseMapInfo<Instruction *>::getTombstoneKey(); 157 } 158 159 static unsigned getHashValue(SimpleValue Val); 160 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 161 }; 162 163 } // end namespace llvm 164 165 /// Match a 'select' including an optional 'not's of the condition. 166 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 167 Value *&B, 168 SelectPatternFlavor &Flavor) { 169 // Return false if V is not even a select. 170 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 171 return false; 172 173 // Look through a 'not' of the condition operand by swapping A/B. 174 Value *CondNot; 175 if (match(Cond, m_Not(m_Value(CondNot)))) { 176 Cond = CondNot; 177 std::swap(A, B); 178 } 179 180 // Match canonical forms of min/max. We are not using ValueTracking's 181 // more powerful matchSelectPattern() because it may rely on instruction flags 182 // such as "nsw". That would be incompatible with the current hashing 183 // mechanism that may remove flags to increase the likelihood of CSE. 184 185 Flavor = SPF_UNKNOWN; 186 CmpInst::Predicate Pred; 187 188 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 189 // Check for commuted variants of min/max by swapping predicate. 190 // If we do not match the standard or commuted patterns, this is not a 191 // recognized form of min/max, but it is still a select, so return true. 192 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 193 return true; 194 Pred = ICmpInst::getSwappedPredicate(Pred); 195 } 196 197 switch (Pred) { 198 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 199 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 200 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 201 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 202 // Non-strict inequalities. 203 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 204 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 205 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 206 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 207 default: break; 208 } 209 210 return true; 211 } 212 213 static unsigned getHashValueImpl(SimpleValue Val) { 214 Instruction *Inst = Val.Inst; 215 // Hash in all of the operands as pointers. 216 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 217 Value *LHS = BinOp->getOperand(0); 218 Value *RHS = BinOp->getOperand(1); 219 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 220 std::swap(LHS, RHS); 221 222 return hash_combine(BinOp->getOpcode(), LHS, RHS); 223 } 224 225 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 226 // Compares can be commuted by swapping the comparands and 227 // updating the predicate. Choose the form that has the 228 // comparands in sorted order, or in the case of a tie, the 229 // one with the lower predicate. 230 Value *LHS = CI->getOperand(0); 231 Value *RHS = CI->getOperand(1); 232 CmpInst::Predicate Pred = CI->getPredicate(); 233 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 234 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 235 std::swap(LHS, RHS); 236 Pred = SwappedPred; 237 } 238 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 239 } 240 241 // Hash general selects to allow matching commuted true/false operands. 242 SelectPatternFlavor SPF; 243 Value *Cond, *A, *B; 244 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 245 // Hash min/max (cmp + select) to allow for commuted operands. 246 // Min/max may also have non-canonical compare predicate (eg, the compare for 247 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 248 // compare. 249 // TODO: We should also detect FP min/max. 250 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 251 SPF == SPF_UMIN || SPF == SPF_UMAX) { 252 if (A > B) 253 std::swap(A, B); 254 return hash_combine(Inst->getOpcode(), SPF, A, B); 255 } 256 257 // Hash general selects to allow matching commuted true/false operands. 258 259 // If we do not have a compare as the condition, just hash in the condition. 260 CmpInst::Predicate Pred; 261 Value *X, *Y; 262 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 263 return hash_combine(Inst->getOpcode(), Cond, A, B); 264 265 // Similar to cmp normalization (above) - canonicalize the predicate value: 266 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 267 if (CmpInst::getInversePredicate(Pred) < Pred) { 268 Pred = CmpInst::getInversePredicate(Pred); 269 std::swap(A, B); 270 } 271 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 272 } 273 274 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 275 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 276 277 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 278 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 279 280 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 281 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 282 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 283 284 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 285 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 286 IVI->getOperand(1), 287 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 288 289 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 290 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 291 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 292 isa<FreezeInst>(Inst)) && 293 "Invalid/unknown instruction"); 294 295 // Handle intrinsics with commutative operands. 296 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 297 // 2 operands are commutative. 298 auto *II = dyn_cast<IntrinsicInst>(Inst); 299 if (II && II->isCommutative() && II->arg_size() == 2) { 300 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 301 if (LHS > RHS) 302 std::swap(LHS, RHS); 303 return hash_combine(II->getOpcode(), LHS, RHS); 304 } 305 306 // gc.relocate is 'special' call: its second and third operands are 307 // not real values, but indices into statepoint's argument list. 308 // Get values they point to. 309 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 310 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 311 GCR->getBasePtr(), GCR->getDerivedPtr()); 312 313 // Mix in the opcode. 314 return hash_combine( 315 Inst->getOpcode(), 316 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 317 } 318 319 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 320 #ifndef NDEBUG 321 // If -earlycse-debug-hash was specified, return a constant -- this 322 // will force all hashing to collide, so we'll exhaustively search 323 // the table for a match, and the assertion in isEqual will fire if 324 // there's a bug causing equal keys to hash differently. 325 if (EarlyCSEDebugHash) 326 return 0; 327 #endif 328 return getHashValueImpl(Val); 329 } 330 331 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 332 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 333 334 if (LHS.isSentinel() || RHS.isSentinel()) 335 return LHSI == RHSI; 336 337 if (LHSI->getOpcode() != RHSI->getOpcode()) 338 return false; 339 if (LHSI->isIdenticalToWhenDefined(RHSI)) 340 return true; 341 342 // If we're not strictly identical, we still might be a commutable instruction 343 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 344 if (!LHSBinOp->isCommutative()) 345 return false; 346 347 assert(isa<BinaryOperator>(RHSI) && 348 "same opcode, but different instruction type?"); 349 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 350 351 // Commuted equality 352 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 353 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 354 } 355 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 356 assert(isa<CmpInst>(RHSI) && 357 "same opcode, but different instruction type?"); 358 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 359 // Commuted equality 360 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 361 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 362 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 363 } 364 365 // TODO: Extend this for >2 args by matching the trailing N-2 args. 366 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 367 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 368 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 369 LII->isCommutative() && LII->arg_size() == 2) { 370 return LII->getArgOperand(0) == RII->getArgOperand(1) && 371 LII->getArgOperand(1) == RII->getArgOperand(0); 372 } 373 374 // See comment above in `getHashValue()`. 375 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 376 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 377 return GCR1->getOperand(0) == GCR2->getOperand(0) && 378 GCR1->getBasePtr() == GCR2->getBasePtr() && 379 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 380 381 // Min/max can occur with commuted operands, non-canonical predicates, 382 // and/or non-canonical operands. 383 // Selects can be non-trivially equivalent via inverted conditions and swaps. 384 SelectPatternFlavor LSPF, RSPF; 385 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 386 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 387 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 388 if (LSPF == RSPF) { 389 // TODO: We should also detect FP min/max. 390 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 391 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 392 return ((LHSA == RHSA && LHSB == RHSB) || 393 (LHSA == RHSB && LHSB == RHSA)); 394 395 // select Cond, A, B <--> select not(Cond), B, A 396 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 397 return true; 398 } 399 400 // If the true/false operands are swapped and the conditions are compares 401 // with inverted predicates, the selects are equal: 402 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 403 // 404 // This also handles patterns with a double-negation in the sense of not + 405 // inverse, because we looked through a 'not' in the matching function and 406 // swapped A/B: 407 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 408 // 409 // This intentionally does NOT handle patterns with a double-negation in 410 // the sense of not + not, because doing so could result in values 411 // comparing 412 // as equal that hash differently in the min/max cases like: 413 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 414 // ^ hashes as min ^ would not hash as min 415 // In the context of the EarlyCSE pass, however, such cases never reach 416 // this code, as we simplify the double-negation before hashing the second 417 // select (and so still succeed at CSEing them). 418 if (LHSA == RHSB && LHSB == RHSA) { 419 CmpInst::Predicate PredL, PredR; 420 Value *X, *Y; 421 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 422 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 423 CmpInst::getInversePredicate(PredL) == PredR) 424 return true; 425 } 426 } 427 428 return false; 429 } 430 431 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 432 // These comparisons are nontrivial, so assert that equality implies 433 // hash equality (DenseMap demands this as an invariant). 434 bool Result = isEqualImpl(LHS, RHS); 435 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 436 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 437 return Result; 438 } 439 440 //===----------------------------------------------------------------------===// 441 // CallValue 442 //===----------------------------------------------------------------------===// 443 444 namespace { 445 446 /// Struct representing the available call values in the scoped hash 447 /// table. 448 struct CallValue { 449 Instruction *Inst; 450 451 CallValue(Instruction *I) : Inst(I) { 452 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 453 } 454 455 bool isSentinel() const { 456 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 457 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 458 } 459 460 static bool canHandle(Instruction *Inst) { 461 // Don't value number anything that returns void. 462 if (Inst->getType()->isVoidTy()) 463 return false; 464 465 CallInst *CI = dyn_cast<CallInst>(Inst); 466 if (!CI || !CI->onlyReadsMemory()) 467 return false; 468 return true; 469 } 470 }; 471 472 } // end anonymous namespace 473 474 namespace llvm { 475 476 template <> struct DenseMapInfo<CallValue> { 477 static inline CallValue getEmptyKey() { 478 return DenseMapInfo<Instruction *>::getEmptyKey(); 479 } 480 481 static inline CallValue getTombstoneKey() { 482 return DenseMapInfo<Instruction *>::getTombstoneKey(); 483 } 484 485 static unsigned getHashValue(CallValue Val); 486 static bool isEqual(CallValue LHS, CallValue RHS); 487 }; 488 489 } // end namespace llvm 490 491 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 492 Instruction *Inst = Val.Inst; 493 494 // Hash all of the operands as pointers and mix in the opcode. 495 return hash_combine( 496 Inst->getOpcode(), 497 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 498 } 499 500 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 501 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 502 if (LHS.isSentinel() || RHS.isSentinel()) 503 return LHSI == RHSI; 504 505 return LHSI->isIdenticalTo(RHSI); 506 } 507 508 //===----------------------------------------------------------------------===// 509 // EarlyCSE implementation 510 //===----------------------------------------------------------------------===// 511 512 namespace { 513 514 /// A simple and fast domtree-based CSE pass. 515 /// 516 /// This pass does a simple depth-first walk over the dominator tree, 517 /// eliminating trivially redundant instructions and using instsimplify to 518 /// canonicalize things as it goes. It is intended to be fast and catch obvious 519 /// cases so that instcombine and other passes are more effective. It is 520 /// expected that a later pass of GVN will catch the interesting/hard cases. 521 class EarlyCSE { 522 public: 523 const TargetLibraryInfo &TLI; 524 const TargetTransformInfo &TTI; 525 DominatorTree &DT; 526 AssumptionCache &AC; 527 const SimplifyQuery SQ; 528 MemorySSA *MSSA; 529 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 530 531 using AllocatorTy = 532 RecyclingAllocator<BumpPtrAllocator, 533 ScopedHashTableVal<SimpleValue, Value *>>; 534 using ScopedHTType = 535 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 536 AllocatorTy>; 537 538 /// A scoped hash table of the current values of all of our simple 539 /// scalar expressions. 540 /// 541 /// As we walk down the domtree, we look to see if instructions are in this: 542 /// if so, we replace them with what we find, otherwise we insert them so 543 /// that dominated values can succeed in their lookup. 544 ScopedHTType AvailableValues; 545 546 /// A scoped hash table of the current values of previously encountered 547 /// memory locations. 548 /// 549 /// This allows us to get efficient access to dominating loads or stores when 550 /// we have a fully redundant load. In addition to the most recent load, we 551 /// keep track of a generation count of the read, which is compared against 552 /// the current generation count. The current generation count is incremented 553 /// after every possibly writing memory operation, which ensures that we only 554 /// CSE loads with other loads that have no intervening store. Ordering 555 /// events (such as fences or atomic instructions) increment the generation 556 /// count as well; essentially, we model these as writes to all possible 557 /// locations. Note that atomic and/or volatile loads and stores can be 558 /// present the table; it is the responsibility of the consumer to inspect 559 /// the atomicity/volatility if needed. 560 struct LoadValue { 561 Instruction *DefInst = nullptr; 562 unsigned Generation = 0; 563 int MatchingId = -1; 564 bool IsAtomic = false; 565 566 LoadValue() = default; 567 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 568 bool IsAtomic) 569 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 570 IsAtomic(IsAtomic) {} 571 }; 572 573 using LoadMapAllocator = 574 RecyclingAllocator<BumpPtrAllocator, 575 ScopedHashTableVal<Value *, LoadValue>>; 576 using LoadHTType = 577 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 578 LoadMapAllocator>; 579 580 LoadHTType AvailableLoads; 581 582 // A scoped hash table mapping memory locations (represented as typed 583 // addresses) to generation numbers at which that memory location became 584 // (henceforth indefinitely) invariant. 585 using InvariantMapAllocator = 586 RecyclingAllocator<BumpPtrAllocator, 587 ScopedHashTableVal<MemoryLocation, unsigned>>; 588 using InvariantHTType = 589 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 590 InvariantMapAllocator>; 591 InvariantHTType AvailableInvariants; 592 593 /// A scoped hash table of the current values of read-only call 594 /// values. 595 /// 596 /// It uses the same generation count as loads. 597 using CallHTType = 598 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 599 CallHTType AvailableCalls; 600 601 /// This is the current generation of the memory value. 602 unsigned CurrentGeneration = 0; 603 604 /// Set up the EarlyCSE runner for a particular function. 605 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 606 const TargetTransformInfo &TTI, DominatorTree &DT, 607 AssumptionCache &AC, MemorySSA *MSSA) 608 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 609 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 610 611 bool run(); 612 613 private: 614 unsigned ClobberCounter = 0; 615 // Almost a POD, but needs to call the constructors for the scoped hash 616 // tables so that a new scope gets pushed on. These are RAII so that the 617 // scope gets popped when the NodeScope is destroyed. 618 class NodeScope { 619 public: 620 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 621 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 622 : Scope(AvailableValues), LoadScope(AvailableLoads), 623 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 624 NodeScope(const NodeScope &) = delete; 625 NodeScope &operator=(const NodeScope &) = delete; 626 627 private: 628 ScopedHTType::ScopeTy Scope; 629 LoadHTType::ScopeTy LoadScope; 630 InvariantHTType::ScopeTy InvariantScope; 631 CallHTType::ScopeTy CallScope; 632 }; 633 634 // Contains all the needed information to create a stack for doing a depth 635 // first traversal of the tree. This includes scopes for values, loads, and 636 // calls as well as the generation. There is a child iterator so that the 637 // children do not need to be store separately. 638 class StackNode { 639 public: 640 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 641 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 642 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 643 DomTreeNode::const_iterator end) 644 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 645 EndIter(end), 646 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 647 AvailableCalls) 648 {} 649 StackNode(const StackNode &) = delete; 650 StackNode &operator=(const StackNode &) = delete; 651 652 // Accessors. 653 unsigned currentGeneration() const { return CurrentGeneration; } 654 unsigned childGeneration() const { return ChildGeneration; } 655 void childGeneration(unsigned generation) { ChildGeneration = generation; } 656 DomTreeNode *node() { return Node; } 657 DomTreeNode::const_iterator childIter() const { return ChildIter; } 658 659 DomTreeNode *nextChild() { 660 DomTreeNode *child = *ChildIter; 661 ++ChildIter; 662 return child; 663 } 664 665 DomTreeNode::const_iterator end() const { return EndIter; } 666 bool isProcessed() const { return Processed; } 667 void process() { Processed = true; } 668 669 private: 670 unsigned CurrentGeneration; 671 unsigned ChildGeneration; 672 DomTreeNode *Node; 673 DomTreeNode::const_iterator ChildIter; 674 DomTreeNode::const_iterator EndIter; 675 NodeScope Scopes; 676 bool Processed = false; 677 }; 678 679 /// Wrapper class to handle memory instructions, including loads, 680 /// stores and intrinsic loads and stores defined by the target. 681 class ParseMemoryInst { 682 public: 683 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 684 : Inst(Inst) { 685 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 686 IntrID = II->getIntrinsicID(); 687 if (TTI.getTgtMemIntrinsic(II, Info)) 688 return; 689 if (isHandledNonTargetIntrinsic(IntrID)) { 690 switch (IntrID) { 691 case Intrinsic::masked_load: 692 Info.PtrVal = Inst->getOperand(0); 693 Info.MatchingId = Intrinsic::masked_load; 694 Info.ReadMem = true; 695 Info.WriteMem = false; 696 Info.IsVolatile = false; 697 break; 698 case Intrinsic::masked_store: 699 Info.PtrVal = Inst->getOperand(1); 700 // Use the ID of masked load as the "matching id". This will 701 // prevent matching non-masked loads/stores with masked ones 702 // (which could be done), but at the moment, the code here 703 // does not support matching intrinsics with non-intrinsics, 704 // so keep the MatchingIds specific to masked instructions 705 // for now (TODO). 706 Info.MatchingId = Intrinsic::masked_load; 707 Info.ReadMem = false; 708 Info.WriteMem = true; 709 Info.IsVolatile = false; 710 break; 711 } 712 } 713 } 714 } 715 716 Instruction *get() { return Inst; } 717 const Instruction *get() const { return Inst; } 718 719 bool isLoad() const { 720 if (IntrID != 0) 721 return Info.ReadMem; 722 return isa<LoadInst>(Inst); 723 } 724 725 bool isStore() const { 726 if (IntrID != 0) 727 return Info.WriteMem; 728 return isa<StoreInst>(Inst); 729 } 730 731 bool isAtomic() const { 732 if (IntrID != 0) 733 return Info.Ordering != AtomicOrdering::NotAtomic; 734 return Inst->isAtomic(); 735 } 736 737 bool isUnordered() const { 738 if (IntrID != 0) 739 return Info.isUnordered(); 740 741 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 742 return LI->isUnordered(); 743 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 744 return SI->isUnordered(); 745 } 746 // Conservative answer 747 return !Inst->isAtomic(); 748 } 749 750 bool isVolatile() const { 751 if (IntrID != 0) 752 return Info.IsVolatile; 753 754 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 755 return LI->isVolatile(); 756 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 757 return SI->isVolatile(); 758 } 759 // Conservative answer 760 return true; 761 } 762 763 bool isInvariantLoad() const { 764 if (auto *LI = dyn_cast<LoadInst>(Inst)) 765 return LI->hasMetadata(LLVMContext::MD_invariant_load); 766 return false; 767 } 768 769 bool isValid() const { return getPointerOperand() != nullptr; } 770 771 // For regular (non-intrinsic) loads/stores, this is set to -1. For 772 // intrinsic loads/stores, the id is retrieved from the corresponding 773 // field in the MemIntrinsicInfo structure. That field contains 774 // non-negative values only. 775 int getMatchingId() const { 776 if (IntrID != 0) 777 return Info.MatchingId; 778 return -1; 779 } 780 781 Value *getPointerOperand() const { 782 if (IntrID != 0) 783 return Info.PtrVal; 784 return getLoadStorePointerOperand(Inst); 785 } 786 787 Type *getValueType() const { 788 // TODO: handle target-specific intrinsics. 789 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 790 switch (II->getIntrinsicID()) { 791 case Intrinsic::masked_load: 792 return II->getType(); 793 case Intrinsic::masked_store: 794 return II->getArgOperand(0)->getType(); 795 default: 796 return nullptr; 797 } 798 } 799 return getLoadStoreType(Inst); 800 } 801 802 bool mayReadFromMemory() const { 803 if (IntrID != 0) 804 return Info.ReadMem; 805 return Inst->mayReadFromMemory(); 806 } 807 808 bool mayWriteToMemory() const { 809 if (IntrID != 0) 810 return Info.WriteMem; 811 return Inst->mayWriteToMemory(); 812 } 813 814 private: 815 Intrinsic::ID IntrID = 0; 816 MemIntrinsicInfo Info; 817 Instruction *Inst; 818 }; 819 820 // This function is to prevent accidentally passing a non-target 821 // intrinsic ID to TargetTransformInfo. 822 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 823 switch (ID) { 824 case Intrinsic::masked_load: 825 case Intrinsic::masked_store: 826 return true; 827 } 828 return false; 829 } 830 static bool isHandledNonTargetIntrinsic(const Value *V) { 831 if (auto *II = dyn_cast<IntrinsicInst>(V)) 832 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 833 return false; 834 } 835 836 bool processNode(DomTreeNode *Node); 837 838 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 839 const BasicBlock *BB, const BasicBlock *Pred); 840 841 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 842 unsigned CurrentGeneration); 843 844 bool overridingStores(const ParseMemoryInst &Earlier, 845 const ParseMemoryInst &Later); 846 847 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 848 // TODO: We could insert relevant casts on type mismatch here. 849 if (auto *LI = dyn_cast<LoadInst>(Inst)) 850 return LI->getType() == ExpectedType ? LI : nullptr; 851 else if (auto *SI = dyn_cast<StoreInst>(Inst)) { 852 Value *V = SI->getValueOperand(); 853 return V->getType() == ExpectedType ? V : nullptr; 854 } 855 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 856 auto *II = cast<IntrinsicInst>(Inst); 857 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 858 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 859 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 860 } 861 862 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 863 Type *ExpectedType) const { 864 switch (II->getIntrinsicID()) { 865 case Intrinsic::masked_load: 866 return II; 867 case Intrinsic::masked_store: 868 return II->getOperand(0); 869 } 870 return nullptr; 871 } 872 873 /// Return true if the instruction is known to only operate on memory 874 /// provably invariant in the given "generation". 875 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 876 877 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 878 Instruction *EarlierInst, Instruction *LaterInst); 879 880 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 881 const IntrinsicInst *Later) { 882 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 883 // Is Mask0 a submask of Mask1? 884 if (Mask0 == Mask1) 885 return true; 886 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 887 return false; 888 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 889 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 890 if (!Vec0 || !Vec1) 891 return false; 892 if (Vec0->getType() != Vec1->getType()) 893 return false; 894 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 895 Constant *Elem0 = Vec0->getOperand(i); 896 Constant *Elem1 = Vec1->getOperand(i); 897 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 898 if (Int0 && Int0->isZero()) 899 continue; 900 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 901 if (Int1 && !Int1->isZero()) 902 continue; 903 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 904 return false; 905 if (Elem0 == Elem1) 906 continue; 907 return false; 908 } 909 return true; 910 }; 911 auto PtrOp = [](const IntrinsicInst *II) { 912 if (II->getIntrinsicID() == Intrinsic::masked_load) 913 return II->getOperand(0); 914 if (II->getIntrinsicID() == Intrinsic::masked_store) 915 return II->getOperand(1); 916 llvm_unreachable("Unexpected IntrinsicInst"); 917 }; 918 auto MaskOp = [](const IntrinsicInst *II) { 919 if (II->getIntrinsicID() == Intrinsic::masked_load) 920 return II->getOperand(2); 921 if (II->getIntrinsicID() == Intrinsic::masked_store) 922 return II->getOperand(3); 923 llvm_unreachable("Unexpected IntrinsicInst"); 924 }; 925 auto ThruOp = [](const IntrinsicInst *II) { 926 if (II->getIntrinsicID() == Intrinsic::masked_load) 927 return II->getOperand(3); 928 llvm_unreachable("Unexpected IntrinsicInst"); 929 }; 930 931 if (PtrOp(Earlier) != PtrOp(Later)) 932 return false; 933 934 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 935 Intrinsic::ID IDL = Later->getIntrinsicID(); 936 // We could really use specific intrinsic classes for masked loads 937 // and stores in IntrinsicInst.h. 938 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 939 // Trying to replace later masked load with the earlier one. 940 // Check that the pointers are the same, and 941 // - masks and pass-throughs are the same, or 942 // - replacee's pass-through is "undef" and replacer's mask is a 943 // super-set of the replacee's mask. 944 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 945 return true; 946 if (!isa<UndefValue>(ThruOp(Later))) 947 return false; 948 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 949 } 950 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 951 // Trying to replace a load of a stored value with the store's value. 952 // Check that the pointers are the same, and 953 // - load's mask is a subset of store's mask, and 954 // - load's pass-through is "undef". 955 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 956 return false; 957 return isa<UndefValue>(ThruOp(Later)); 958 } 959 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 960 // Trying to remove a store of the loaded value. 961 // Check that the pointers are the same, and 962 // - store's mask is a subset of the load's mask. 963 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 964 } 965 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 966 // Trying to remove a dead store (earlier). 967 // Check that the pointers are the same, 968 // - the to-be-removed store's mask is a subset of the other store's 969 // mask. 970 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 971 } 972 return false; 973 } 974 975 void removeMSSA(Instruction &Inst) { 976 if (!MSSA) 977 return; 978 if (VerifyMemorySSA) 979 MSSA->verifyMemorySSA(); 980 // Removing a store here can leave MemorySSA in an unoptimized state by 981 // creating MemoryPhis that have identical arguments and by creating 982 // MemoryUses whose defining access is not an actual clobber. The phi case 983 // is handled by MemorySSA when passing OptimizePhis = true to 984 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 985 // by MemorySSA's getClobberingMemoryAccess. 986 MSSAUpdater->removeMemoryAccess(&Inst, true); 987 } 988 }; 989 990 } // end anonymous namespace 991 992 /// Determine if the memory referenced by LaterInst is from the same heap 993 /// version as EarlierInst. 994 /// This is currently called in two scenarios: 995 /// 996 /// load p 997 /// ... 998 /// load p 999 /// 1000 /// and 1001 /// 1002 /// x = load p 1003 /// ... 1004 /// store x, p 1005 /// 1006 /// in both cases we want to verify that there are no possible writes to the 1007 /// memory referenced by p between the earlier and later instruction. 1008 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1009 unsigned LaterGeneration, 1010 Instruction *EarlierInst, 1011 Instruction *LaterInst) { 1012 // Check the simple memory generation tracking first. 1013 if (EarlierGeneration == LaterGeneration) 1014 return true; 1015 1016 if (!MSSA) 1017 return false; 1018 1019 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1020 // read/write memory, then we can safely return true here. 1021 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1022 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1023 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1024 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1025 // with the default optimization pipeline. 1026 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1027 if (!EarlierMA) 1028 return true; 1029 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1030 if (!LaterMA) 1031 return true; 1032 1033 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1034 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1035 // EarlierInst and LaterInst and neither can any other write that potentially 1036 // clobbers LaterInst. 1037 MemoryAccess *LaterDef; 1038 if (ClobberCounter < EarlyCSEMssaOptCap) { 1039 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1040 ClobberCounter++; 1041 } else 1042 LaterDef = LaterMA->getDefiningAccess(); 1043 1044 return MSSA->dominates(LaterDef, EarlierMA); 1045 } 1046 1047 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1048 // A location loaded from with an invariant_load is assumed to *never* change 1049 // within the visible scope of the compilation. 1050 if (auto *LI = dyn_cast<LoadInst>(I)) 1051 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1052 return true; 1053 1054 auto MemLocOpt = MemoryLocation::getOrNone(I); 1055 if (!MemLocOpt) 1056 // "target" intrinsic forms of loads aren't currently known to 1057 // MemoryLocation::get. TODO 1058 return false; 1059 MemoryLocation MemLoc = *MemLocOpt; 1060 if (!AvailableInvariants.count(MemLoc)) 1061 return false; 1062 1063 // Is the generation at which this became invariant older than the 1064 // current one? 1065 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1066 } 1067 1068 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1069 const BranchInst *BI, const BasicBlock *BB, 1070 const BasicBlock *Pred) { 1071 assert(BI->isConditional() && "Should be a conditional branch!"); 1072 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1073 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1074 auto *TorF = (BI->getSuccessor(0) == BB) 1075 ? ConstantInt::getTrue(BB->getContext()) 1076 : ConstantInt::getFalse(BB->getContext()); 1077 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1078 Value *&RHS) { 1079 if (Opcode == Instruction::And && 1080 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1081 return true; 1082 else if (Opcode == Instruction::Or && 1083 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1084 return true; 1085 return false; 1086 }; 1087 // If the condition is AND operation, we can propagate its operands into the 1088 // true branch. If it is OR operation, we can propagate them into the false 1089 // branch. 1090 unsigned PropagateOpcode = 1091 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1092 1093 bool MadeChanges = false; 1094 SmallVector<Instruction *, 4> WorkList; 1095 SmallPtrSet<Instruction *, 4> Visited; 1096 WorkList.push_back(CondInst); 1097 while (!WorkList.empty()) { 1098 Instruction *Curr = WorkList.pop_back_val(); 1099 1100 AvailableValues.insert(Curr, TorF); 1101 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1102 << Curr->getName() << "' as " << *TorF << " in " 1103 << BB->getName() << "\n"); 1104 if (!DebugCounter::shouldExecute(CSECounter)) { 1105 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1106 } else { 1107 // Replace all dominated uses with the known value. 1108 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1109 BasicBlockEdge(Pred, BB))) { 1110 NumCSECVP += Count; 1111 MadeChanges = true; 1112 } 1113 } 1114 1115 Value *LHS, *RHS; 1116 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1117 for (auto *Op : { LHS, RHS }) 1118 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1119 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1120 WorkList.push_back(OPI); 1121 } 1122 1123 return MadeChanges; 1124 } 1125 1126 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1127 unsigned CurrentGeneration) { 1128 if (InVal.DefInst == nullptr) 1129 return nullptr; 1130 if (InVal.MatchingId != MemInst.getMatchingId()) 1131 return nullptr; 1132 // We don't yet handle removing loads with ordering of any kind. 1133 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1134 return nullptr; 1135 // We can't replace an atomic load with one which isn't also atomic. 1136 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1137 return nullptr; 1138 // The value V returned from this function is used differently depending 1139 // on whether MemInst is a load or a store. If it's a load, we will replace 1140 // MemInst with V, if it's a store, we will check if V is the same as the 1141 // available value. 1142 bool MemInstMatching = !MemInst.isLoad(); 1143 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1144 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1145 1146 // For stores check the result values before checking memory generation 1147 // (otherwise isSameMemGeneration may crash). 1148 Value *Result = MemInst.isStore() 1149 ? getOrCreateResult(Matching, Other->getType()) 1150 : nullptr; 1151 if (MemInst.isStore() && InVal.DefInst != Result) 1152 return nullptr; 1153 1154 // Deal with non-target memory intrinsics. 1155 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1156 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1157 if (OtherNTI != MatchingNTI) 1158 return nullptr; 1159 if (OtherNTI && MatchingNTI) { 1160 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1161 cast<IntrinsicInst>(MemInst.get()))) 1162 return nullptr; 1163 } 1164 1165 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1166 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1167 MemInst.get())) 1168 return nullptr; 1169 1170 if (!Result) 1171 Result = getOrCreateResult(Matching, Other->getType()); 1172 return Result; 1173 } 1174 1175 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1176 const ParseMemoryInst &Later) { 1177 // Can we remove Earlier store because of Later store? 1178 1179 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1180 "Violated invariant"); 1181 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1182 return false; 1183 if (!Earlier.getValueType() || !Later.getValueType() || 1184 Earlier.getValueType() != Later.getValueType()) 1185 return false; 1186 if (Earlier.getMatchingId() != Later.getMatchingId()) 1187 return false; 1188 // At the moment, we don't remove ordered stores, but do remove 1189 // unordered atomic stores. There's no special requirement (for 1190 // unordered atomics) about removing atomic stores only in favor of 1191 // other atomic stores since we were going to execute the non-atomic 1192 // one anyway and the atomic one might never have become visible. 1193 if (!Earlier.isUnordered() || !Later.isUnordered()) 1194 return false; 1195 1196 // Deal with non-target memory intrinsics. 1197 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1198 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1199 if (ENTI && LNTI) 1200 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1201 cast<IntrinsicInst>(Later.get())); 1202 1203 // Because of the check above, at least one of them is false. 1204 // For now disallow matching intrinsics with non-intrinsics, 1205 // so assume that the stores match if neither is an intrinsic. 1206 return ENTI == LNTI; 1207 } 1208 1209 bool EarlyCSE::processNode(DomTreeNode *Node) { 1210 bool Changed = false; 1211 BasicBlock *BB = Node->getBlock(); 1212 1213 // If this block has a single predecessor, then the predecessor is the parent 1214 // of the domtree node and all of the live out memory values are still current 1215 // in this block. If this block has multiple predecessors, then they could 1216 // have invalidated the live-out memory values of our parent value. For now, 1217 // just be conservative and invalidate memory if this block has multiple 1218 // predecessors. 1219 if (!BB->getSinglePredecessor()) 1220 ++CurrentGeneration; 1221 1222 // If this node has a single predecessor which ends in a conditional branch, 1223 // we can infer the value of the branch condition given that we took this 1224 // path. We need the single predecessor to ensure there's not another path 1225 // which reaches this block where the condition might hold a different 1226 // value. Since we're adding this to the scoped hash table (like any other 1227 // def), it will have been popped if we encounter a future merge block. 1228 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1229 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1230 if (BI && BI->isConditional()) { 1231 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1232 if (CondInst && SimpleValue::canHandle(CondInst)) 1233 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1234 } 1235 } 1236 1237 /// LastStore - Keep track of the last non-volatile store that we saw... for 1238 /// as long as there in no instruction that reads memory. If we see a store 1239 /// to the same location, we delete the dead store. This zaps trivial dead 1240 /// stores which can occur in bitfield code among other things. 1241 Instruction *LastStore = nullptr; 1242 1243 // See if any instructions in the block can be eliminated. If so, do it. If 1244 // not, add them to AvailableValues. 1245 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 1246 // Dead instructions should just be removed. 1247 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1248 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1249 if (!DebugCounter::shouldExecute(CSECounter)) { 1250 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1251 continue; 1252 } 1253 1254 salvageKnowledge(&Inst, &AC); 1255 salvageDebugInfo(Inst); 1256 removeMSSA(Inst); 1257 Inst.eraseFromParent(); 1258 Changed = true; 1259 ++NumSimplify; 1260 continue; 1261 } 1262 1263 // Skip assume intrinsics, they don't really have side effects (although 1264 // they're marked as such to ensure preservation of control dependencies), 1265 // and this pass will not bother with its removal. However, we should mark 1266 // its condition as true for all dominated blocks. 1267 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1268 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1269 if (CondI && SimpleValue::canHandle(CondI)) { 1270 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1271 << '\n'); 1272 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1273 } else 1274 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1275 continue; 1276 } 1277 1278 // Likewise, noalias intrinsics don't actually write. 1279 if (match(&Inst, 1280 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1281 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1282 << '\n'); 1283 continue; 1284 } 1285 1286 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1287 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1288 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1289 continue; 1290 } 1291 1292 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1293 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1294 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1295 continue; 1296 } 1297 1298 // We can skip all invariant.start intrinsics since they only read memory, 1299 // and we can forward values across it. For invariant starts without 1300 // invariant ends, we can use the fact that the invariantness never ends to 1301 // start a scope in the current generaton which is true for all future 1302 // generations. Also, we dont need to consume the last store since the 1303 // semantics of invariant.start allow us to perform DSE of the last 1304 // store, if there was a store following invariant.start. Consider: 1305 // 1306 // store 30, i8* p 1307 // invariant.start(p) 1308 // store 40, i8* p 1309 // We can DSE the store to 30, since the store 40 to invariant location p 1310 // causes undefined behaviour. 1311 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1312 // If there are any uses, the scope might end. 1313 if (!Inst.use_empty()) 1314 continue; 1315 MemoryLocation MemLoc = 1316 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1317 // Don't start a scope if we already have a better one pushed 1318 if (!AvailableInvariants.count(MemLoc)) 1319 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1320 continue; 1321 } 1322 1323 if (isGuard(&Inst)) { 1324 if (auto *CondI = 1325 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1326 if (SimpleValue::canHandle(CondI)) { 1327 // Do we already know the actual value of this condition? 1328 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1329 // Is the condition known to be true? 1330 if (isa<ConstantInt>(KnownCond) && 1331 cast<ConstantInt>(KnownCond)->isOne()) { 1332 LLVM_DEBUG(dbgs() 1333 << "EarlyCSE removing guard: " << Inst << '\n'); 1334 salvageKnowledge(&Inst, &AC); 1335 removeMSSA(Inst); 1336 Inst.eraseFromParent(); 1337 Changed = true; 1338 continue; 1339 } else 1340 // Use the known value if it wasn't true. 1341 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1342 } 1343 // The condition we're on guarding here is true for all dominated 1344 // locations. 1345 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1346 } 1347 } 1348 1349 // Guard intrinsics read all memory, but don't write any memory. 1350 // Accordingly, don't update the generation but consume the last store (to 1351 // avoid an incorrect DSE). 1352 LastStore = nullptr; 1353 continue; 1354 } 1355 1356 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1357 // its simpler value. 1358 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1359 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1360 << '\n'); 1361 if (!DebugCounter::shouldExecute(CSECounter)) { 1362 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1363 } else { 1364 bool Killed = false; 1365 if (!Inst.use_empty()) { 1366 Inst.replaceAllUsesWith(V); 1367 Changed = true; 1368 } 1369 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1370 salvageKnowledge(&Inst, &AC); 1371 removeMSSA(Inst); 1372 Inst.eraseFromParent(); 1373 Changed = true; 1374 Killed = true; 1375 } 1376 if (Changed) 1377 ++NumSimplify; 1378 if (Killed) 1379 continue; 1380 } 1381 } 1382 1383 // If this is a simple instruction that we can value number, process it. 1384 if (SimpleValue::canHandle(&Inst)) { 1385 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1386 assert(CI->getExceptionBehavior() != fp::ebStrict && 1387 "Unexpected ebStrict from SimpleValue::canHandle()"); 1388 assert((!CI->getRoundingMode() || 1389 CI->getRoundingMode() != RoundingMode::Dynamic) && 1390 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1391 } 1392 // See if the instruction has an available value. If so, use it. 1393 if (Value *V = AvailableValues.lookup(&Inst)) { 1394 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1395 << '\n'); 1396 if (!DebugCounter::shouldExecute(CSECounter)) { 1397 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1398 continue; 1399 } 1400 if (auto *I = dyn_cast<Instruction>(V)) { 1401 // If I being poison triggers UB, there is no need to drop those 1402 // flags. Otherwise, only retain flags present on both I and Inst. 1403 // TODO: Currently some fast-math flags are not treated as 1404 // poison-generating even though they should. Until this is fixed, 1405 // always retain flags present on both I and Inst for floating point 1406 // instructions. 1407 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1408 I->andIRFlags(&Inst); 1409 } 1410 Inst.replaceAllUsesWith(V); 1411 salvageKnowledge(&Inst, &AC); 1412 removeMSSA(Inst); 1413 Inst.eraseFromParent(); 1414 Changed = true; 1415 ++NumCSE; 1416 continue; 1417 } 1418 1419 // Otherwise, just remember that this value is available. 1420 AvailableValues.insert(&Inst, &Inst); 1421 continue; 1422 } 1423 1424 ParseMemoryInst MemInst(&Inst, TTI); 1425 // If this is a non-volatile load, process it. 1426 if (MemInst.isValid() && MemInst.isLoad()) { 1427 // (conservatively) we can't peak past the ordering implied by this 1428 // operation, but we can add this load to our set of available values 1429 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1430 LastStore = nullptr; 1431 ++CurrentGeneration; 1432 } 1433 1434 if (MemInst.isInvariantLoad()) { 1435 // If we pass an invariant load, we know that memory location is 1436 // indefinitely constant from the moment of first dereferenceability. 1437 // We conservatively treat the invariant_load as that moment. If we 1438 // pass a invariant load after already establishing a scope, don't 1439 // restart it since we want to preserve the earliest point seen. 1440 auto MemLoc = MemoryLocation::get(&Inst); 1441 if (!AvailableInvariants.count(MemLoc)) 1442 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1443 } 1444 1445 // If we have an available version of this load, and if it is the right 1446 // generation or the load is known to be from an invariant location, 1447 // replace this instruction. 1448 // 1449 // If either the dominating load or the current load are invariant, then 1450 // we can assume the current load loads the same value as the dominating 1451 // load. 1452 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1453 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1454 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1455 << " to: " << *InVal.DefInst << '\n'); 1456 if (!DebugCounter::shouldExecute(CSECounter)) { 1457 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1458 continue; 1459 } 1460 if (!Inst.use_empty()) 1461 Inst.replaceAllUsesWith(Op); 1462 salvageKnowledge(&Inst, &AC); 1463 removeMSSA(Inst); 1464 Inst.eraseFromParent(); 1465 Changed = true; 1466 ++NumCSELoad; 1467 continue; 1468 } 1469 1470 // Otherwise, remember that we have this instruction. 1471 AvailableLoads.insert(MemInst.getPointerOperand(), 1472 LoadValue(&Inst, CurrentGeneration, 1473 MemInst.getMatchingId(), 1474 MemInst.isAtomic())); 1475 LastStore = nullptr; 1476 continue; 1477 } 1478 1479 // If this instruction may read from memory or throw (and potentially read 1480 // from memory in the exception handler), forget LastStore. Load/store 1481 // intrinsics will indicate both a read and a write to memory. The target 1482 // may override this (e.g. so that a store intrinsic does not read from 1483 // memory, and thus will be treated the same as a regular store for 1484 // commoning purposes). 1485 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1486 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1487 LastStore = nullptr; 1488 1489 // If this is a read-only call, process it. 1490 if (CallValue::canHandle(&Inst)) { 1491 // If we have an available version of this call, and if it is the right 1492 // generation, replace this instruction. 1493 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1494 if (InVal.first != nullptr && 1495 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1496 &Inst)) { 1497 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1498 << " to: " << *InVal.first << '\n'); 1499 if (!DebugCounter::shouldExecute(CSECounter)) { 1500 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1501 continue; 1502 } 1503 if (!Inst.use_empty()) 1504 Inst.replaceAllUsesWith(InVal.first); 1505 salvageKnowledge(&Inst, &AC); 1506 removeMSSA(Inst); 1507 Inst.eraseFromParent(); 1508 Changed = true; 1509 ++NumCSECall; 1510 continue; 1511 } 1512 1513 // Otherwise, remember that we have this instruction. 1514 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1515 continue; 1516 } 1517 1518 // A release fence requires that all stores complete before it, but does 1519 // not prevent the reordering of following loads 'before' the fence. As a 1520 // result, we don't need to consider it as writing to memory and don't need 1521 // to advance the generation. We do need to prevent DSE across the fence, 1522 // but that's handled above. 1523 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1524 if (FI->getOrdering() == AtomicOrdering::Release) { 1525 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1526 continue; 1527 } 1528 1529 // write back DSE - If we write back the same value we just loaded from 1530 // the same location and haven't passed any intervening writes or ordering 1531 // operations, we can remove the write. The primary benefit is in allowing 1532 // the available load table to remain valid and value forward past where 1533 // the store originally was. 1534 if (MemInst.isValid() && MemInst.isStore()) { 1535 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1536 if (InVal.DefInst && 1537 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1538 // It is okay to have a LastStore to a different pointer here if MemorySSA 1539 // tells us that the load and store are from the same memory generation. 1540 // In that case, LastStore should keep its present value since we're 1541 // removing the current store. 1542 assert((!LastStore || 1543 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1544 MemInst.getPointerOperand() || 1545 MSSA) && 1546 "can't have an intervening store if not using MemorySSA!"); 1547 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1548 if (!DebugCounter::shouldExecute(CSECounter)) { 1549 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1550 continue; 1551 } 1552 salvageKnowledge(&Inst, &AC); 1553 removeMSSA(Inst); 1554 Inst.eraseFromParent(); 1555 Changed = true; 1556 ++NumDSE; 1557 // We can avoid incrementing the generation count since we were able 1558 // to eliminate this store. 1559 continue; 1560 } 1561 } 1562 1563 // Okay, this isn't something we can CSE at all. Check to see if it is 1564 // something that could modify memory. If so, our available memory values 1565 // cannot be used so bump the generation count. 1566 if (Inst.mayWriteToMemory()) { 1567 ++CurrentGeneration; 1568 1569 if (MemInst.isValid() && MemInst.isStore()) { 1570 // We do a trivial form of DSE if there are two stores to the same 1571 // location with no intervening loads. Delete the earlier store. 1572 if (LastStore) { 1573 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1574 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1575 << " due to: " << Inst << '\n'); 1576 if (!DebugCounter::shouldExecute(CSECounter)) { 1577 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1578 } else { 1579 salvageKnowledge(&Inst, &AC); 1580 removeMSSA(*LastStore); 1581 LastStore->eraseFromParent(); 1582 Changed = true; 1583 ++NumDSE; 1584 LastStore = nullptr; 1585 } 1586 } 1587 // fallthrough - we can exploit information about this store 1588 } 1589 1590 // Okay, we just invalidated anything we knew about loaded values. Try 1591 // to salvage *something* by remembering that the stored value is a live 1592 // version of the pointer. It is safe to forward from volatile stores 1593 // to non-volatile loads, so we don't have to check for volatility of 1594 // the store. 1595 AvailableLoads.insert(MemInst.getPointerOperand(), 1596 LoadValue(&Inst, CurrentGeneration, 1597 MemInst.getMatchingId(), 1598 MemInst.isAtomic())); 1599 1600 // Remember that this was the last unordered store we saw for DSE. We 1601 // don't yet handle DSE on ordered or volatile stores since we don't 1602 // have a good way to model the ordering requirement for following 1603 // passes once the store is removed. We could insert a fence, but 1604 // since fences are slightly stronger than stores in their ordering, 1605 // it's not clear this is a profitable transform. Another option would 1606 // be to merge the ordering with that of the post dominating store. 1607 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1608 LastStore = &Inst; 1609 else 1610 LastStore = nullptr; 1611 } 1612 } 1613 } 1614 1615 return Changed; 1616 } 1617 1618 bool EarlyCSE::run() { 1619 // Note, deque is being used here because there is significant performance 1620 // gains over vector when the container becomes very large due to the 1621 // specific access patterns. For more information see the mailing list 1622 // discussion on this: 1623 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1624 std::deque<StackNode *> nodesToProcess; 1625 1626 bool Changed = false; 1627 1628 // Process the root node. 1629 nodesToProcess.push_back(new StackNode( 1630 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1631 CurrentGeneration, DT.getRootNode(), 1632 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1633 1634 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1635 1636 // Process the stack. 1637 while (!nodesToProcess.empty()) { 1638 // Grab the first item off the stack. Set the current generation, remove 1639 // the node from the stack, and process it. 1640 StackNode *NodeToProcess = nodesToProcess.back(); 1641 1642 // Initialize class members. 1643 CurrentGeneration = NodeToProcess->currentGeneration(); 1644 1645 // Check if the node needs to be processed. 1646 if (!NodeToProcess->isProcessed()) { 1647 // Process the node. 1648 Changed |= processNode(NodeToProcess->node()); 1649 NodeToProcess->childGeneration(CurrentGeneration); 1650 NodeToProcess->process(); 1651 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1652 // Push the next child onto the stack. 1653 DomTreeNode *child = NodeToProcess->nextChild(); 1654 nodesToProcess.push_back( 1655 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1656 AvailableCalls, NodeToProcess->childGeneration(), 1657 child, child->begin(), child->end())); 1658 } else { 1659 // It has been processed, and there are no more children to process, 1660 // so delete it and pop it off the stack. 1661 delete NodeToProcess; 1662 nodesToProcess.pop_back(); 1663 } 1664 } // while (!nodes...) 1665 1666 return Changed; 1667 } 1668 1669 PreservedAnalyses EarlyCSEPass::run(Function &F, 1670 FunctionAnalysisManager &AM) { 1671 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1672 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1673 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1674 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1675 auto *MSSA = 1676 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1677 1678 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1679 1680 if (!CSE.run()) 1681 return PreservedAnalyses::all(); 1682 1683 PreservedAnalyses PA; 1684 PA.preserveSet<CFGAnalyses>(); 1685 if (UseMemorySSA) 1686 PA.preserve<MemorySSAAnalysis>(); 1687 return PA; 1688 } 1689 1690 void EarlyCSEPass::printPipeline( 1691 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1692 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1693 OS, MapClassName2PassName); 1694 OS << "<"; 1695 if (UseMemorySSA) 1696 OS << "memssa"; 1697 OS << ">"; 1698 } 1699 1700 namespace { 1701 1702 /// A simple and fast domtree-based CSE pass. 1703 /// 1704 /// This pass does a simple depth-first walk over the dominator tree, 1705 /// eliminating trivially redundant instructions and using instsimplify to 1706 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1707 /// cases so that instcombine and other passes are more effective. It is 1708 /// expected that a later pass of GVN will catch the interesting/hard cases. 1709 template<bool UseMemorySSA> 1710 class EarlyCSELegacyCommonPass : public FunctionPass { 1711 public: 1712 static char ID; 1713 1714 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1715 if (UseMemorySSA) 1716 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1717 else 1718 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1719 } 1720 1721 bool runOnFunction(Function &F) override { 1722 if (skipFunction(F)) 1723 return false; 1724 1725 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1726 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1727 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1728 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1729 auto *MSSA = 1730 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1731 1732 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1733 1734 return CSE.run(); 1735 } 1736 1737 void getAnalysisUsage(AnalysisUsage &AU) const override { 1738 AU.addRequired<AssumptionCacheTracker>(); 1739 AU.addRequired<DominatorTreeWrapperPass>(); 1740 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1741 AU.addRequired<TargetTransformInfoWrapperPass>(); 1742 if (UseMemorySSA) { 1743 AU.addRequired<AAResultsWrapperPass>(); 1744 AU.addRequired<MemorySSAWrapperPass>(); 1745 AU.addPreserved<MemorySSAWrapperPass>(); 1746 } 1747 AU.addPreserved<GlobalsAAWrapperPass>(); 1748 AU.addPreserved<AAResultsWrapperPass>(); 1749 AU.setPreservesCFG(); 1750 } 1751 }; 1752 1753 } // end anonymous namespace 1754 1755 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1756 1757 template<> 1758 char EarlyCSELegacyPass::ID = 0; 1759 1760 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1761 false) 1762 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1763 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1765 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1766 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1767 1768 using EarlyCSEMemSSALegacyPass = 1769 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1770 1771 template<> 1772 char EarlyCSEMemSSALegacyPass::ID = 0; 1773 1774 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1775 if (UseMemorySSA) 1776 return new EarlyCSEMemSSALegacyPass(); 1777 else 1778 return new EarlyCSELegacyPass(); 1779 } 1780 1781 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1782 "Early CSE w/ MemorySSA", false, false) 1783 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1784 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1785 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1786 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1787 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1788 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1789 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1790 "Early CSE w/ MemorySSA", false, false) 1791