1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/GlobalsModRef.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include <deque> 36 using namespace llvm; 37 using namespace llvm::PatternMatch; 38 39 #define DEBUG_TYPE "early-cse" 40 41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 42 STATISTIC(NumCSE, "Number of instructions CSE'd"); 43 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 44 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 45 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 46 47 //===----------------------------------------------------------------------===// 48 // SimpleValue 49 //===----------------------------------------------------------------------===// 50 51 namespace { 52 /// \brief Struct representing the available values in the scoped hash table. 53 struct SimpleValue { 54 Instruction *Inst; 55 56 SimpleValue(Instruction *I) : Inst(I) { 57 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 58 } 59 60 bool isSentinel() const { 61 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 62 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 63 } 64 65 static bool canHandle(Instruction *Inst) { 66 // This can only handle non-void readnone functions. 67 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 68 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 69 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 70 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 71 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 72 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 73 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 74 } 75 }; 76 } 77 78 namespace llvm { 79 template <> struct DenseMapInfo<SimpleValue> { 80 static inline SimpleValue getEmptyKey() { 81 return DenseMapInfo<Instruction *>::getEmptyKey(); 82 } 83 static inline SimpleValue getTombstoneKey() { 84 return DenseMapInfo<Instruction *>::getTombstoneKey(); 85 } 86 static unsigned getHashValue(SimpleValue Val); 87 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 88 }; 89 } 90 91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 92 Instruction *Inst = Val.Inst; 93 // Hash in all of the operands as pointers. 94 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 95 Value *LHS = BinOp->getOperand(0); 96 Value *RHS = BinOp->getOperand(1); 97 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 98 std::swap(LHS, RHS); 99 100 if (isa<OverflowingBinaryOperator>(BinOp)) { 101 // Hash the overflow behavior 102 unsigned Overflow = 103 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 104 BinOp->hasNoUnsignedWrap() * 105 OverflowingBinaryOperator::NoUnsignedWrap; 106 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 107 } 108 109 return hash_combine(BinOp->getOpcode(), LHS, RHS); 110 } 111 112 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 113 Value *LHS = CI->getOperand(0); 114 Value *RHS = CI->getOperand(1); 115 CmpInst::Predicate Pred = CI->getPredicate(); 116 if (Inst->getOperand(0) > Inst->getOperand(1)) { 117 std::swap(LHS, RHS); 118 Pred = CI->getSwappedPredicate(); 119 } 120 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 121 } 122 123 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 124 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 125 126 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 127 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 128 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 129 130 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 131 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 132 IVI->getOperand(1), 133 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 134 135 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 136 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 137 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 138 isa<ShuffleVectorInst>(Inst)) && 139 "Invalid/unknown instruction"); 140 141 // Mix in the opcode. 142 return hash_combine( 143 Inst->getOpcode(), 144 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 145 } 146 147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 148 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 149 150 if (LHS.isSentinel() || RHS.isSentinel()) 151 return LHSI == RHSI; 152 153 if (LHSI->getOpcode() != RHSI->getOpcode()) 154 return false; 155 if (LHSI->isIdenticalTo(RHSI)) 156 return true; 157 158 // If we're not strictly identical, we still might be a commutable instruction 159 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 160 if (!LHSBinOp->isCommutative()) 161 return false; 162 163 assert(isa<BinaryOperator>(RHSI) && 164 "same opcode, but different instruction type?"); 165 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 166 167 // Check overflow attributes 168 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 169 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 170 "same opcode, but different operator type?"); 171 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 172 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 173 return false; 174 } 175 176 // Commuted equality 177 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 178 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 179 } 180 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 181 assert(isa<CmpInst>(RHSI) && 182 "same opcode, but different instruction type?"); 183 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 184 // Commuted equality 185 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 186 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 187 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 188 } 189 190 return false; 191 } 192 193 //===----------------------------------------------------------------------===// 194 // CallValue 195 //===----------------------------------------------------------------------===// 196 197 namespace { 198 /// \brief Struct representing the available call values in the scoped hash 199 /// table. 200 struct CallValue { 201 Instruction *Inst; 202 203 CallValue(Instruction *I) : Inst(I) { 204 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 205 } 206 207 bool isSentinel() const { 208 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 209 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 210 } 211 212 static bool canHandle(Instruction *Inst) { 213 // Don't value number anything that returns void. 214 if (Inst->getType()->isVoidTy()) 215 return false; 216 217 CallInst *CI = dyn_cast<CallInst>(Inst); 218 if (!CI || !CI->onlyReadsMemory()) 219 return false; 220 return true; 221 } 222 }; 223 } 224 225 namespace llvm { 226 template <> struct DenseMapInfo<CallValue> { 227 static inline CallValue getEmptyKey() { 228 return DenseMapInfo<Instruction *>::getEmptyKey(); 229 } 230 static inline CallValue getTombstoneKey() { 231 return DenseMapInfo<Instruction *>::getTombstoneKey(); 232 } 233 static unsigned getHashValue(CallValue Val); 234 static bool isEqual(CallValue LHS, CallValue RHS); 235 }; 236 } 237 238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 239 Instruction *Inst = Val.Inst; 240 // Hash all of the operands as pointers and mix in the opcode. 241 return hash_combine( 242 Inst->getOpcode(), 243 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 244 } 245 246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 247 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 248 if (LHS.isSentinel() || RHS.isSentinel()) 249 return LHSI == RHSI; 250 return LHSI->isIdenticalTo(RHSI); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // EarlyCSE implementation 255 //===----------------------------------------------------------------------===// 256 257 namespace { 258 /// \brief A simple and fast domtree-based CSE pass. 259 /// 260 /// This pass does a simple depth-first walk over the dominator tree, 261 /// eliminating trivially redundant instructions and using instsimplify to 262 /// canonicalize things as it goes. It is intended to be fast and catch obvious 263 /// cases so that instcombine and other passes are more effective. It is 264 /// expected that a later pass of GVN will catch the interesting/hard cases. 265 class EarlyCSE { 266 public: 267 const TargetLibraryInfo &TLI; 268 const TargetTransformInfo &TTI; 269 DominatorTree &DT; 270 AssumptionCache &AC; 271 typedef RecyclingAllocator< 272 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 273 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 274 AllocatorTy> ScopedHTType; 275 276 /// \brief A scoped hash table of the current values of all of our simple 277 /// scalar expressions. 278 /// 279 /// As we walk down the domtree, we look to see if instructions are in this: 280 /// if so, we replace them with what we find, otherwise we insert them so 281 /// that dominated values can succeed in their lookup. 282 ScopedHTType AvailableValues; 283 284 /// \brief A scoped hash table of the current values of loads. 285 /// 286 /// This allows us to get efficient access to dominating loads when we have 287 /// a fully redundant load. In addition to the most recent load, we keep 288 /// track of a generation count of the read, which is compared against the 289 /// current generation count. The current generation count is incremented 290 /// after every possibly writing memory operation, which ensures that we only 291 /// CSE loads with other loads that have no intervening store. 292 struct LoadValue { 293 Value *Data; 294 unsigned Generation; 295 int MatchingId; 296 LoadValue() : Data(nullptr), Generation(0), MatchingId(-1) {} 297 LoadValue(Value *Data, unsigned Generation, unsigned MatchingId) 298 : Data(Data), Generation(Generation), MatchingId(MatchingId) {} 299 }; 300 typedef RecyclingAllocator<BumpPtrAllocator, 301 ScopedHashTableVal<Value *, LoadValue>> 302 LoadMapAllocator; 303 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 304 LoadMapAllocator> LoadHTType; 305 LoadHTType AvailableLoads; 306 307 /// \brief A scoped hash table of the current values of read-only call 308 /// values. 309 /// 310 /// It uses the same generation count as loads. 311 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 312 CallHTType AvailableCalls; 313 314 /// \brief This is the current generation of the memory value. 315 unsigned CurrentGeneration; 316 317 /// \brief Set up the EarlyCSE runner for a particular function. 318 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 319 DominatorTree &DT, AssumptionCache &AC) 320 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} 321 322 bool run(); 323 324 private: 325 // Almost a POD, but needs to call the constructors for the scoped hash 326 // tables so that a new scope gets pushed on. These are RAII so that the 327 // scope gets popped when the NodeScope is destroyed. 328 class NodeScope { 329 public: 330 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 331 CallHTType &AvailableCalls) 332 : Scope(AvailableValues), LoadScope(AvailableLoads), 333 CallScope(AvailableCalls) {} 334 335 private: 336 NodeScope(const NodeScope &) = delete; 337 void operator=(const NodeScope &) = delete; 338 339 ScopedHTType::ScopeTy Scope; 340 LoadHTType::ScopeTy LoadScope; 341 CallHTType::ScopeTy CallScope; 342 }; 343 344 // Contains all the needed information to create a stack for doing a depth 345 // first tranversal of the tree. This includes scopes for values, loads, and 346 // calls as well as the generation. There is a child iterator so that the 347 // children do not need to be store spearately. 348 class StackNode { 349 public: 350 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 351 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 352 DomTreeNode::iterator child, DomTreeNode::iterator end) 353 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 354 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 355 Processed(false) {} 356 357 // Accessors. 358 unsigned currentGeneration() { return CurrentGeneration; } 359 unsigned childGeneration() { return ChildGeneration; } 360 void childGeneration(unsigned generation) { ChildGeneration = generation; } 361 DomTreeNode *node() { return Node; } 362 DomTreeNode::iterator childIter() { return ChildIter; } 363 DomTreeNode *nextChild() { 364 DomTreeNode *child = *ChildIter; 365 ++ChildIter; 366 return child; 367 } 368 DomTreeNode::iterator end() { return EndIter; } 369 bool isProcessed() { return Processed; } 370 void process() { Processed = true; } 371 372 private: 373 StackNode(const StackNode &) = delete; 374 void operator=(const StackNode &) = delete; 375 376 // Members. 377 unsigned CurrentGeneration; 378 unsigned ChildGeneration; 379 DomTreeNode *Node; 380 DomTreeNode::iterator ChildIter; 381 DomTreeNode::iterator EndIter; 382 NodeScope Scopes; 383 bool Processed; 384 }; 385 386 /// \brief Wrapper class to handle memory instructions, including loads, 387 /// stores and intrinsic loads and stores defined by the target. 388 class ParseMemoryInst { 389 public: 390 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 391 : Load(false), Store(false), IsSimple(true), MayReadFromMemory(false), 392 MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) { 393 MayReadFromMemory = Inst->mayReadFromMemory(); 394 MayWriteToMemory = Inst->mayWriteToMemory(); 395 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 396 MemIntrinsicInfo Info; 397 if (!TTI.getTgtMemIntrinsic(II, Info)) 398 return; 399 if (Info.NumMemRefs == 1) { 400 Store = Info.WriteMem; 401 Load = Info.ReadMem; 402 MatchingId = Info.MatchingId; 403 MayReadFromMemory = Info.ReadMem; 404 MayWriteToMemory = Info.WriteMem; 405 IsSimple = Info.IsSimple; 406 Ptr = Info.PtrVal; 407 } 408 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 409 Load = true; 410 IsSimple = LI->isSimple(); 411 Ptr = LI->getPointerOperand(); 412 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 413 Store = true; 414 IsSimple = SI->isSimple(); 415 Ptr = SI->getPointerOperand(); 416 } 417 } 418 bool isLoad() const { return Load; } 419 bool isStore() const { return Store; } 420 bool isSimple() const { return IsSimple; } 421 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 422 return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId; 423 } 424 bool isValid() const { return Ptr != nullptr; } 425 int getMatchingId() const { return MatchingId; } 426 Value *getPtr() const { return Ptr; } 427 bool mayReadFromMemory() const { return MayReadFromMemory; } 428 bool mayWriteToMemory() const { return MayWriteToMemory; } 429 430 private: 431 bool Load; 432 bool Store; 433 bool IsSimple; 434 bool MayReadFromMemory; 435 bool MayWriteToMemory; 436 // For regular (non-intrinsic) loads/stores, this is set to -1. For 437 // intrinsic loads/stores, the id is retrieved from the corresponding 438 // field in the MemIntrinsicInfo structure. That field contains 439 // non-negative values only. 440 int MatchingId; 441 Value *Ptr; 442 }; 443 444 bool processNode(DomTreeNode *Node); 445 446 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 447 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 448 return LI; 449 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 450 return SI->getValueOperand(); 451 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 452 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 453 ExpectedType); 454 } 455 }; 456 } 457 458 bool EarlyCSE::processNode(DomTreeNode *Node) { 459 BasicBlock *BB = Node->getBlock(); 460 461 // If this block has a single predecessor, then the predecessor is the parent 462 // of the domtree node and all of the live out memory values are still current 463 // in this block. If this block has multiple predecessors, then they could 464 // have invalidated the live-out memory values of our parent value. For now, 465 // just be conservative and invalidate memory if this block has multiple 466 // predecessors. 467 if (!BB->getSinglePredecessor()) 468 ++CurrentGeneration; 469 470 // If this node has a single predecessor which ends in a conditional branch, 471 // we can infer the value of the branch condition given that we took this 472 // path. We need the single predeccesor to ensure there's not another path 473 // which reaches this block where the condition might hold a different 474 // value. Since we're adding this to the scoped hash table (like any other 475 // def), it will have been popped if we encounter a future merge block. 476 if (BasicBlock *Pred = BB->getSinglePredecessor()) 477 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 478 if (BI->isConditional()) 479 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 480 if (SimpleValue::canHandle(CondInst)) { 481 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 482 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 483 ConstantInt::getTrue(BB->getContext()) : 484 ConstantInt::getFalse(BB->getContext()); 485 AvailableValues.insert(CondInst, ConditionalConstant); 486 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 487 << CondInst->getName() << "' as " << *ConditionalConstant 488 << " in " << BB->getName() << "\n"); 489 // Replace all dominated uses with the known value 490 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 491 BasicBlockEdge(Pred, BB)); 492 } 493 494 /// LastStore - Keep track of the last non-volatile store that we saw... for 495 /// as long as there in no instruction that reads memory. If we see a store 496 /// to the same location, we delete the dead store. This zaps trivial dead 497 /// stores which can occur in bitfield code among other things. 498 Instruction *LastStore = nullptr; 499 500 bool Changed = false; 501 const DataLayout &DL = BB->getModule()->getDataLayout(); 502 503 // See if any instructions in the block can be eliminated. If so, do it. If 504 // not, add them to AvailableValues. 505 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 506 Instruction *Inst = &*I++; 507 508 // Dead instructions should just be removed. 509 if (isInstructionTriviallyDead(Inst, &TLI)) { 510 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 511 Inst->eraseFromParent(); 512 Changed = true; 513 ++NumSimplify; 514 continue; 515 } 516 517 // Skip assume intrinsics, they don't really have side effects (although 518 // they're marked as such to ensure preservation of control dependencies), 519 // and this pass will not disturb any of the assumption's control 520 // dependencies. 521 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 522 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 523 continue; 524 } 525 526 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 527 // its simpler value. 528 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 529 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 530 Inst->replaceAllUsesWith(V); 531 Inst->eraseFromParent(); 532 Changed = true; 533 ++NumSimplify; 534 continue; 535 } 536 537 // If this is a simple instruction that we can value number, process it. 538 if (SimpleValue::canHandle(Inst)) { 539 // See if the instruction has an available value. If so, use it. 540 if (Value *V = AvailableValues.lookup(Inst)) { 541 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 542 Inst->replaceAllUsesWith(V); 543 Inst->eraseFromParent(); 544 Changed = true; 545 ++NumCSE; 546 continue; 547 } 548 549 // Otherwise, just remember that this value is available. 550 AvailableValues.insert(Inst, Inst); 551 continue; 552 } 553 554 ParseMemoryInst MemInst(Inst, TTI); 555 // If this is a non-volatile load, process it. 556 if (MemInst.isValid() && MemInst.isLoad()) { 557 // Ignore volatile or ordered loads. 558 if (!MemInst.isSimple()) { 559 LastStore = nullptr; 560 // Don't CSE across synchronization boundaries. 561 if (Inst->mayWriteToMemory()) 562 ++CurrentGeneration; 563 continue; 564 } 565 566 // If we have an available version of this load, and if it is the right 567 // generation, replace this instruction. 568 LoadValue InVal = AvailableLoads.lookup(MemInst.getPtr()); 569 if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration && 570 InVal.MatchingId == MemInst.getMatchingId()) { 571 Value *Op = getOrCreateResult(InVal.Data, Inst->getType()); 572 if (Op != nullptr) { 573 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 574 << " to: " << *InVal.Data << '\n'); 575 if (!Inst->use_empty()) 576 Inst->replaceAllUsesWith(Op); 577 Inst->eraseFromParent(); 578 Changed = true; 579 ++NumCSELoad; 580 continue; 581 } 582 } 583 584 // Otherwise, remember that we have this instruction. 585 AvailableLoads.insert( 586 MemInst.getPtr(), 587 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 588 LastStore = nullptr; 589 continue; 590 } 591 592 // If this instruction may read from memory, forget LastStore. 593 // Load/store intrinsics will indicate both a read and a write to 594 // memory. The target may override this (e.g. so that a store intrinsic 595 // does not read from memory, and thus will be treated the same as a 596 // regular store for commoning purposes). 597 if (Inst->mayReadFromMemory() && 598 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 599 LastStore = nullptr; 600 601 // If this is a read-only call, process it. 602 if (CallValue::canHandle(Inst)) { 603 // If we have an available version of this call, and if it is the right 604 // generation, replace this instruction. 605 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); 606 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 607 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 608 << " to: " << *InVal.first << '\n'); 609 if (!Inst->use_empty()) 610 Inst->replaceAllUsesWith(InVal.first); 611 Inst->eraseFromParent(); 612 Changed = true; 613 ++NumCSECall; 614 continue; 615 } 616 617 // Otherwise, remember that we have this instruction. 618 AvailableCalls.insert( 619 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 620 continue; 621 } 622 623 // A release fence requires that all stores complete before it, but does 624 // not prevent the reordering of following loads 'before' the fence. As a 625 // result, we don't need to consider it as writing to memory and don't need 626 // to advance the generation. We do need to prevent DSE across the fence, 627 // but that's handled above. 628 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 629 if (FI->getOrdering() == Release) { 630 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 631 continue; 632 } 633 634 // Okay, this isn't something we can CSE at all. Check to see if it is 635 // something that could modify memory. If so, our available memory values 636 // cannot be used so bump the generation count. 637 if (Inst->mayWriteToMemory()) { 638 ++CurrentGeneration; 639 640 if (MemInst.isValid() && MemInst.isStore()) { 641 // We do a trivial form of DSE if there are two stores to the same 642 // location with no intervening loads. Delete the earlier store. 643 if (LastStore) { 644 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 645 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 646 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 647 << " due to: " << *Inst << '\n'); 648 LastStore->eraseFromParent(); 649 Changed = true; 650 ++NumDSE; 651 LastStore = nullptr; 652 } 653 // fallthrough - we can exploit information about this store 654 } 655 656 // Okay, we just invalidated anything we knew about loaded values. Try 657 // to salvage *something* by remembering that the stored value is a live 658 // version of the pointer. It is safe to forward from volatile stores 659 // to non-volatile loads, so we don't have to check for volatility of 660 // the store. 661 AvailableLoads.insert( 662 MemInst.getPtr(), 663 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId())); 664 665 // Remember that this was the last normal store we saw for DSE. 666 if (MemInst.isSimple()) 667 LastStore = Inst; 668 } 669 } 670 } 671 672 return Changed; 673 } 674 675 bool EarlyCSE::run() { 676 // Note, deque is being used here because there is significant performance 677 // gains over vector when the container becomes very large due to the 678 // specific access patterns. For more information see the mailing list 679 // discussion on this: 680 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 681 std::deque<StackNode *> nodesToProcess; 682 683 bool Changed = false; 684 685 // Process the root node. 686 nodesToProcess.push_back(new StackNode( 687 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 688 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 689 690 // Save the current generation. 691 unsigned LiveOutGeneration = CurrentGeneration; 692 693 // Process the stack. 694 while (!nodesToProcess.empty()) { 695 // Grab the first item off the stack. Set the current generation, remove 696 // the node from the stack, and process it. 697 StackNode *NodeToProcess = nodesToProcess.back(); 698 699 // Initialize class members. 700 CurrentGeneration = NodeToProcess->currentGeneration(); 701 702 // Check if the node needs to be processed. 703 if (!NodeToProcess->isProcessed()) { 704 // Process the node. 705 Changed |= processNode(NodeToProcess->node()); 706 NodeToProcess->childGeneration(CurrentGeneration); 707 NodeToProcess->process(); 708 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 709 // Push the next child onto the stack. 710 DomTreeNode *child = NodeToProcess->nextChild(); 711 nodesToProcess.push_back( 712 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 713 NodeToProcess->childGeneration(), child, child->begin(), 714 child->end())); 715 } else { 716 // It has been processed, and there are no more children to process, 717 // so delete it and pop it off the stack. 718 delete NodeToProcess; 719 nodesToProcess.pop_back(); 720 } 721 } // while (!nodes...) 722 723 // Reset the current generation. 724 CurrentGeneration = LiveOutGeneration; 725 726 return Changed; 727 } 728 729 PreservedAnalyses EarlyCSEPass::run(Function &F, 730 AnalysisManager<Function> *AM) { 731 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 732 auto &TTI = AM->getResult<TargetIRAnalysis>(F); 733 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 734 auto &AC = AM->getResult<AssumptionAnalysis>(F); 735 736 EarlyCSE CSE(TLI, TTI, DT, AC); 737 738 if (!CSE.run()) 739 return PreservedAnalyses::all(); 740 741 // CSE preserves the dominator tree because it doesn't mutate the CFG. 742 // FIXME: Bundle this with other CFG-preservation. 743 PreservedAnalyses PA; 744 PA.preserve<DominatorTreeAnalysis>(); 745 return PA; 746 } 747 748 namespace { 749 /// \brief A simple and fast domtree-based CSE pass. 750 /// 751 /// This pass does a simple depth-first walk over the dominator tree, 752 /// eliminating trivially redundant instructions and using instsimplify to 753 /// canonicalize things as it goes. It is intended to be fast and catch obvious 754 /// cases so that instcombine and other passes are more effective. It is 755 /// expected that a later pass of GVN will catch the interesting/hard cases. 756 class EarlyCSELegacyPass : public FunctionPass { 757 public: 758 static char ID; 759 760 EarlyCSELegacyPass() : FunctionPass(ID) { 761 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 762 } 763 764 bool runOnFunction(Function &F) override { 765 if (skipOptnoneFunction(F)) 766 return false; 767 768 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 769 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 770 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 771 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 772 773 EarlyCSE CSE(TLI, TTI, DT, AC); 774 775 return CSE.run(); 776 } 777 778 void getAnalysisUsage(AnalysisUsage &AU) const override { 779 AU.addRequired<AssumptionCacheTracker>(); 780 AU.addRequired<DominatorTreeWrapperPass>(); 781 AU.addRequired<TargetLibraryInfoWrapperPass>(); 782 AU.addRequired<TargetTransformInfoWrapperPass>(); 783 AU.addPreserved<GlobalsAAWrapperPass>(); 784 AU.setPreservesCFG(); 785 } 786 }; 787 } 788 789 char EarlyCSELegacyPass::ID = 0; 790 791 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 792 793 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 794 false) 795 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 796 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 797 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 798 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 799 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 800