xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision 6b9524a05bab21c6b0ba4fe025864cb613605b99)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Allocator.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/DebugCounter.h"
54 #include "llvm/Support/RecyclingAllocator.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
58 #include "llvm/Transforms/Utils/GuardUtils.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <cassert>
61 #include <deque>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 using namespace llvm::PatternMatch;
67 
68 #define DEBUG_TYPE "early-cse"
69 
70 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
71 STATISTIC(NumCSE,      "Number of instructions CSE'd");
72 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
73 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
74 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
75 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
76 
77 DEBUG_COUNTER(CSECounter, "early-cse",
78               "Controls which instructions are removed");
79 
80 static cl::opt<unsigned> EarlyCSEMssaOptCap(
81     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
82     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
83              "for faster compile. Caps the MemorySSA clobbering calls."));
84 
85 static cl::opt<bool> EarlyCSEDebugHash(
86     "earlycse-debug-hash", cl::init(false), cl::Hidden,
87     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
88              "function is well-behaved w.r.t. its isEqual predicate"));
89 
90 //===----------------------------------------------------------------------===//
91 // SimpleValue
92 //===----------------------------------------------------------------------===//
93 
94 namespace {
95 
96 /// Struct representing the available values in the scoped hash table.
97 struct SimpleValue {
98   Instruction *Inst;
99 
100   SimpleValue(Instruction *I) : Inst(I) {
101     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
102   }
103 
104   bool isSentinel() const {
105     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
106            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
107   }
108 
109   static bool canHandle(Instruction *Inst) {
110     // This can only handle non-void readnone functions.
111     if (CallInst *CI = dyn_cast<CallInst>(Inst))
112       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
113     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
114            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
115            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
116            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
117            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
118            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
119   }
120 };
121 
122 } // end anonymous namespace
123 
124 namespace llvm {
125 
126 template <> struct DenseMapInfo<SimpleValue> {
127   static inline SimpleValue getEmptyKey() {
128     return DenseMapInfo<Instruction *>::getEmptyKey();
129   }
130 
131   static inline SimpleValue getTombstoneKey() {
132     return DenseMapInfo<Instruction *>::getTombstoneKey();
133   }
134 
135   static unsigned getHashValue(SimpleValue Val);
136   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
137 };
138 
139 } // end namespace llvm
140 
141 /// Match a 'select' including an optional 'not's of the condition.
142 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
143                                            Value *&B,
144                                            SelectPatternFlavor &Flavor) {
145   // Return false if V is not even a select.
146   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
147     return false;
148 
149   // Look through a 'not' of the condition operand by swapping A/B.
150   Value *CondNot;
151   if (match(Cond, m_Not(m_Value(CondNot)))) {
152     Cond = CondNot;
153     std::swap(A, B);
154   }
155 
156   // Match canonical forms of min/max. We are not using ValueTracking's
157   // more powerful matchSelectPattern() because it may rely on instruction flags
158   // such as "nsw". That would be incompatible with the current hashing
159   // mechanism that may remove flags to increase the likelihood of CSE.
160 
161   Flavor = SPF_UNKNOWN;
162   CmpInst::Predicate Pred;
163 
164   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
165     // Check for commuted variants of min/max by swapping predicate.
166     // If we do not match the standard or commuted patterns, this is not a
167     // recognized form of min/max, but it is still a select, so return true.
168     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
169       return true;
170     Pred = ICmpInst::getSwappedPredicate(Pred);
171   }
172 
173   switch (Pred) {
174   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
175   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
176   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
177   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
178   // Non-strict inequalities.
179   case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break;
180   case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break;
181   case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break;
182   case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break;
183   default: break;
184   }
185 
186   return true;
187 }
188 
189 static unsigned getHashValueImpl(SimpleValue Val) {
190   Instruction *Inst = Val.Inst;
191   // Hash in all of the operands as pointers.
192   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
193     Value *LHS = BinOp->getOperand(0);
194     Value *RHS = BinOp->getOperand(1);
195     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
196       std::swap(LHS, RHS);
197 
198     return hash_combine(BinOp->getOpcode(), LHS, RHS);
199   }
200 
201   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
202     // Compares can be commuted by swapping the comparands and
203     // updating the predicate.  Choose the form that has the
204     // comparands in sorted order, or in the case of a tie, the
205     // one with the lower predicate.
206     Value *LHS = CI->getOperand(0);
207     Value *RHS = CI->getOperand(1);
208     CmpInst::Predicate Pred = CI->getPredicate();
209     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
210     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
211       std::swap(LHS, RHS);
212       Pred = SwappedPred;
213     }
214     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
215   }
216 
217   // Hash general selects to allow matching commuted true/false operands.
218   SelectPatternFlavor SPF;
219   Value *Cond, *A, *B;
220   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
221     // Hash min/max (cmp + select) to allow for commuted operands.
222     // Min/max may also have non-canonical compare predicate (eg, the compare for
223     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
224     // compare.
225     // TODO: We should also detect FP min/max.
226     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
227         SPF == SPF_UMIN || SPF == SPF_UMAX) {
228       if (A > B)
229         std::swap(A, B);
230       return hash_combine(Inst->getOpcode(), SPF, A, B);
231     }
232 
233     // Hash general selects to allow matching commuted true/false operands.
234 
235     // If we do not have a compare as the condition, just hash in the condition.
236     CmpInst::Predicate Pred;
237     Value *X, *Y;
238     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
239       return hash_combine(Inst->getOpcode(), Cond, A, B);
240 
241     // Similar to cmp normalization (above) - canonicalize the predicate value:
242     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
243     if (CmpInst::getInversePredicate(Pred) < Pred) {
244       Pred = CmpInst::getInversePredicate(Pred);
245       std::swap(A, B);
246     }
247     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
248   }
249 
250   if (CastInst *CI = dyn_cast<CastInst>(Inst))
251     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
252 
253   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
254     return hash_combine(FI->getOpcode(), FI->getOperand(0));
255 
256   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
257     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
258                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
259 
260   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
261     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
262                         IVI->getOperand(1),
263                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
264 
265   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
266           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
267           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
268           isa<FreezeInst>(Inst)) &&
269          "Invalid/unknown instruction");
270 
271   // Handle intrinsics with commutative operands.
272   // TODO: Extend this to handle intrinsics with >2 operands where the 1st
273   //       2 operands are commutative.
274   auto *II = dyn_cast<IntrinsicInst>(Inst);
275   if (II && II->isCommutative() && II->getNumArgOperands() == 2) {
276     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
277     if (LHS > RHS)
278       std::swap(LHS, RHS);
279     return hash_combine(II->getOpcode(), LHS, RHS);
280   }
281 
282   // gc.relocate is 'special' call: its second and third operands are
283   // not real values, but indices into statepoint's argument list.
284   // Get values they point to.
285   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
286     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
287                         GCR->getBasePtr(), GCR->getDerivedPtr());
288 
289   // Mix in the opcode.
290   return hash_combine(
291       Inst->getOpcode(),
292       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
293 }
294 
295 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
296 #ifndef NDEBUG
297   // If -earlycse-debug-hash was specified, return a constant -- this
298   // will force all hashing to collide, so we'll exhaustively search
299   // the table for a match, and the assertion in isEqual will fire if
300   // there's a bug causing equal keys to hash differently.
301   if (EarlyCSEDebugHash)
302     return 0;
303 #endif
304   return getHashValueImpl(Val);
305 }
306 
307 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
308   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
309 
310   if (LHS.isSentinel() || RHS.isSentinel())
311     return LHSI == RHSI;
312 
313   if (LHSI->getOpcode() != RHSI->getOpcode())
314     return false;
315   if (LHSI->isIdenticalToWhenDefined(RHSI))
316     return true;
317 
318   // If we're not strictly identical, we still might be a commutable instruction
319   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
320     if (!LHSBinOp->isCommutative())
321       return false;
322 
323     assert(isa<BinaryOperator>(RHSI) &&
324            "same opcode, but different instruction type?");
325     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
326 
327     // Commuted equality
328     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
329            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
330   }
331   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
332     assert(isa<CmpInst>(RHSI) &&
333            "same opcode, but different instruction type?");
334     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
335     // Commuted equality
336     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
337            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
338            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
339   }
340 
341   // TODO: Extend this for >2 args by matching the trailing N-2 args.
342   auto *LII = dyn_cast<IntrinsicInst>(LHSI);
343   auto *RII = dyn_cast<IntrinsicInst>(RHSI);
344   if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
345       LII->isCommutative() && LII->getNumArgOperands() == 2) {
346     return LII->getArgOperand(0) == RII->getArgOperand(1) &&
347            LII->getArgOperand(1) == RII->getArgOperand(0);
348   }
349 
350   // See comment above in `getHashValue()`.
351   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
352     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
353       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
354              GCR1->getBasePtr() == GCR2->getBasePtr() &&
355              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
356 
357   // Min/max can occur with commuted operands, non-canonical predicates,
358   // and/or non-canonical operands.
359   // Selects can be non-trivially equivalent via inverted conditions and swaps.
360   SelectPatternFlavor LSPF, RSPF;
361   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
362   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
363       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
364     if (LSPF == RSPF) {
365       // TODO: We should also detect FP min/max.
366       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
367           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
368         return ((LHSA == RHSA && LHSB == RHSB) ||
369                 (LHSA == RHSB && LHSB == RHSA));
370 
371       // select Cond, A, B <--> select not(Cond), B, A
372       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
373         return true;
374     }
375 
376     // If the true/false operands are swapped and the conditions are compares
377     // with inverted predicates, the selects are equal:
378     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
379     //
380     // This also handles patterns with a double-negation in the sense of not +
381     // inverse, because we looked through a 'not' in the matching function and
382     // swapped A/B:
383     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
384     //
385     // This intentionally does NOT handle patterns with a double-negation in
386     // the sense of not + not, because doing so could result in values
387     // comparing
388     // as equal that hash differently in the min/max cases like:
389     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
390     //   ^ hashes as min                  ^ would not hash as min
391     // In the context of the EarlyCSE pass, however, such cases never reach
392     // this code, as we simplify the double-negation before hashing the second
393     // select (and so still succeed at CSEing them).
394     if (LHSA == RHSB && LHSB == RHSA) {
395       CmpInst::Predicate PredL, PredR;
396       Value *X, *Y;
397       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
398           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
399           CmpInst::getInversePredicate(PredL) == PredR)
400         return true;
401     }
402   }
403 
404   return false;
405 }
406 
407 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
408   // These comparisons are nontrivial, so assert that equality implies
409   // hash equality (DenseMap demands this as an invariant).
410   bool Result = isEqualImpl(LHS, RHS);
411   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
412          getHashValueImpl(LHS) == getHashValueImpl(RHS));
413   return Result;
414 }
415 
416 //===----------------------------------------------------------------------===//
417 // CallValue
418 //===----------------------------------------------------------------------===//
419 
420 namespace {
421 
422 /// Struct representing the available call values in the scoped hash
423 /// table.
424 struct CallValue {
425   Instruction *Inst;
426 
427   CallValue(Instruction *I) : Inst(I) {
428     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
429   }
430 
431   bool isSentinel() const {
432     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
433            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
434   }
435 
436   static bool canHandle(Instruction *Inst) {
437     // Don't value number anything that returns void.
438     if (Inst->getType()->isVoidTy())
439       return false;
440 
441     CallInst *CI = dyn_cast<CallInst>(Inst);
442     if (!CI || !CI->onlyReadsMemory())
443       return false;
444     return true;
445   }
446 };
447 
448 } // end anonymous namespace
449 
450 namespace llvm {
451 
452 template <> struct DenseMapInfo<CallValue> {
453   static inline CallValue getEmptyKey() {
454     return DenseMapInfo<Instruction *>::getEmptyKey();
455   }
456 
457   static inline CallValue getTombstoneKey() {
458     return DenseMapInfo<Instruction *>::getTombstoneKey();
459   }
460 
461   static unsigned getHashValue(CallValue Val);
462   static bool isEqual(CallValue LHS, CallValue RHS);
463 };
464 
465 } // end namespace llvm
466 
467 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
468   Instruction *Inst = Val.Inst;
469 
470   // Hash all of the operands as pointers and mix in the opcode.
471   return hash_combine(
472       Inst->getOpcode(),
473       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
474 }
475 
476 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
477   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
478   if (LHS.isSentinel() || RHS.isSentinel())
479     return LHSI == RHSI;
480 
481   return LHSI->isIdenticalTo(RHSI);
482 }
483 
484 //===----------------------------------------------------------------------===//
485 // EarlyCSE implementation
486 //===----------------------------------------------------------------------===//
487 
488 namespace {
489 
490 /// A simple and fast domtree-based CSE pass.
491 ///
492 /// This pass does a simple depth-first walk over the dominator tree,
493 /// eliminating trivially redundant instructions and using instsimplify to
494 /// canonicalize things as it goes. It is intended to be fast and catch obvious
495 /// cases so that instcombine and other passes are more effective. It is
496 /// expected that a later pass of GVN will catch the interesting/hard cases.
497 class EarlyCSE {
498 public:
499   const TargetLibraryInfo &TLI;
500   const TargetTransformInfo &TTI;
501   DominatorTree &DT;
502   AssumptionCache &AC;
503   const SimplifyQuery SQ;
504   MemorySSA *MSSA;
505   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
506 
507   using AllocatorTy =
508       RecyclingAllocator<BumpPtrAllocator,
509                          ScopedHashTableVal<SimpleValue, Value *>>;
510   using ScopedHTType =
511       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
512                       AllocatorTy>;
513 
514   /// A scoped hash table of the current values of all of our simple
515   /// scalar expressions.
516   ///
517   /// As we walk down the domtree, we look to see if instructions are in this:
518   /// if so, we replace them with what we find, otherwise we insert them so
519   /// that dominated values can succeed in their lookup.
520   ScopedHTType AvailableValues;
521 
522   /// A scoped hash table of the current values of previously encountered
523   /// memory locations.
524   ///
525   /// This allows us to get efficient access to dominating loads or stores when
526   /// we have a fully redundant load.  In addition to the most recent load, we
527   /// keep track of a generation count of the read, which is compared against
528   /// the current generation count.  The current generation count is incremented
529   /// after every possibly writing memory operation, which ensures that we only
530   /// CSE loads with other loads that have no intervening store.  Ordering
531   /// events (such as fences or atomic instructions) increment the generation
532   /// count as well; essentially, we model these as writes to all possible
533   /// locations.  Note that atomic and/or volatile loads and stores can be
534   /// present the table; it is the responsibility of the consumer to inspect
535   /// the atomicity/volatility if needed.
536   struct LoadValue {
537     Instruction *DefInst = nullptr;
538     unsigned Generation = 0;
539     int MatchingId = -1;
540     bool IsAtomic = false;
541 
542     LoadValue() = default;
543     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
544               bool IsAtomic)
545         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
546           IsAtomic(IsAtomic) {}
547   };
548 
549   using LoadMapAllocator =
550       RecyclingAllocator<BumpPtrAllocator,
551                          ScopedHashTableVal<Value *, LoadValue>>;
552   using LoadHTType =
553       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
554                       LoadMapAllocator>;
555 
556   LoadHTType AvailableLoads;
557 
558   // A scoped hash table mapping memory locations (represented as typed
559   // addresses) to generation numbers at which that memory location became
560   // (henceforth indefinitely) invariant.
561   using InvariantMapAllocator =
562       RecyclingAllocator<BumpPtrAllocator,
563                          ScopedHashTableVal<MemoryLocation, unsigned>>;
564   using InvariantHTType =
565       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
566                       InvariantMapAllocator>;
567   InvariantHTType AvailableInvariants;
568 
569   /// A scoped hash table of the current values of read-only call
570   /// values.
571   ///
572   /// It uses the same generation count as loads.
573   using CallHTType =
574       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
575   CallHTType AvailableCalls;
576 
577   /// This is the current generation of the memory value.
578   unsigned CurrentGeneration = 0;
579 
580   /// Set up the EarlyCSE runner for a particular function.
581   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
582            const TargetTransformInfo &TTI, DominatorTree &DT,
583            AssumptionCache &AC, MemorySSA *MSSA)
584       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
585         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
586 
587   bool run();
588 
589 private:
590   unsigned ClobberCounter = 0;
591   // Almost a POD, but needs to call the constructors for the scoped hash
592   // tables so that a new scope gets pushed on. These are RAII so that the
593   // scope gets popped when the NodeScope is destroyed.
594   class NodeScope {
595   public:
596     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
597               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
598       : Scope(AvailableValues), LoadScope(AvailableLoads),
599         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
600     NodeScope(const NodeScope &) = delete;
601     NodeScope &operator=(const NodeScope &) = delete;
602 
603   private:
604     ScopedHTType::ScopeTy Scope;
605     LoadHTType::ScopeTy LoadScope;
606     InvariantHTType::ScopeTy InvariantScope;
607     CallHTType::ScopeTy CallScope;
608   };
609 
610   // Contains all the needed information to create a stack for doing a depth
611   // first traversal of the tree. This includes scopes for values, loads, and
612   // calls as well as the generation. There is a child iterator so that the
613   // children do not need to be store separately.
614   class StackNode {
615   public:
616     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
617               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
618               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
619               DomTreeNode::const_iterator end)
620         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
621           EndIter(end),
622           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
623                  AvailableCalls)
624           {}
625     StackNode(const StackNode &) = delete;
626     StackNode &operator=(const StackNode &) = delete;
627 
628     // Accessors.
629     unsigned currentGeneration() const { return CurrentGeneration; }
630     unsigned childGeneration() const { return ChildGeneration; }
631     void childGeneration(unsigned generation) { ChildGeneration = generation; }
632     DomTreeNode *node() { return Node; }
633     DomTreeNode::const_iterator childIter() const { return ChildIter; }
634 
635     DomTreeNode *nextChild() {
636       DomTreeNode *child = *ChildIter;
637       ++ChildIter;
638       return child;
639     }
640 
641     DomTreeNode::const_iterator end() const { return EndIter; }
642     bool isProcessed() const { return Processed; }
643     void process() { Processed = true; }
644 
645   private:
646     unsigned CurrentGeneration;
647     unsigned ChildGeneration;
648     DomTreeNode *Node;
649     DomTreeNode::const_iterator ChildIter;
650     DomTreeNode::const_iterator EndIter;
651     NodeScope Scopes;
652     bool Processed = false;
653   };
654 
655   /// Wrapper class to handle memory instructions, including loads,
656   /// stores and intrinsic loads and stores defined by the target.
657   class ParseMemoryInst {
658   public:
659     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
660       : Inst(Inst) {
661       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
662         IntrID = II->getIntrinsicID();
663         if (TTI.getTgtMemIntrinsic(II, Info))
664           return;
665         if (isHandledNonTargetIntrinsic(IntrID)) {
666           switch (IntrID) {
667           case Intrinsic::masked_load:
668             Info.PtrVal = Inst->getOperand(0);
669             Info.MatchingId = Intrinsic::masked_load;
670             Info.ReadMem = true;
671             Info.WriteMem = false;
672             Info.IsVolatile = false;
673             break;
674           case Intrinsic::masked_store:
675             Info.PtrVal = Inst->getOperand(1);
676             // Use the ID of masked load as the "matching id". This will
677             // prevent matching non-masked loads/stores with masked ones
678             // (which could be done), but at the moment, the code here
679             // does not support matching intrinsics with non-intrinsics,
680             // so keep the MatchingIds specific to masked instructions
681             // for now (TODO).
682             Info.MatchingId = Intrinsic::masked_load;
683             Info.ReadMem = false;
684             Info.WriteMem = true;
685             Info.IsVolatile = false;
686             break;
687           }
688         }
689       }
690     }
691 
692     Instruction *get() { return Inst; }
693     const Instruction *get() const { return Inst; }
694 
695     bool isLoad() const {
696       if (IntrID != 0)
697         return Info.ReadMem;
698       return isa<LoadInst>(Inst);
699     }
700 
701     bool isStore() const {
702       if (IntrID != 0)
703         return Info.WriteMem;
704       return isa<StoreInst>(Inst);
705     }
706 
707     bool isAtomic() const {
708       if (IntrID != 0)
709         return Info.Ordering != AtomicOrdering::NotAtomic;
710       return Inst->isAtomic();
711     }
712 
713     bool isUnordered() const {
714       if (IntrID != 0)
715         return Info.isUnordered();
716 
717       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
718         return LI->isUnordered();
719       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
720         return SI->isUnordered();
721       }
722       // Conservative answer
723       return !Inst->isAtomic();
724     }
725 
726     bool isVolatile() const {
727       if (IntrID != 0)
728         return Info.IsVolatile;
729 
730       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
731         return LI->isVolatile();
732       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
733         return SI->isVolatile();
734       }
735       // Conservative answer
736       return true;
737     }
738 
739     bool isInvariantLoad() const {
740       if (auto *LI = dyn_cast<LoadInst>(Inst))
741         return LI->hasMetadata(LLVMContext::MD_invariant_load);
742       return false;
743     }
744 
745     bool isValid() const { return getPointerOperand() != nullptr; }
746 
747     // For regular (non-intrinsic) loads/stores, this is set to -1. For
748     // intrinsic loads/stores, the id is retrieved from the corresponding
749     // field in the MemIntrinsicInfo structure.  That field contains
750     // non-negative values only.
751     int getMatchingId() const {
752       if (IntrID != 0)
753         return Info.MatchingId;
754       return -1;
755     }
756 
757     Value *getPointerOperand() const {
758       if (IntrID != 0)
759         return Info.PtrVal;
760       return getLoadStorePointerOperand(Inst);
761     }
762 
763     bool mayReadFromMemory() const {
764       if (IntrID != 0)
765         return Info.ReadMem;
766       return Inst->mayReadFromMemory();
767     }
768 
769     bool mayWriteToMemory() const {
770       if (IntrID != 0)
771         return Info.WriteMem;
772       return Inst->mayWriteToMemory();
773     }
774 
775   private:
776     Intrinsic::ID IntrID = 0;
777     MemIntrinsicInfo Info;
778     Instruction *Inst;
779   };
780 
781   // This function is to prevent accidentally passing a non-target
782   // intrinsic ID to TargetTransformInfo.
783   static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) {
784     switch (ID) {
785     case Intrinsic::masked_load:
786     case Intrinsic::masked_store:
787       return true;
788     }
789     return false;
790   }
791   static bool isHandledNonTargetIntrinsic(const Value *V) {
792     if (auto *II = dyn_cast<IntrinsicInst>(V))
793       return isHandledNonTargetIntrinsic(II->getIntrinsicID());
794     return false;
795   }
796 
797   bool processNode(DomTreeNode *Node);
798 
799   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
800                              const BasicBlock *BB, const BasicBlock *Pred);
801 
802   Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
803                           unsigned CurrentGeneration);
804 
805   bool overridingStores(const ParseMemoryInst &Earlier,
806                         const ParseMemoryInst &Later);
807 
808   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
809     if (auto *LI = dyn_cast<LoadInst>(Inst))
810       return LI;
811     if (auto *SI = dyn_cast<StoreInst>(Inst))
812       return SI->getValueOperand();
813     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
814     auto *II = cast<IntrinsicInst>(Inst);
815     if (isHandledNonTargetIntrinsic(II->getIntrinsicID()))
816       return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType);
817     return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType);
818   }
819 
820   Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II,
821                                                 Type *ExpectedType) const {
822     switch (II->getIntrinsicID()) {
823     case Intrinsic::masked_load:
824       return II;
825     case Intrinsic::masked_store:
826       return II->getOperand(0);
827     }
828     return nullptr;
829   }
830 
831   /// Return true if the instruction is known to only operate on memory
832   /// provably invariant in the given "generation".
833   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
834 
835   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
836                            Instruction *EarlierInst, Instruction *LaterInst);
837 
838   bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier,
839                                  const IntrinsicInst *Later) {
840     auto IsSubmask = [](const Value *Mask0, const Value *Mask1) {
841       // Is Mask0 a submask of Mask1?
842       if (Mask0 == Mask1)
843         return true;
844       if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1))
845         return false;
846       auto *Vec0 = dyn_cast<ConstantVector>(Mask0);
847       auto *Vec1 = dyn_cast<ConstantVector>(Mask1);
848       if (!Vec0 || !Vec1)
849         return false;
850       assert(Vec0->getType() == Vec1->getType() &&
851              "Masks should have the same type");
852       for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) {
853         Constant *Elem0 = Vec0->getOperand(i);
854         Constant *Elem1 = Vec1->getOperand(i);
855         auto *Int0 = dyn_cast<ConstantInt>(Elem0);
856         if (Int0 && Int0->isZero())
857           continue;
858         auto *Int1 = dyn_cast<ConstantInt>(Elem1);
859         if (Int1 && !Int1->isZero())
860           continue;
861         if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1))
862           return false;
863         if (Elem0 == Elem1)
864           continue;
865         return false;
866       }
867       return true;
868     };
869     auto PtrOp = [](const IntrinsicInst *II) {
870       if (II->getIntrinsicID() == Intrinsic::masked_load)
871         return II->getOperand(0);
872       if (II->getIntrinsicID() == Intrinsic::masked_store)
873         return II->getOperand(1);
874       llvm_unreachable("Unexpected IntrinsicInst");
875     };
876     auto MaskOp = [](const IntrinsicInst *II) {
877       if (II->getIntrinsicID() == Intrinsic::masked_load)
878         return II->getOperand(2);
879       if (II->getIntrinsicID() == Intrinsic::masked_store)
880         return II->getOperand(3);
881       llvm_unreachable("Unexpected IntrinsicInst");
882     };
883     auto ThruOp = [](const IntrinsicInst *II) {
884       if (II->getIntrinsicID() == Intrinsic::masked_load)
885         return II->getOperand(3);
886       llvm_unreachable("Unexpected IntrinsicInst");
887     };
888 
889     if (PtrOp(Earlier) != PtrOp(Later))
890       return false;
891 
892     Intrinsic::ID IDE = Earlier->getIntrinsicID();
893     Intrinsic::ID IDL = Later->getIntrinsicID();
894     // We could really use specific intrinsic classes for masked loads
895     // and stores in IntrinsicInst.h.
896     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) {
897       // Trying to replace later masked load with the earlier one.
898       // Check that the pointers are the same, and
899       // - masks and pass-throughs are the same, or
900       // - replacee's pass-through is "undef" and replacer's mask is a
901       //   super-set of the replacee's mask.
902       if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later))
903         return true;
904       if (!isa<UndefValue>(ThruOp(Later)))
905         return false;
906       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
907     }
908     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) {
909       // Trying to replace a load of a stored value with the store's value.
910       // Check that the pointers are the same, and
911       // - load's mask is a subset of store's mask, and
912       // - load's pass-through is "undef".
913       if (!IsSubmask(MaskOp(Later), MaskOp(Earlier)))
914         return false;
915       return isa<UndefValue>(ThruOp(Later));
916     }
917     if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) {
918       // Trying to remove a store of the loaded value.
919       // Check that the pointers are the same, and
920       // - store's mask is a subset of the load's mask.
921       return IsSubmask(MaskOp(Later), MaskOp(Earlier));
922     }
923     if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) {
924       // Trying to remove a dead store (earlier).
925       // Check that the pointers are the same,
926       // - the to-be-removed store's mask is a subset of the other store's
927       //   mask.
928       return IsSubmask(MaskOp(Earlier), MaskOp(Later));
929     }
930     return false;
931   }
932 
933   void removeMSSA(Instruction &Inst) {
934     if (!MSSA)
935       return;
936     if (VerifyMemorySSA)
937       MSSA->verifyMemorySSA();
938     // Removing a store here can leave MemorySSA in an unoptimized state by
939     // creating MemoryPhis that have identical arguments and by creating
940     // MemoryUses whose defining access is not an actual clobber. The phi case
941     // is handled by MemorySSA when passing OptimizePhis = true to
942     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
943     // by MemorySSA's getClobberingMemoryAccess.
944     MSSAUpdater->removeMemoryAccess(&Inst, true);
945   }
946 };
947 
948 } // end anonymous namespace
949 
950 /// Determine if the memory referenced by LaterInst is from the same heap
951 /// version as EarlierInst.
952 /// This is currently called in two scenarios:
953 ///
954 ///   load p
955 ///   ...
956 ///   load p
957 ///
958 /// and
959 ///
960 ///   x = load p
961 ///   ...
962 ///   store x, p
963 ///
964 /// in both cases we want to verify that there are no possible writes to the
965 /// memory referenced by p between the earlier and later instruction.
966 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
967                                    unsigned LaterGeneration,
968                                    Instruction *EarlierInst,
969                                    Instruction *LaterInst) {
970   // Check the simple memory generation tracking first.
971   if (EarlierGeneration == LaterGeneration)
972     return true;
973 
974   if (!MSSA)
975     return false;
976 
977   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
978   // read/write memory, then we can safely return true here.
979   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
980   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
981   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
982   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
983   // with the default optimization pipeline.
984   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
985   if (!EarlierMA)
986     return true;
987   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
988   if (!LaterMA)
989     return true;
990 
991   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
992   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
993   // EarlierInst and LaterInst and neither can any other write that potentially
994   // clobbers LaterInst.
995   MemoryAccess *LaterDef;
996   if (ClobberCounter < EarlyCSEMssaOptCap) {
997     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
998     ClobberCounter++;
999   } else
1000     LaterDef = LaterMA->getDefiningAccess();
1001 
1002   return MSSA->dominates(LaterDef, EarlierMA);
1003 }
1004 
1005 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
1006   // A location loaded from with an invariant_load is assumed to *never* change
1007   // within the visible scope of the compilation.
1008   if (auto *LI = dyn_cast<LoadInst>(I))
1009     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1010       return true;
1011 
1012   auto MemLocOpt = MemoryLocation::getOrNone(I);
1013   if (!MemLocOpt)
1014     // "target" intrinsic forms of loads aren't currently known to
1015     // MemoryLocation::get.  TODO
1016     return false;
1017   MemoryLocation MemLoc = *MemLocOpt;
1018   if (!AvailableInvariants.count(MemLoc))
1019     return false;
1020 
1021   // Is the generation at which this became invariant older than the
1022   // current one?
1023   return AvailableInvariants.lookup(MemLoc) <= GenAt;
1024 }
1025 
1026 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
1027                                      const BranchInst *BI, const BasicBlock *BB,
1028                                      const BasicBlock *Pred) {
1029   assert(BI->isConditional() && "Should be a conditional branch!");
1030   assert(BI->getCondition() == CondInst && "Wrong condition?");
1031   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
1032   auto *TorF = (BI->getSuccessor(0) == BB)
1033                    ? ConstantInt::getTrue(BB->getContext())
1034                    : ConstantInt::getFalse(BB->getContext());
1035   auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS,
1036                        Value *&RHS) {
1037     if (Opcode == Instruction::And &&
1038         match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1039       return true;
1040     else if (Opcode == Instruction::Or &&
1041              match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1042       return true;
1043     return false;
1044   };
1045   // If the condition is AND operation, we can propagate its operands into the
1046   // true branch. If it is OR operation, we can propagate them into the false
1047   // branch.
1048   unsigned PropagateOpcode =
1049       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
1050 
1051   bool MadeChanges = false;
1052   SmallVector<Instruction *, 4> WorkList;
1053   SmallPtrSet<Instruction *, 4> Visited;
1054   WorkList.push_back(CondInst);
1055   while (!WorkList.empty()) {
1056     Instruction *Curr = WorkList.pop_back_val();
1057 
1058     AvailableValues.insert(Curr, TorF);
1059     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
1060                       << Curr->getName() << "' as " << *TorF << " in "
1061                       << BB->getName() << "\n");
1062     if (!DebugCounter::shouldExecute(CSECounter)) {
1063       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1064     } else {
1065       // Replace all dominated uses with the known value.
1066       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
1067                                                     BasicBlockEdge(Pred, BB))) {
1068         NumCSECVP += Count;
1069         MadeChanges = true;
1070       }
1071     }
1072 
1073     Value *LHS, *RHS;
1074     if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS))
1075       for (auto &Op : { LHS, RHS })
1076         if (Instruction *OPI = dyn_cast<Instruction>(Op))
1077           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
1078             WorkList.push_back(OPI);
1079   }
1080 
1081   return MadeChanges;
1082 }
1083 
1084 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst,
1085                                   unsigned CurrentGeneration) {
1086   if (InVal.DefInst == nullptr)
1087     return nullptr;
1088   if (InVal.MatchingId != MemInst.getMatchingId())
1089     return nullptr;
1090   // We don't yet handle removing loads with ordering of any kind.
1091   if (MemInst.isVolatile() || !MemInst.isUnordered())
1092     return nullptr;
1093   // We can't replace an atomic load with one which isn't also atomic.
1094   if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic())
1095     return nullptr;
1096   // The value V returned from this function is used differently depending
1097   // on whether MemInst is a load or a store. If it's a load, we will replace
1098   // MemInst with V, if it's a store, we will check if V is the same as the
1099   // available value.
1100   bool MemInstMatching = !MemInst.isLoad();
1101   Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst;
1102   Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get();
1103 
1104   // For stores check the result values before checking memory generation
1105   // (otherwise isSameMemGeneration may crash).
1106   Value *Result = MemInst.isStore()
1107                       ? getOrCreateResult(Matching, Other->getType())
1108                       : nullptr;
1109   if (MemInst.isStore() && InVal.DefInst != Result)
1110     return nullptr;
1111 
1112   // Deal with non-target memory intrinsics.
1113   bool MatchingNTI = isHandledNonTargetIntrinsic(Matching);
1114   bool OtherNTI = isHandledNonTargetIntrinsic(Other);
1115   if (OtherNTI != MatchingNTI)
1116     return nullptr;
1117   if (OtherNTI && MatchingNTI) {
1118     if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst),
1119                                    cast<IntrinsicInst>(MemInst.get())))
1120       return nullptr;
1121   }
1122 
1123   if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) &&
1124       !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst,
1125                            MemInst.get()))
1126     return nullptr;
1127 
1128   if (!Result)
1129     Result = getOrCreateResult(Matching, Other->getType());
1130   return Result;
1131 }
1132 
1133 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier,
1134                                 const ParseMemoryInst &Later) {
1135   // Can we remove Earlier store because of Later store?
1136 
1137   assert(Earlier.isUnordered() && !Earlier.isVolatile() &&
1138          "Violated invariant");
1139   if (Earlier.getPointerOperand() != Later.getPointerOperand())
1140     return false;
1141   if (Earlier.getMatchingId() != Later.getMatchingId())
1142     return false;
1143   // At the moment, we don't remove ordered stores, but do remove
1144   // unordered atomic stores.  There's no special requirement (for
1145   // unordered atomics) about removing atomic stores only in favor of
1146   // other atomic stores since we were going to execute the non-atomic
1147   // one anyway and the atomic one might never have become visible.
1148   if (!Earlier.isUnordered() || !Later.isUnordered())
1149     return false;
1150 
1151   // Deal with non-target memory intrinsics.
1152   bool ENTI = isHandledNonTargetIntrinsic(Earlier.get());
1153   bool LNTI = isHandledNonTargetIntrinsic(Later.get());
1154   if (ENTI && LNTI)
1155     return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()),
1156                                      cast<IntrinsicInst>(Later.get()));
1157 
1158   // Because of the check above, at least one of them is false.
1159   // For now disallow matching intrinsics with non-intrinsics,
1160   // so assume that the stores match if neither is an intrinsic.
1161   return ENTI == LNTI;
1162 }
1163 
1164 bool EarlyCSE::processNode(DomTreeNode *Node) {
1165   bool Changed = false;
1166   BasicBlock *BB = Node->getBlock();
1167 
1168   // If this block has a single predecessor, then the predecessor is the parent
1169   // of the domtree node and all of the live out memory values are still current
1170   // in this block.  If this block has multiple predecessors, then they could
1171   // have invalidated the live-out memory values of our parent value.  For now,
1172   // just be conservative and invalidate memory if this block has multiple
1173   // predecessors.
1174   if (!BB->getSinglePredecessor())
1175     ++CurrentGeneration;
1176 
1177   // If this node has a single predecessor which ends in a conditional branch,
1178   // we can infer the value of the branch condition given that we took this
1179   // path.  We need the single predecessor to ensure there's not another path
1180   // which reaches this block where the condition might hold a different
1181   // value.  Since we're adding this to the scoped hash table (like any other
1182   // def), it will have been popped if we encounter a future merge block.
1183   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1184     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
1185     if (BI && BI->isConditional()) {
1186       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
1187       if (CondInst && SimpleValue::canHandle(CondInst))
1188         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
1189     }
1190   }
1191 
1192   /// LastStore - Keep track of the last non-volatile store that we saw... for
1193   /// as long as there in no instruction that reads memory.  If we see a store
1194   /// to the same location, we delete the dead store.  This zaps trivial dead
1195   /// stores which can occur in bitfield code among other things.
1196   Instruction *LastStore = nullptr;
1197 
1198   // See if any instructions in the block can be eliminated.  If so, do it.  If
1199   // not, add them to AvailableValues.
1200   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
1201     // Dead instructions should just be removed.
1202     if (isInstructionTriviallyDead(&Inst, &TLI)) {
1203       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
1204       if (!DebugCounter::shouldExecute(CSECounter)) {
1205         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1206         continue;
1207       }
1208 
1209       salvageKnowledge(&Inst, &AC);
1210       salvageDebugInfo(Inst);
1211       removeMSSA(Inst);
1212       Inst.eraseFromParent();
1213       Changed = true;
1214       ++NumSimplify;
1215       continue;
1216     }
1217 
1218     // Skip assume intrinsics, they don't really have side effects (although
1219     // they're marked as such to ensure preservation of control dependencies),
1220     // and this pass will not bother with its removal. However, we should mark
1221     // its condition as true for all dominated blocks.
1222     if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) {
1223       auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0));
1224       if (CondI && SimpleValue::canHandle(CondI)) {
1225         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1226                           << '\n');
1227         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1228       } else
1229         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1230       continue;
1231     }
1232 
1233     // Likewise, noalias intrinsics don't actually write.
1234     if (match(&Inst,
1235               m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) {
1236       LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst
1237                         << '\n');
1238       continue;
1239     }
1240 
1241     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1242     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1243       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1244       continue;
1245     }
1246 
1247     // We can skip all invariant.start intrinsics since they only read memory,
1248     // and we can forward values across it. For invariant starts without
1249     // invariant ends, we can use the fact that the invariantness never ends to
1250     // start a scope in the current generaton which is true for all future
1251     // generations.  Also, we dont need to consume the last store since the
1252     // semantics of invariant.start allow us to perform   DSE of the last
1253     // store, if there was a store following invariant.start. Consider:
1254     //
1255     // store 30, i8* p
1256     // invariant.start(p)
1257     // store 40, i8* p
1258     // We can DSE the store to 30, since the store 40 to invariant location p
1259     // causes undefined behaviour.
1260     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1261       // If there are any uses, the scope might end.
1262       if (!Inst.use_empty())
1263         continue;
1264       MemoryLocation MemLoc =
1265           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1266       // Don't start a scope if we already have a better one pushed
1267       if (!AvailableInvariants.count(MemLoc))
1268         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1269       continue;
1270     }
1271 
1272     if (isGuard(&Inst)) {
1273       if (auto *CondI =
1274               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1275         if (SimpleValue::canHandle(CondI)) {
1276           // Do we already know the actual value of this condition?
1277           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1278             // Is the condition known to be true?
1279             if (isa<ConstantInt>(KnownCond) &&
1280                 cast<ConstantInt>(KnownCond)->isOne()) {
1281               LLVM_DEBUG(dbgs()
1282                          << "EarlyCSE removing guard: " << Inst << '\n');
1283               salvageKnowledge(&Inst, &AC);
1284               removeMSSA(Inst);
1285               Inst.eraseFromParent();
1286               Changed = true;
1287               continue;
1288             } else
1289               // Use the known value if it wasn't true.
1290               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1291           }
1292           // The condition we're on guarding here is true for all dominated
1293           // locations.
1294           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1295         }
1296       }
1297 
1298       // Guard intrinsics read all memory, but don't write any memory.
1299       // Accordingly, don't update the generation but consume the last store (to
1300       // avoid an incorrect DSE).
1301       LastStore = nullptr;
1302       continue;
1303     }
1304 
1305     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1306     // its simpler value.
1307     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1308       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1309                         << '\n');
1310       if (!DebugCounter::shouldExecute(CSECounter)) {
1311         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1312       } else {
1313         bool Killed = false;
1314         if (!Inst.use_empty()) {
1315           Inst.replaceAllUsesWith(V);
1316           Changed = true;
1317         }
1318         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1319           salvageKnowledge(&Inst, &AC);
1320           removeMSSA(Inst);
1321           Inst.eraseFromParent();
1322           Changed = true;
1323           Killed = true;
1324         }
1325         if (Changed)
1326           ++NumSimplify;
1327         if (Killed)
1328           continue;
1329       }
1330     }
1331 
1332     // If this is a simple instruction that we can value number, process it.
1333     if (SimpleValue::canHandle(&Inst)) {
1334       // See if the instruction has an available value.  If so, use it.
1335       if (Value *V = AvailableValues.lookup(&Inst)) {
1336         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1337                           << '\n');
1338         if (!DebugCounter::shouldExecute(CSECounter)) {
1339           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1340           continue;
1341         }
1342         if (auto *I = dyn_cast<Instruction>(V))
1343           I->andIRFlags(&Inst);
1344         Inst.replaceAllUsesWith(V);
1345         salvageKnowledge(&Inst, &AC);
1346         removeMSSA(Inst);
1347         Inst.eraseFromParent();
1348         Changed = true;
1349         ++NumCSE;
1350         continue;
1351       }
1352 
1353       // Otherwise, just remember that this value is available.
1354       AvailableValues.insert(&Inst, &Inst);
1355       continue;
1356     }
1357 
1358     ParseMemoryInst MemInst(&Inst, TTI);
1359     // If this is a non-volatile load, process it.
1360     if (MemInst.isValid() && MemInst.isLoad()) {
1361       // (conservatively) we can't peak past the ordering implied by this
1362       // operation, but we can add this load to our set of available values
1363       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1364         LastStore = nullptr;
1365         ++CurrentGeneration;
1366       }
1367 
1368       if (MemInst.isInvariantLoad()) {
1369         // If we pass an invariant load, we know that memory location is
1370         // indefinitely constant from the moment of first dereferenceability.
1371         // We conservatively treat the invariant_load as that moment.  If we
1372         // pass a invariant load after already establishing a scope, don't
1373         // restart it since we want to preserve the earliest point seen.
1374         auto MemLoc = MemoryLocation::get(&Inst);
1375         if (!AvailableInvariants.count(MemLoc))
1376           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1377       }
1378 
1379       // If we have an available version of this load, and if it is the right
1380       // generation or the load is known to be from an invariant location,
1381       // replace this instruction.
1382       //
1383       // If either the dominating load or the current load are invariant, then
1384       // we can assume the current load loads the same value as the dominating
1385       // load.
1386       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1387       if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1388         LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1389                           << "  to: " << *InVal.DefInst << '\n');
1390         if (!DebugCounter::shouldExecute(CSECounter)) {
1391           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1392           continue;
1393         }
1394         if (!Inst.use_empty())
1395           Inst.replaceAllUsesWith(Op);
1396         salvageKnowledge(&Inst, &AC);
1397         removeMSSA(Inst);
1398         Inst.eraseFromParent();
1399         Changed = true;
1400         ++NumCSELoad;
1401         continue;
1402       }
1403 
1404       // Otherwise, remember that we have this instruction.
1405       AvailableLoads.insert(MemInst.getPointerOperand(),
1406                             LoadValue(&Inst, CurrentGeneration,
1407                                       MemInst.getMatchingId(),
1408                                       MemInst.isAtomic()));
1409       LastStore = nullptr;
1410       continue;
1411     }
1412 
1413     // If this instruction may read from memory or throw (and potentially read
1414     // from memory in the exception handler), forget LastStore.  Load/store
1415     // intrinsics will indicate both a read and a write to memory.  The target
1416     // may override this (e.g. so that a store intrinsic does not read from
1417     // memory, and thus will be treated the same as a regular store for
1418     // commoning purposes).
1419     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1420         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1421       LastStore = nullptr;
1422 
1423     // If this is a read-only call, process it.
1424     if (CallValue::canHandle(&Inst)) {
1425       // If we have an available version of this call, and if it is the right
1426       // generation, replace this instruction.
1427       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1428       if (InVal.first != nullptr &&
1429           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1430                               &Inst)) {
1431         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1432                           << "  to: " << *InVal.first << '\n');
1433         if (!DebugCounter::shouldExecute(CSECounter)) {
1434           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1435           continue;
1436         }
1437         if (!Inst.use_empty())
1438           Inst.replaceAllUsesWith(InVal.first);
1439         salvageKnowledge(&Inst, &AC);
1440         removeMSSA(Inst);
1441         Inst.eraseFromParent();
1442         Changed = true;
1443         ++NumCSECall;
1444         continue;
1445       }
1446 
1447       // Otherwise, remember that we have this instruction.
1448       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1449       continue;
1450     }
1451 
1452     // A release fence requires that all stores complete before it, but does
1453     // not prevent the reordering of following loads 'before' the fence.  As a
1454     // result, we don't need to consider it as writing to memory and don't need
1455     // to advance the generation.  We do need to prevent DSE across the fence,
1456     // but that's handled above.
1457     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1458       if (FI->getOrdering() == AtomicOrdering::Release) {
1459         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1460         continue;
1461       }
1462 
1463     // write back DSE - If we write back the same value we just loaded from
1464     // the same location and haven't passed any intervening writes or ordering
1465     // operations, we can remove the write.  The primary benefit is in allowing
1466     // the available load table to remain valid and value forward past where
1467     // the store originally was.
1468     if (MemInst.isValid() && MemInst.isStore()) {
1469       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1470       if (InVal.DefInst &&
1471           InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) {
1472         // It is okay to have a LastStore to a different pointer here if MemorySSA
1473         // tells us that the load and store are from the same memory generation.
1474         // In that case, LastStore should keep its present value since we're
1475         // removing the current store.
1476         assert((!LastStore ||
1477                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1478                     MemInst.getPointerOperand() ||
1479                 MSSA) &&
1480                "can't have an intervening store if not using MemorySSA!");
1481         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1482         if (!DebugCounter::shouldExecute(CSECounter)) {
1483           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1484           continue;
1485         }
1486         salvageKnowledge(&Inst, &AC);
1487         removeMSSA(Inst);
1488         Inst.eraseFromParent();
1489         Changed = true;
1490         ++NumDSE;
1491         // We can avoid incrementing the generation count since we were able
1492         // to eliminate this store.
1493         continue;
1494       }
1495     }
1496 
1497     // Okay, this isn't something we can CSE at all.  Check to see if it is
1498     // something that could modify memory.  If so, our available memory values
1499     // cannot be used so bump the generation count.
1500     if (Inst.mayWriteToMemory()) {
1501       ++CurrentGeneration;
1502 
1503       if (MemInst.isValid() && MemInst.isStore()) {
1504         // We do a trivial form of DSE if there are two stores to the same
1505         // location with no intervening loads.  Delete the earlier store.
1506         if (LastStore) {
1507           if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) {
1508             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1509                               << "  due to: " << Inst << '\n');
1510             if (!DebugCounter::shouldExecute(CSECounter)) {
1511               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1512             } else {
1513               salvageKnowledge(&Inst, &AC);
1514               removeMSSA(*LastStore);
1515               LastStore->eraseFromParent();
1516               Changed = true;
1517               ++NumDSE;
1518               LastStore = nullptr;
1519             }
1520           }
1521           // fallthrough - we can exploit information about this store
1522         }
1523 
1524         // Okay, we just invalidated anything we knew about loaded values.  Try
1525         // to salvage *something* by remembering that the stored value is a live
1526         // version of the pointer.  It is safe to forward from volatile stores
1527         // to non-volatile loads, so we don't have to check for volatility of
1528         // the store.
1529         AvailableLoads.insert(MemInst.getPointerOperand(),
1530                               LoadValue(&Inst, CurrentGeneration,
1531                                         MemInst.getMatchingId(),
1532                                         MemInst.isAtomic()));
1533 
1534         // Remember that this was the last unordered store we saw for DSE. We
1535         // don't yet handle DSE on ordered or volatile stores since we don't
1536         // have a good way to model the ordering requirement for following
1537         // passes  once the store is removed.  We could insert a fence, but
1538         // since fences are slightly stronger than stores in their ordering,
1539         // it's not clear this is a profitable transform. Another option would
1540         // be to merge the ordering with that of the post dominating store.
1541         if (MemInst.isUnordered() && !MemInst.isVolatile())
1542           LastStore = &Inst;
1543         else
1544           LastStore = nullptr;
1545       }
1546     }
1547   }
1548 
1549   return Changed;
1550 }
1551 
1552 bool EarlyCSE::run() {
1553   // Note, deque is being used here because there is significant performance
1554   // gains over vector when the container becomes very large due to the
1555   // specific access patterns. For more information see the mailing list
1556   // discussion on this:
1557   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1558   std::deque<StackNode *> nodesToProcess;
1559 
1560   bool Changed = false;
1561 
1562   // Process the root node.
1563   nodesToProcess.push_back(new StackNode(
1564       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1565       CurrentGeneration, DT.getRootNode(),
1566       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1567 
1568   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1569 
1570   // Process the stack.
1571   while (!nodesToProcess.empty()) {
1572     // Grab the first item off the stack. Set the current generation, remove
1573     // the node from the stack, and process it.
1574     StackNode *NodeToProcess = nodesToProcess.back();
1575 
1576     // Initialize class members.
1577     CurrentGeneration = NodeToProcess->currentGeneration();
1578 
1579     // Check if the node needs to be processed.
1580     if (!NodeToProcess->isProcessed()) {
1581       // Process the node.
1582       Changed |= processNode(NodeToProcess->node());
1583       NodeToProcess->childGeneration(CurrentGeneration);
1584       NodeToProcess->process();
1585     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1586       // Push the next child onto the stack.
1587       DomTreeNode *child = NodeToProcess->nextChild();
1588       nodesToProcess.push_back(
1589           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1590                         AvailableCalls, NodeToProcess->childGeneration(),
1591                         child, child->begin(), child->end()));
1592     } else {
1593       // It has been processed, and there are no more children to process,
1594       // so delete it and pop it off the stack.
1595       delete NodeToProcess;
1596       nodesToProcess.pop_back();
1597     }
1598   } // while (!nodes...)
1599 
1600   return Changed;
1601 }
1602 
1603 PreservedAnalyses EarlyCSEPass::run(Function &F,
1604                                     FunctionAnalysisManager &AM) {
1605   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1606   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1607   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1608   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1609   auto *MSSA =
1610       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1611 
1612   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1613 
1614   if (!CSE.run())
1615     return PreservedAnalyses::all();
1616 
1617   PreservedAnalyses PA;
1618   PA.preserveSet<CFGAnalyses>();
1619   if (UseMemorySSA)
1620     PA.preserve<MemorySSAAnalysis>();
1621   return PA;
1622 }
1623 
1624 namespace {
1625 
1626 /// A simple and fast domtree-based CSE pass.
1627 ///
1628 /// This pass does a simple depth-first walk over the dominator tree,
1629 /// eliminating trivially redundant instructions and using instsimplify to
1630 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1631 /// cases so that instcombine and other passes are more effective. It is
1632 /// expected that a later pass of GVN will catch the interesting/hard cases.
1633 template<bool UseMemorySSA>
1634 class EarlyCSELegacyCommonPass : public FunctionPass {
1635 public:
1636   static char ID;
1637 
1638   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1639     if (UseMemorySSA)
1640       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1641     else
1642       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1643   }
1644 
1645   bool runOnFunction(Function &F) override {
1646     if (skipFunction(F))
1647       return false;
1648 
1649     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1650     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1651     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1652     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1653     auto *MSSA =
1654         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1655 
1656     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1657 
1658     return CSE.run();
1659   }
1660 
1661   void getAnalysisUsage(AnalysisUsage &AU) const override {
1662     AU.addRequired<AssumptionCacheTracker>();
1663     AU.addRequired<DominatorTreeWrapperPass>();
1664     AU.addRequired<TargetLibraryInfoWrapperPass>();
1665     AU.addRequired<TargetTransformInfoWrapperPass>();
1666     if (UseMemorySSA) {
1667       AU.addRequired<AAResultsWrapperPass>();
1668       AU.addRequired<MemorySSAWrapperPass>();
1669       AU.addPreserved<MemorySSAWrapperPass>();
1670     }
1671     AU.addPreserved<GlobalsAAWrapperPass>();
1672     AU.addPreserved<AAResultsWrapperPass>();
1673     AU.setPreservesCFG();
1674   }
1675 };
1676 
1677 } // end anonymous namespace
1678 
1679 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1680 
1681 template<>
1682 char EarlyCSELegacyPass::ID = 0;
1683 
1684 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1685                       false)
1686 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1687 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1688 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1689 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1690 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1691 
1692 using EarlyCSEMemSSALegacyPass =
1693     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1694 
1695 template<>
1696 char EarlyCSEMemSSALegacyPass::ID = 0;
1697 
1698 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1699   if (UseMemorySSA)
1700     return new EarlyCSEMemSSALegacyPass();
1701   else
1702     return new EarlyCSELegacyPass();
1703 }
1704 
1705 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1706                       "Early CSE w/ MemorySSA", false, false)
1707 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1708 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1709 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1710 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1711 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1712 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1713 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1714                     "Early CSE w/ MemorySSA", false, false)
1715