1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/IR/Statepoint.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Allocator.h" 51 #include "llvm/Support/AtomicOrdering.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/DebugCounter.h" 55 #include "llvm/Support/RecyclingAllocator.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 59 #include "llvm/Transforms/Utils/GuardUtils.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <cassert> 62 #include <deque> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 using namespace llvm::PatternMatch; 68 69 #define DEBUG_TYPE "early-cse" 70 71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 72 STATISTIC(NumCSE, "Number of instructions CSE'd"); 73 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 74 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 75 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 76 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 77 78 DEBUG_COUNTER(CSECounter, "early-cse", 79 "Controls which instructions are removed"); 80 81 static cl::opt<unsigned> EarlyCSEMssaOptCap( 82 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 83 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 84 "for faster compile. Caps the MemorySSA clobbering calls.")); 85 86 static cl::opt<bool> EarlyCSEDebugHash( 87 "earlycse-debug-hash", cl::init(false), cl::Hidden, 88 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 89 "function is well-behaved w.r.t. its isEqual predicate")); 90 91 //===----------------------------------------------------------------------===// 92 // SimpleValue 93 //===----------------------------------------------------------------------===// 94 95 namespace { 96 97 /// Struct representing the available values in the scoped hash table. 98 struct SimpleValue { 99 Instruction *Inst; 100 101 SimpleValue(Instruction *I) : Inst(I) { 102 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 103 } 104 105 bool isSentinel() const { 106 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 107 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 108 } 109 110 static bool canHandle(Instruction *Inst) { 111 // This can only handle non-void readnone functions. 112 if (isa<GCRelocateInst>(Inst)) 113 // Migration assistant for PR49607, to be removed once complete 114 return true; 115 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 116 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 117 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 118 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 119 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 120 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 121 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 122 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 123 } 124 }; 125 126 } // end anonymous namespace 127 128 namespace llvm { 129 130 template <> struct DenseMapInfo<SimpleValue> { 131 static inline SimpleValue getEmptyKey() { 132 return DenseMapInfo<Instruction *>::getEmptyKey(); 133 } 134 135 static inline SimpleValue getTombstoneKey() { 136 return DenseMapInfo<Instruction *>::getTombstoneKey(); 137 } 138 139 static unsigned getHashValue(SimpleValue Val); 140 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 141 }; 142 143 } // end namespace llvm 144 145 /// Match a 'select' including an optional 'not's of the condition. 146 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 147 Value *&B, 148 SelectPatternFlavor &Flavor) { 149 // Return false if V is not even a select. 150 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 151 return false; 152 153 // Look through a 'not' of the condition operand by swapping A/B. 154 Value *CondNot; 155 if (match(Cond, m_Not(m_Value(CondNot)))) { 156 Cond = CondNot; 157 std::swap(A, B); 158 } 159 160 // Match canonical forms of min/max. We are not using ValueTracking's 161 // more powerful matchSelectPattern() because it may rely on instruction flags 162 // such as "nsw". That would be incompatible with the current hashing 163 // mechanism that may remove flags to increase the likelihood of CSE. 164 165 Flavor = SPF_UNKNOWN; 166 CmpInst::Predicate Pred; 167 168 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 169 // Check for commuted variants of min/max by swapping predicate. 170 // If we do not match the standard or commuted patterns, this is not a 171 // recognized form of min/max, but it is still a select, so return true. 172 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 173 return true; 174 Pred = ICmpInst::getSwappedPredicate(Pred); 175 } 176 177 switch (Pred) { 178 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 179 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 180 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 181 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 182 // Non-strict inequalities. 183 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 184 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 185 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 186 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 187 default: break; 188 } 189 190 return true; 191 } 192 193 static unsigned getHashValueImpl(SimpleValue Val) { 194 Instruction *Inst = Val.Inst; 195 // Hash in all of the operands as pointers. 196 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 197 Value *LHS = BinOp->getOperand(0); 198 Value *RHS = BinOp->getOperand(1); 199 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 200 std::swap(LHS, RHS); 201 202 return hash_combine(BinOp->getOpcode(), LHS, RHS); 203 } 204 205 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 206 // Compares can be commuted by swapping the comparands and 207 // updating the predicate. Choose the form that has the 208 // comparands in sorted order, or in the case of a tie, the 209 // one with the lower predicate. 210 Value *LHS = CI->getOperand(0); 211 Value *RHS = CI->getOperand(1); 212 CmpInst::Predicate Pred = CI->getPredicate(); 213 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 214 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 215 std::swap(LHS, RHS); 216 Pred = SwappedPred; 217 } 218 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 219 } 220 221 // Hash general selects to allow matching commuted true/false operands. 222 SelectPatternFlavor SPF; 223 Value *Cond, *A, *B; 224 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 225 // Hash min/max (cmp + select) to allow for commuted operands. 226 // Min/max may also have non-canonical compare predicate (eg, the compare for 227 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 228 // compare. 229 // TODO: We should also detect FP min/max. 230 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 231 SPF == SPF_UMIN || SPF == SPF_UMAX) { 232 if (A > B) 233 std::swap(A, B); 234 return hash_combine(Inst->getOpcode(), SPF, A, B); 235 } 236 237 // Hash general selects to allow matching commuted true/false operands. 238 239 // If we do not have a compare as the condition, just hash in the condition. 240 CmpInst::Predicate Pred; 241 Value *X, *Y; 242 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 243 return hash_combine(Inst->getOpcode(), Cond, A, B); 244 245 // Similar to cmp normalization (above) - canonicalize the predicate value: 246 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 247 if (CmpInst::getInversePredicate(Pred) < Pred) { 248 Pred = CmpInst::getInversePredicate(Pred); 249 std::swap(A, B); 250 } 251 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 252 } 253 254 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 255 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 256 257 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 258 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 259 260 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 261 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 262 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 263 264 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 265 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 266 IVI->getOperand(1), 267 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 268 269 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 270 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 271 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 272 isa<FreezeInst>(Inst)) && 273 "Invalid/unknown instruction"); 274 275 // Handle intrinsics with commutative operands. 276 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 277 // 2 operands are commutative. 278 auto *II = dyn_cast<IntrinsicInst>(Inst); 279 if (II && II->isCommutative() && II->getNumArgOperands() == 2) { 280 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 281 if (LHS > RHS) 282 std::swap(LHS, RHS); 283 return hash_combine(II->getOpcode(), LHS, RHS); 284 } 285 286 // gc.relocate is 'special' call: its second and third operands are 287 // not real values, but indices into statepoint's argument list. 288 // Get values they point to. 289 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 290 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 291 GCR->getBasePtr(), GCR->getDerivedPtr()); 292 293 // Mix in the opcode. 294 return hash_combine( 295 Inst->getOpcode(), 296 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 297 } 298 299 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 300 #ifndef NDEBUG 301 // If -earlycse-debug-hash was specified, return a constant -- this 302 // will force all hashing to collide, so we'll exhaustively search 303 // the table for a match, and the assertion in isEqual will fire if 304 // there's a bug causing equal keys to hash differently. 305 if (EarlyCSEDebugHash) 306 return 0; 307 #endif 308 return getHashValueImpl(Val); 309 } 310 311 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 312 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 313 314 if (LHS.isSentinel() || RHS.isSentinel()) 315 return LHSI == RHSI; 316 317 if (LHSI->getOpcode() != RHSI->getOpcode()) 318 return false; 319 if (LHSI->isIdenticalToWhenDefined(RHSI)) 320 return true; 321 322 // If we're not strictly identical, we still might be a commutable instruction 323 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 324 if (!LHSBinOp->isCommutative()) 325 return false; 326 327 assert(isa<BinaryOperator>(RHSI) && 328 "same opcode, but different instruction type?"); 329 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 330 331 // Commuted equality 332 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 333 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 334 } 335 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 336 assert(isa<CmpInst>(RHSI) && 337 "same opcode, but different instruction type?"); 338 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 339 // Commuted equality 340 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 341 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 342 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 343 } 344 345 // TODO: Extend this for >2 args by matching the trailing N-2 args. 346 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 347 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 348 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 349 LII->isCommutative() && LII->getNumArgOperands() == 2) { 350 return LII->getArgOperand(0) == RII->getArgOperand(1) && 351 LII->getArgOperand(1) == RII->getArgOperand(0); 352 } 353 354 // See comment above in `getHashValue()`. 355 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 356 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 357 return GCR1->getOperand(0) == GCR2->getOperand(0) && 358 GCR1->getBasePtr() == GCR2->getBasePtr() && 359 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 360 361 // Min/max can occur with commuted operands, non-canonical predicates, 362 // and/or non-canonical operands. 363 // Selects can be non-trivially equivalent via inverted conditions and swaps. 364 SelectPatternFlavor LSPF, RSPF; 365 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 366 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 367 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 368 if (LSPF == RSPF) { 369 // TODO: We should also detect FP min/max. 370 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 371 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 372 return ((LHSA == RHSA && LHSB == RHSB) || 373 (LHSA == RHSB && LHSB == RHSA)); 374 375 // select Cond, A, B <--> select not(Cond), B, A 376 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 377 return true; 378 } 379 380 // If the true/false operands are swapped and the conditions are compares 381 // with inverted predicates, the selects are equal: 382 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 383 // 384 // This also handles patterns with a double-negation in the sense of not + 385 // inverse, because we looked through a 'not' in the matching function and 386 // swapped A/B: 387 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 388 // 389 // This intentionally does NOT handle patterns with a double-negation in 390 // the sense of not + not, because doing so could result in values 391 // comparing 392 // as equal that hash differently in the min/max cases like: 393 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 394 // ^ hashes as min ^ would not hash as min 395 // In the context of the EarlyCSE pass, however, such cases never reach 396 // this code, as we simplify the double-negation before hashing the second 397 // select (and so still succeed at CSEing them). 398 if (LHSA == RHSB && LHSB == RHSA) { 399 CmpInst::Predicate PredL, PredR; 400 Value *X, *Y; 401 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 402 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 403 CmpInst::getInversePredicate(PredL) == PredR) 404 return true; 405 } 406 } 407 408 return false; 409 } 410 411 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 412 // These comparisons are nontrivial, so assert that equality implies 413 // hash equality (DenseMap demands this as an invariant). 414 bool Result = isEqualImpl(LHS, RHS); 415 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 416 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 417 return Result; 418 } 419 420 //===----------------------------------------------------------------------===// 421 // CallValue 422 //===----------------------------------------------------------------------===// 423 424 namespace { 425 426 /// Struct representing the available call values in the scoped hash 427 /// table. 428 struct CallValue { 429 Instruction *Inst; 430 431 CallValue(Instruction *I) : Inst(I) { 432 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 433 } 434 435 bool isSentinel() const { 436 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 437 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 438 } 439 440 static bool canHandle(Instruction *Inst) { 441 // Don't value number anything that returns void. 442 if (Inst->getType()->isVoidTy()) 443 return false; 444 445 CallInst *CI = dyn_cast<CallInst>(Inst); 446 if (!CI || !CI->onlyReadsMemory()) 447 return false; 448 return true; 449 } 450 }; 451 452 } // end anonymous namespace 453 454 namespace llvm { 455 456 template <> struct DenseMapInfo<CallValue> { 457 static inline CallValue getEmptyKey() { 458 return DenseMapInfo<Instruction *>::getEmptyKey(); 459 } 460 461 static inline CallValue getTombstoneKey() { 462 return DenseMapInfo<Instruction *>::getTombstoneKey(); 463 } 464 465 static unsigned getHashValue(CallValue Val); 466 static bool isEqual(CallValue LHS, CallValue RHS); 467 }; 468 469 } // end namespace llvm 470 471 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 472 Instruction *Inst = Val.Inst; 473 474 // Hash all of the operands as pointers and mix in the opcode. 475 return hash_combine( 476 Inst->getOpcode(), 477 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 478 } 479 480 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 481 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 482 if (LHS.isSentinel() || RHS.isSentinel()) 483 return LHSI == RHSI; 484 485 return LHSI->isIdenticalTo(RHSI); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // EarlyCSE implementation 490 //===----------------------------------------------------------------------===// 491 492 namespace { 493 494 /// A simple and fast domtree-based CSE pass. 495 /// 496 /// This pass does a simple depth-first walk over the dominator tree, 497 /// eliminating trivially redundant instructions and using instsimplify to 498 /// canonicalize things as it goes. It is intended to be fast and catch obvious 499 /// cases so that instcombine and other passes are more effective. It is 500 /// expected that a later pass of GVN will catch the interesting/hard cases. 501 class EarlyCSE { 502 public: 503 const TargetLibraryInfo &TLI; 504 const TargetTransformInfo &TTI; 505 DominatorTree &DT; 506 AssumptionCache &AC; 507 const SimplifyQuery SQ; 508 MemorySSA *MSSA; 509 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 510 511 using AllocatorTy = 512 RecyclingAllocator<BumpPtrAllocator, 513 ScopedHashTableVal<SimpleValue, Value *>>; 514 using ScopedHTType = 515 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 516 AllocatorTy>; 517 518 /// A scoped hash table of the current values of all of our simple 519 /// scalar expressions. 520 /// 521 /// As we walk down the domtree, we look to see if instructions are in this: 522 /// if so, we replace them with what we find, otherwise we insert them so 523 /// that dominated values can succeed in their lookup. 524 ScopedHTType AvailableValues; 525 526 /// A scoped hash table of the current values of previously encountered 527 /// memory locations. 528 /// 529 /// This allows us to get efficient access to dominating loads or stores when 530 /// we have a fully redundant load. In addition to the most recent load, we 531 /// keep track of a generation count of the read, which is compared against 532 /// the current generation count. The current generation count is incremented 533 /// after every possibly writing memory operation, which ensures that we only 534 /// CSE loads with other loads that have no intervening store. Ordering 535 /// events (such as fences or atomic instructions) increment the generation 536 /// count as well; essentially, we model these as writes to all possible 537 /// locations. Note that atomic and/or volatile loads and stores can be 538 /// present the table; it is the responsibility of the consumer to inspect 539 /// the atomicity/volatility if needed. 540 struct LoadValue { 541 Instruction *DefInst = nullptr; 542 unsigned Generation = 0; 543 int MatchingId = -1; 544 bool IsAtomic = false; 545 546 LoadValue() = default; 547 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 548 bool IsAtomic) 549 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 550 IsAtomic(IsAtomic) {} 551 }; 552 553 using LoadMapAllocator = 554 RecyclingAllocator<BumpPtrAllocator, 555 ScopedHashTableVal<Value *, LoadValue>>; 556 using LoadHTType = 557 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 558 LoadMapAllocator>; 559 560 LoadHTType AvailableLoads; 561 562 // A scoped hash table mapping memory locations (represented as typed 563 // addresses) to generation numbers at which that memory location became 564 // (henceforth indefinitely) invariant. 565 using InvariantMapAllocator = 566 RecyclingAllocator<BumpPtrAllocator, 567 ScopedHashTableVal<MemoryLocation, unsigned>>; 568 using InvariantHTType = 569 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 570 InvariantMapAllocator>; 571 InvariantHTType AvailableInvariants; 572 573 /// A scoped hash table of the current values of read-only call 574 /// values. 575 /// 576 /// It uses the same generation count as loads. 577 using CallHTType = 578 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 579 CallHTType AvailableCalls; 580 581 /// This is the current generation of the memory value. 582 unsigned CurrentGeneration = 0; 583 584 /// Set up the EarlyCSE runner for a particular function. 585 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 586 const TargetTransformInfo &TTI, DominatorTree &DT, 587 AssumptionCache &AC, MemorySSA *MSSA) 588 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 589 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 590 591 bool run(); 592 593 private: 594 unsigned ClobberCounter = 0; 595 // Almost a POD, but needs to call the constructors for the scoped hash 596 // tables so that a new scope gets pushed on. These are RAII so that the 597 // scope gets popped when the NodeScope is destroyed. 598 class NodeScope { 599 public: 600 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 601 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 602 : Scope(AvailableValues), LoadScope(AvailableLoads), 603 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 604 NodeScope(const NodeScope &) = delete; 605 NodeScope &operator=(const NodeScope &) = delete; 606 607 private: 608 ScopedHTType::ScopeTy Scope; 609 LoadHTType::ScopeTy LoadScope; 610 InvariantHTType::ScopeTy InvariantScope; 611 CallHTType::ScopeTy CallScope; 612 }; 613 614 // Contains all the needed information to create a stack for doing a depth 615 // first traversal of the tree. This includes scopes for values, loads, and 616 // calls as well as the generation. There is a child iterator so that the 617 // children do not need to be store separately. 618 class StackNode { 619 public: 620 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 621 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 622 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 623 DomTreeNode::const_iterator end) 624 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 625 EndIter(end), 626 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 627 AvailableCalls) 628 {} 629 StackNode(const StackNode &) = delete; 630 StackNode &operator=(const StackNode &) = delete; 631 632 // Accessors. 633 unsigned currentGeneration() const { return CurrentGeneration; } 634 unsigned childGeneration() const { return ChildGeneration; } 635 void childGeneration(unsigned generation) { ChildGeneration = generation; } 636 DomTreeNode *node() { return Node; } 637 DomTreeNode::const_iterator childIter() const { return ChildIter; } 638 639 DomTreeNode *nextChild() { 640 DomTreeNode *child = *ChildIter; 641 ++ChildIter; 642 return child; 643 } 644 645 DomTreeNode::const_iterator end() const { return EndIter; } 646 bool isProcessed() const { return Processed; } 647 void process() { Processed = true; } 648 649 private: 650 unsigned CurrentGeneration; 651 unsigned ChildGeneration; 652 DomTreeNode *Node; 653 DomTreeNode::const_iterator ChildIter; 654 DomTreeNode::const_iterator EndIter; 655 NodeScope Scopes; 656 bool Processed = false; 657 }; 658 659 /// Wrapper class to handle memory instructions, including loads, 660 /// stores and intrinsic loads and stores defined by the target. 661 class ParseMemoryInst { 662 public: 663 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 664 : Inst(Inst) { 665 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 666 IntrID = II->getIntrinsicID(); 667 if (TTI.getTgtMemIntrinsic(II, Info)) 668 return; 669 if (isHandledNonTargetIntrinsic(IntrID)) { 670 switch (IntrID) { 671 case Intrinsic::masked_load: 672 Info.PtrVal = Inst->getOperand(0); 673 Info.MatchingId = Intrinsic::masked_load; 674 Info.ReadMem = true; 675 Info.WriteMem = false; 676 Info.IsVolatile = false; 677 break; 678 case Intrinsic::masked_store: 679 Info.PtrVal = Inst->getOperand(1); 680 // Use the ID of masked load as the "matching id". This will 681 // prevent matching non-masked loads/stores with masked ones 682 // (which could be done), but at the moment, the code here 683 // does not support matching intrinsics with non-intrinsics, 684 // so keep the MatchingIds specific to masked instructions 685 // for now (TODO). 686 Info.MatchingId = Intrinsic::masked_load; 687 Info.ReadMem = false; 688 Info.WriteMem = true; 689 Info.IsVolatile = false; 690 break; 691 } 692 } 693 } 694 } 695 696 Instruction *get() { return Inst; } 697 const Instruction *get() const { return Inst; } 698 699 bool isLoad() const { 700 if (IntrID != 0) 701 return Info.ReadMem; 702 return isa<LoadInst>(Inst); 703 } 704 705 bool isStore() const { 706 if (IntrID != 0) 707 return Info.WriteMem; 708 return isa<StoreInst>(Inst); 709 } 710 711 bool isAtomic() const { 712 if (IntrID != 0) 713 return Info.Ordering != AtomicOrdering::NotAtomic; 714 return Inst->isAtomic(); 715 } 716 717 bool isUnordered() const { 718 if (IntrID != 0) 719 return Info.isUnordered(); 720 721 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 722 return LI->isUnordered(); 723 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 724 return SI->isUnordered(); 725 } 726 // Conservative answer 727 return !Inst->isAtomic(); 728 } 729 730 bool isVolatile() const { 731 if (IntrID != 0) 732 return Info.IsVolatile; 733 734 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 735 return LI->isVolatile(); 736 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 737 return SI->isVolatile(); 738 } 739 // Conservative answer 740 return true; 741 } 742 743 bool isInvariantLoad() const { 744 if (auto *LI = dyn_cast<LoadInst>(Inst)) 745 return LI->hasMetadata(LLVMContext::MD_invariant_load); 746 return false; 747 } 748 749 bool isValid() const { return getPointerOperand() != nullptr; } 750 751 // For regular (non-intrinsic) loads/stores, this is set to -1. For 752 // intrinsic loads/stores, the id is retrieved from the corresponding 753 // field in the MemIntrinsicInfo structure. That field contains 754 // non-negative values only. 755 int getMatchingId() const { 756 if (IntrID != 0) 757 return Info.MatchingId; 758 return -1; 759 } 760 761 Value *getPointerOperand() const { 762 if (IntrID != 0) 763 return Info.PtrVal; 764 return getLoadStorePointerOperand(Inst); 765 } 766 767 bool mayReadFromMemory() const { 768 if (IntrID != 0) 769 return Info.ReadMem; 770 return Inst->mayReadFromMemory(); 771 } 772 773 bool mayWriteToMemory() const { 774 if (IntrID != 0) 775 return Info.WriteMem; 776 return Inst->mayWriteToMemory(); 777 } 778 779 private: 780 Intrinsic::ID IntrID = 0; 781 MemIntrinsicInfo Info; 782 Instruction *Inst; 783 }; 784 785 // This function is to prevent accidentally passing a non-target 786 // intrinsic ID to TargetTransformInfo. 787 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 788 switch (ID) { 789 case Intrinsic::masked_load: 790 case Intrinsic::masked_store: 791 return true; 792 } 793 return false; 794 } 795 static bool isHandledNonTargetIntrinsic(const Value *V) { 796 if (auto *II = dyn_cast<IntrinsicInst>(V)) 797 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 798 return false; 799 } 800 801 bool processNode(DomTreeNode *Node); 802 803 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 804 const BasicBlock *BB, const BasicBlock *Pred); 805 806 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 807 unsigned CurrentGeneration); 808 809 bool overridingStores(const ParseMemoryInst &Earlier, 810 const ParseMemoryInst &Later); 811 812 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 813 if (auto *LI = dyn_cast<LoadInst>(Inst)) 814 return LI; 815 if (auto *SI = dyn_cast<StoreInst>(Inst)) 816 return SI->getValueOperand(); 817 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 818 auto *II = cast<IntrinsicInst>(Inst); 819 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 820 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 821 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 822 } 823 824 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 825 Type *ExpectedType) const { 826 switch (II->getIntrinsicID()) { 827 case Intrinsic::masked_load: 828 return II; 829 case Intrinsic::masked_store: 830 return II->getOperand(0); 831 } 832 return nullptr; 833 } 834 835 /// Return true if the instruction is known to only operate on memory 836 /// provably invariant in the given "generation". 837 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 838 839 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 840 Instruction *EarlierInst, Instruction *LaterInst); 841 842 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 843 const IntrinsicInst *Later) { 844 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 845 // Is Mask0 a submask of Mask1? 846 if (Mask0 == Mask1) 847 return true; 848 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 849 return false; 850 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 851 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 852 if (!Vec0 || !Vec1) 853 return false; 854 assert(Vec0->getType() == Vec1->getType() && 855 "Masks should have the same type"); 856 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 857 Constant *Elem0 = Vec0->getOperand(i); 858 Constant *Elem1 = Vec1->getOperand(i); 859 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 860 if (Int0 && Int0->isZero()) 861 continue; 862 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 863 if (Int1 && !Int1->isZero()) 864 continue; 865 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 866 return false; 867 if (Elem0 == Elem1) 868 continue; 869 return false; 870 } 871 return true; 872 }; 873 auto PtrOp = [](const IntrinsicInst *II) { 874 if (II->getIntrinsicID() == Intrinsic::masked_load) 875 return II->getOperand(0); 876 if (II->getIntrinsicID() == Intrinsic::masked_store) 877 return II->getOperand(1); 878 llvm_unreachable("Unexpected IntrinsicInst"); 879 }; 880 auto MaskOp = [](const IntrinsicInst *II) { 881 if (II->getIntrinsicID() == Intrinsic::masked_load) 882 return II->getOperand(2); 883 if (II->getIntrinsicID() == Intrinsic::masked_store) 884 return II->getOperand(3); 885 llvm_unreachable("Unexpected IntrinsicInst"); 886 }; 887 auto ThruOp = [](const IntrinsicInst *II) { 888 if (II->getIntrinsicID() == Intrinsic::masked_load) 889 return II->getOperand(3); 890 llvm_unreachable("Unexpected IntrinsicInst"); 891 }; 892 893 if (PtrOp(Earlier) != PtrOp(Later)) 894 return false; 895 896 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 897 Intrinsic::ID IDL = Later->getIntrinsicID(); 898 // We could really use specific intrinsic classes for masked loads 899 // and stores in IntrinsicInst.h. 900 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 901 // Trying to replace later masked load with the earlier one. 902 // Check that the pointers are the same, and 903 // - masks and pass-throughs are the same, or 904 // - replacee's pass-through is "undef" and replacer's mask is a 905 // super-set of the replacee's mask. 906 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 907 return true; 908 if (!isa<UndefValue>(ThruOp(Later))) 909 return false; 910 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 911 } 912 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 913 // Trying to replace a load of a stored value with the store's value. 914 // Check that the pointers are the same, and 915 // - load's mask is a subset of store's mask, and 916 // - load's pass-through is "undef". 917 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 918 return false; 919 return isa<UndefValue>(ThruOp(Later)); 920 } 921 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 922 // Trying to remove a store of the loaded value. 923 // Check that the pointers are the same, and 924 // - store's mask is a subset of the load's mask. 925 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 926 } 927 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 928 // Trying to remove a dead store (earlier). 929 // Check that the pointers are the same, 930 // - the to-be-removed store's mask is a subset of the other store's 931 // mask. 932 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 933 } 934 return false; 935 } 936 937 void removeMSSA(Instruction &Inst) { 938 if (!MSSA) 939 return; 940 if (VerifyMemorySSA) 941 MSSA->verifyMemorySSA(); 942 // Removing a store here can leave MemorySSA in an unoptimized state by 943 // creating MemoryPhis that have identical arguments and by creating 944 // MemoryUses whose defining access is not an actual clobber. The phi case 945 // is handled by MemorySSA when passing OptimizePhis = true to 946 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 947 // by MemorySSA's getClobberingMemoryAccess. 948 MSSAUpdater->removeMemoryAccess(&Inst, true); 949 } 950 }; 951 952 } // end anonymous namespace 953 954 /// Determine if the memory referenced by LaterInst is from the same heap 955 /// version as EarlierInst. 956 /// This is currently called in two scenarios: 957 /// 958 /// load p 959 /// ... 960 /// load p 961 /// 962 /// and 963 /// 964 /// x = load p 965 /// ... 966 /// store x, p 967 /// 968 /// in both cases we want to verify that there are no possible writes to the 969 /// memory referenced by p between the earlier and later instruction. 970 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 971 unsigned LaterGeneration, 972 Instruction *EarlierInst, 973 Instruction *LaterInst) { 974 // Check the simple memory generation tracking first. 975 if (EarlierGeneration == LaterGeneration) 976 return true; 977 978 if (!MSSA) 979 return false; 980 981 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 982 // read/write memory, then we can safely return true here. 983 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 984 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 985 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 986 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 987 // with the default optimization pipeline. 988 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 989 if (!EarlierMA) 990 return true; 991 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 992 if (!LaterMA) 993 return true; 994 995 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 996 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 997 // EarlierInst and LaterInst and neither can any other write that potentially 998 // clobbers LaterInst. 999 MemoryAccess *LaterDef; 1000 if (ClobberCounter < EarlyCSEMssaOptCap) { 1001 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1002 ClobberCounter++; 1003 } else 1004 LaterDef = LaterMA->getDefiningAccess(); 1005 1006 return MSSA->dominates(LaterDef, EarlierMA); 1007 } 1008 1009 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1010 // A location loaded from with an invariant_load is assumed to *never* change 1011 // within the visible scope of the compilation. 1012 if (auto *LI = dyn_cast<LoadInst>(I)) 1013 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1014 return true; 1015 1016 auto MemLocOpt = MemoryLocation::getOrNone(I); 1017 if (!MemLocOpt) 1018 // "target" intrinsic forms of loads aren't currently known to 1019 // MemoryLocation::get. TODO 1020 return false; 1021 MemoryLocation MemLoc = *MemLocOpt; 1022 if (!AvailableInvariants.count(MemLoc)) 1023 return false; 1024 1025 // Is the generation at which this became invariant older than the 1026 // current one? 1027 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1028 } 1029 1030 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1031 const BranchInst *BI, const BasicBlock *BB, 1032 const BasicBlock *Pred) { 1033 assert(BI->isConditional() && "Should be a conditional branch!"); 1034 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1035 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1036 auto *TorF = (BI->getSuccessor(0) == BB) 1037 ? ConstantInt::getTrue(BB->getContext()) 1038 : ConstantInt::getFalse(BB->getContext()); 1039 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1040 Value *&RHS) { 1041 if (Opcode == Instruction::And && 1042 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1043 return true; 1044 else if (Opcode == Instruction::Or && 1045 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1046 return true; 1047 return false; 1048 }; 1049 // If the condition is AND operation, we can propagate its operands into the 1050 // true branch. If it is OR operation, we can propagate them into the false 1051 // branch. 1052 unsigned PropagateOpcode = 1053 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1054 1055 bool MadeChanges = false; 1056 SmallVector<Instruction *, 4> WorkList; 1057 SmallPtrSet<Instruction *, 4> Visited; 1058 WorkList.push_back(CondInst); 1059 while (!WorkList.empty()) { 1060 Instruction *Curr = WorkList.pop_back_val(); 1061 1062 AvailableValues.insert(Curr, TorF); 1063 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1064 << Curr->getName() << "' as " << *TorF << " in " 1065 << BB->getName() << "\n"); 1066 if (!DebugCounter::shouldExecute(CSECounter)) { 1067 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1068 } else { 1069 // Replace all dominated uses with the known value. 1070 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1071 BasicBlockEdge(Pred, BB))) { 1072 NumCSECVP += Count; 1073 MadeChanges = true; 1074 } 1075 } 1076 1077 Value *LHS, *RHS; 1078 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1079 for (auto &Op : { LHS, RHS }) 1080 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1081 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1082 WorkList.push_back(OPI); 1083 } 1084 1085 return MadeChanges; 1086 } 1087 1088 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1089 unsigned CurrentGeneration) { 1090 if (InVal.DefInst == nullptr) 1091 return nullptr; 1092 if (InVal.MatchingId != MemInst.getMatchingId()) 1093 return nullptr; 1094 // We don't yet handle removing loads with ordering of any kind. 1095 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1096 return nullptr; 1097 // We can't replace an atomic load with one which isn't also atomic. 1098 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1099 return nullptr; 1100 // The value V returned from this function is used differently depending 1101 // on whether MemInst is a load or a store. If it's a load, we will replace 1102 // MemInst with V, if it's a store, we will check if V is the same as the 1103 // available value. 1104 bool MemInstMatching = !MemInst.isLoad(); 1105 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1106 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1107 1108 // For stores check the result values before checking memory generation 1109 // (otherwise isSameMemGeneration may crash). 1110 Value *Result = MemInst.isStore() 1111 ? getOrCreateResult(Matching, Other->getType()) 1112 : nullptr; 1113 if (MemInst.isStore() && InVal.DefInst != Result) 1114 return nullptr; 1115 1116 // Deal with non-target memory intrinsics. 1117 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1118 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1119 if (OtherNTI != MatchingNTI) 1120 return nullptr; 1121 if (OtherNTI && MatchingNTI) { 1122 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1123 cast<IntrinsicInst>(MemInst.get()))) 1124 return nullptr; 1125 } 1126 1127 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1128 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1129 MemInst.get())) 1130 return nullptr; 1131 1132 if (!Result) 1133 Result = getOrCreateResult(Matching, Other->getType()); 1134 return Result; 1135 } 1136 1137 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1138 const ParseMemoryInst &Later) { 1139 // Can we remove Earlier store because of Later store? 1140 1141 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1142 "Violated invariant"); 1143 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1144 return false; 1145 if (Earlier.getMatchingId() != Later.getMatchingId()) 1146 return false; 1147 // At the moment, we don't remove ordered stores, but do remove 1148 // unordered atomic stores. There's no special requirement (for 1149 // unordered atomics) about removing atomic stores only in favor of 1150 // other atomic stores since we were going to execute the non-atomic 1151 // one anyway and the atomic one might never have become visible. 1152 if (!Earlier.isUnordered() || !Later.isUnordered()) 1153 return false; 1154 1155 // Deal with non-target memory intrinsics. 1156 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1157 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1158 if (ENTI && LNTI) 1159 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1160 cast<IntrinsicInst>(Later.get())); 1161 1162 // Because of the check above, at least one of them is false. 1163 // For now disallow matching intrinsics with non-intrinsics, 1164 // so assume that the stores match if neither is an intrinsic. 1165 return ENTI == LNTI; 1166 } 1167 1168 bool EarlyCSE::processNode(DomTreeNode *Node) { 1169 bool Changed = false; 1170 BasicBlock *BB = Node->getBlock(); 1171 1172 // If this block has a single predecessor, then the predecessor is the parent 1173 // of the domtree node and all of the live out memory values are still current 1174 // in this block. If this block has multiple predecessors, then they could 1175 // have invalidated the live-out memory values of our parent value. For now, 1176 // just be conservative and invalidate memory if this block has multiple 1177 // predecessors. 1178 if (!BB->getSinglePredecessor()) 1179 ++CurrentGeneration; 1180 1181 // If this node has a single predecessor which ends in a conditional branch, 1182 // we can infer the value of the branch condition given that we took this 1183 // path. We need the single predecessor to ensure there's not another path 1184 // which reaches this block where the condition might hold a different 1185 // value. Since we're adding this to the scoped hash table (like any other 1186 // def), it will have been popped if we encounter a future merge block. 1187 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1188 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1189 if (BI && BI->isConditional()) { 1190 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1191 if (CondInst && SimpleValue::canHandle(CondInst)) 1192 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1193 } 1194 } 1195 1196 /// LastStore - Keep track of the last non-volatile store that we saw... for 1197 /// as long as there in no instruction that reads memory. If we see a store 1198 /// to the same location, we delete the dead store. This zaps trivial dead 1199 /// stores which can occur in bitfield code among other things. 1200 Instruction *LastStore = nullptr; 1201 1202 // See if any instructions in the block can be eliminated. If so, do it. If 1203 // not, add them to AvailableValues. 1204 for (Instruction &Inst : make_early_inc_range(BB->getInstList())) { 1205 // Dead instructions should just be removed. 1206 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1207 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1208 if (!DebugCounter::shouldExecute(CSECounter)) { 1209 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1210 continue; 1211 } 1212 1213 salvageKnowledge(&Inst, &AC); 1214 salvageDebugInfo(Inst); 1215 removeMSSA(Inst); 1216 Inst.eraseFromParent(); 1217 Changed = true; 1218 ++NumSimplify; 1219 continue; 1220 } 1221 1222 // Skip assume intrinsics, they don't really have side effects (although 1223 // they're marked as such to ensure preservation of control dependencies), 1224 // and this pass will not bother with its removal. However, we should mark 1225 // its condition as true for all dominated blocks. 1226 if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) { 1227 auto *CondI = 1228 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0)); 1229 if (CondI && SimpleValue::canHandle(CondI)) { 1230 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1231 << '\n'); 1232 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1233 } else 1234 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1235 continue; 1236 } 1237 1238 // Likewise, noalias intrinsics don't actually write. 1239 if (match(&Inst, 1240 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1241 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1242 << '\n'); 1243 continue; 1244 } 1245 1246 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1247 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1248 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1249 continue; 1250 } 1251 1252 // We can skip all invariant.start intrinsics since they only read memory, 1253 // and we can forward values across it. For invariant starts without 1254 // invariant ends, we can use the fact that the invariantness never ends to 1255 // start a scope in the current generaton which is true for all future 1256 // generations. Also, we dont need to consume the last store since the 1257 // semantics of invariant.start allow us to perform DSE of the last 1258 // store, if there was a store following invariant.start. Consider: 1259 // 1260 // store 30, i8* p 1261 // invariant.start(p) 1262 // store 40, i8* p 1263 // We can DSE the store to 30, since the store 40 to invariant location p 1264 // causes undefined behaviour. 1265 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1266 // If there are any uses, the scope might end. 1267 if (!Inst.use_empty()) 1268 continue; 1269 MemoryLocation MemLoc = 1270 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1271 // Don't start a scope if we already have a better one pushed 1272 if (!AvailableInvariants.count(MemLoc)) 1273 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1274 continue; 1275 } 1276 1277 if (isGuard(&Inst)) { 1278 if (auto *CondI = 1279 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1280 if (SimpleValue::canHandle(CondI)) { 1281 // Do we already know the actual value of this condition? 1282 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1283 // Is the condition known to be true? 1284 if (isa<ConstantInt>(KnownCond) && 1285 cast<ConstantInt>(KnownCond)->isOne()) { 1286 LLVM_DEBUG(dbgs() 1287 << "EarlyCSE removing guard: " << Inst << '\n'); 1288 salvageKnowledge(&Inst, &AC); 1289 removeMSSA(Inst); 1290 Inst.eraseFromParent(); 1291 Changed = true; 1292 continue; 1293 } else 1294 // Use the known value if it wasn't true. 1295 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1296 } 1297 // The condition we're on guarding here is true for all dominated 1298 // locations. 1299 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1300 } 1301 } 1302 1303 // Guard intrinsics read all memory, but don't write any memory. 1304 // Accordingly, don't update the generation but consume the last store (to 1305 // avoid an incorrect DSE). 1306 LastStore = nullptr; 1307 continue; 1308 } 1309 1310 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1311 // its simpler value. 1312 if (Value *V = SimplifyInstruction(&Inst, SQ)) { 1313 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1314 << '\n'); 1315 if (!DebugCounter::shouldExecute(CSECounter)) { 1316 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1317 } else { 1318 bool Killed = false; 1319 if (!Inst.use_empty()) { 1320 Inst.replaceAllUsesWith(V); 1321 Changed = true; 1322 } 1323 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1324 salvageKnowledge(&Inst, &AC); 1325 removeMSSA(Inst); 1326 Inst.eraseFromParent(); 1327 Changed = true; 1328 Killed = true; 1329 } 1330 if (Changed) 1331 ++NumSimplify; 1332 if (Killed) 1333 continue; 1334 } 1335 } 1336 1337 // If this is a simple instruction that we can value number, process it. 1338 if (SimpleValue::canHandle(&Inst)) { 1339 // See if the instruction has an available value. If so, use it. 1340 if (Value *V = AvailableValues.lookup(&Inst)) { 1341 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1342 << '\n'); 1343 if (!DebugCounter::shouldExecute(CSECounter)) { 1344 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1345 continue; 1346 } 1347 if (auto *I = dyn_cast<Instruction>(V)) 1348 I->andIRFlags(&Inst); 1349 Inst.replaceAllUsesWith(V); 1350 salvageKnowledge(&Inst, &AC); 1351 removeMSSA(Inst); 1352 Inst.eraseFromParent(); 1353 Changed = true; 1354 ++NumCSE; 1355 continue; 1356 } 1357 1358 // Otherwise, just remember that this value is available. 1359 AvailableValues.insert(&Inst, &Inst); 1360 continue; 1361 } 1362 1363 ParseMemoryInst MemInst(&Inst, TTI); 1364 // If this is a non-volatile load, process it. 1365 if (MemInst.isValid() && MemInst.isLoad()) { 1366 // (conservatively) we can't peak past the ordering implied by this 1367 // operation, but we can add this load to our set of available values 1368 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1369 LastStore = nullptr; 1370 ++CurrentGeneration; 1371 } 1372 1373 if (MemInst.isInvariantLoad()) { 1374 // If we pass an invariant load, we know that memory location is 1375 // indefinitely constant from the moment of first dereferenceability. 1376 // We conservatively treat the invariant_load as that moment. If we 1377 // pass a invariant load after already establishing a scope, don't 1378 // restart it since we want to preserve the earliest point seen. 1379 auto MemLoc = MemoryLocation::get(&Inst); 1380 if (!AvailableInvariants.count(MemLoc)) 1381 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1382 } 1383 1384 // If we have an available version of this load, and if it is the right 1385 // generation or the load is known to be from an invariant location, 1386 // replace this instruction. 1387 // 1388 // If either the dominating load or the current load are invariant, then 1389 // we can assume the current load loads the same value as the dominating 1390 // load. 1391 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1392 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1393 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1394 << " to: " << *InVal.DefInst << '\n'); 1395 if (!DebugCounter::shouldExecute(CSECounter)) { 1396 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1397 continue; 1398 } 1399 if (!Inst.use_empty()) 1400 Inst.replaceAllUsesWith(Op); 1401 salvageKnowledge(&Inst, &AC); 1402 removeMSSA(Inst); 1403 Inst.eraseFromParent(); 1404 Changed = true; 1405 ++NumCSELoad; 1406 continue; 1407 } 1408 1409 // Otherwise, remember that we have this instruction. 1410 AvailableLoads.insert(MemInst.getPointerOperand(), 1411 LoadValue(&Inst, CurrentGeneration, 1412 MemInst.getMatchingId(), 1413 MemInst.isAtomic())); 1414 LastStore = nullptr; 1415 continue; 1416 } 1417 1418 // If this instruction may read from memory or throw (and potentially read 1419 // from memory in the exception handler), forget LastStore. Load/store 1420 // intrinsics will indicate both a read and a write to memory. The target 1421 // may override this (e.g. so that a store intrinsic does not read from 1422 // memory, and thus will be treated the same as a regular store for 1423 // commoning purposes). 1424 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1425 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1426 LastStore = nullptr; 1427 1428 // If this is a read-only call, process it. 1429 if (CallValue::canHandle(&Inst)) { 1430 // If we have an available version of this call, and if it is the right 1431 // generation, replace this instruction. 1432 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1433 if (InVal.first != nullptr && 1434 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1435 &Inst)) { 1436 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1437 << " to: " << *InVal.first << '\n'); 1438 if (!DebugCounter::shouldExecute(CSECounter)) { 1439 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1440 continue; 1441 } 1442 if (!Inst.use_empty()) 1443 Inst.replaceAllUsesWith(InVal.first); 1444 salvageKnowledge(&Inst, &AC); 1445 removeMSSA(Inst); 1446 Inst.eraseFromParent(); 1447 Changed = true; 1448 ++NumCSECall; 1449 continue; 1450 } 1451 1452 // Otherwise, remember that we have this instruction. 1453 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1454 continue; 1455 } 1456 1457 // A release fence requires that all stores complete before it, but does 1458 // not prevent the reordering of following loads 'before' the fence. As a 1459 // result, we don't need to consider it as writing to memory and don't need 1460 // to advance the generation. We do need to prevent DSE across the fence, 1461 // but that's handled above. 1462 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1463 if (FI->getOrdering() == AtomicOrdering::Release) { 1464 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1465 continue; 1466 } 1467 1468 // write back DSE - If we write back the same value we just loaded from 1469 // the same location and haven't passed any intervening writes or ordering 1470 // operations, we can remove the write. The primary benefit is in allowing 1471 // the available load table to remain valid and value forward past where 1472 // the store originally was. 1473 if (MemInst.isValid() && MemInst.isStore()) { 1474 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1475 if (InVal.DefInst && 1476 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1477 // It is okay to have a LastStore to a different pointer here if MemorySSA 1478 // tells us that the load and store are from the same memory generation. 1479 // In that case, LastStore should keep its present value since we're 1480 // removing the current store. 1481 assert((!LastStore || 1482 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1483 MemInst.getPointerOperand() || 1484 MSSA) && 1485 "can't have an intervening store if not using MemorySSA!"); 1486 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1487 if (!DebugCounter::shouldExecute(CSECounter)) { 1488 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1489 continue; 1490 } 1491 salvageKnowledge(&Inst, &AC); 1492 removeMSSA(Inst); 1493 Inst.eraseFromParent(); 1494 Changed = true; 1495 ++NumDSE; 1496 // We can avoid incrementing the generation count since we were able 1497 // to eliminate this store. 1498 continue; 1499 } 1500 } 1501 1502 // Okay, this isn't something we can CSE at all. Check to see if it is 1503 // something that could modify memory. If so, our available memory values 1504 // cannot be used so bump the generation count. 1505 if (Inst.mayWriteToMemory()) { 1506 ++CurrentGeneration; 1507 1508 if (MemInst.isValid() && MemInst.isStore()) { 1509 // We do a trivial form of DSE if there are two stores to the same 1510 // location with no intervening loads. Delete the earlier store. 1511 if (LastStore) { 1512 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1513 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1514 << " due to: " << Inst << '\n'); 1515 if (!DebugCounter::shouldExecute(CSECounter)) { 1516 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1517 } else { 1518 salvageKnowledge(&Inst, &AC); 1519 removeMSSA(*LastStore); 1520 LastStore->eraseFromParent(); 1521 Changed = true; 1522 ++NumDSE; 1523 LastStore = nullptr; 1524 } 1525 } 1526 // fallthrough - we can exploit information about this store 1527 } 1528 1529 // Okay, we just invalidated anything we knew about loaded values. Try 1530 // to salvage *something* by remembering that the stored value is a live 1531 // version of the pointer. It is safe to forward from volatile stores 1532 // to non-volatile loads, so we don't have to check for volatility of 1533 // the store. 1534 AvailableLoads.insert(MemInst.getPointerOperand(), 1535 LoadValue(&Inst, CurrentGeneration, 1536 MemInst.getMatchingId(), 1537 MemInst.isAtomic())); 1538 1539 // Remember that this was the last unordered store we saw for DSE. We 1540 // don't yet handle DSE on ordered or volatile stores since we don't 1541 // have a good way to model the ordering requirement for following 1542 // passes once the store is removed. We could insert a fence, but 1543 // since fences are slightly stronger than stores in their ordering, 1544 // it's not clear this is a profitable transform. Another option would 1545 // be to merge the ordering with that of the post dominating store. 1546 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1547 LastStore = &Inst; 1548 else 1549 LastStore = nullptr; 1550 } 1551 } 1552 } 1553 1554 return Changed; 1555 } 1556 1557 bool EarlyCSE::run() { 1558 // Note, deque is being used here because there is significant performance 1559 // gains over vector when the container becomes very large due to the 1560 // specific access patterns. For more information see the mailing list 1561 // discussion on this: 1562 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1563 std::deque<StackNode *> nodesToProcess; 1564 1565 bool Changed = false; 1566 1567 // Process the root node. 1568 nodesToProcess.push_back(new StackNode( 1569 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1570 CurrentGeneration, DT.getRootNode(), 1571 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1572 1573 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1574 1575 // Process the stack. 1576 while (!nodesToProcess.empty()) { 1577 // Grab the first item off the stack. Set the current generation, remove 1578 // the node from the stack, and process it. 1579 StackNode *NodeToProcess = nodesToProcess.back(); 1580 1581 // Initialize class members. 1582 CurrentGeneration = NodeToProcess->currentGeneration(); 1583 1584 // Check if the node needs to be processed. 1585 if (!NodeToProcess->isProcessed()) { 1586 // Process the node. 1587 Changed |= processNode(NodeToProcess->node()); 1588 NodeToProcess->childGeneration(CurrentGeneration); 1589 NodeToProcess->process(); 1590 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1591 // Push the next child onto the stack. 1592 DomTreeNode *child = NodeToProcess->nextChild(); 1593 nodesToProcess.push_back( 1594 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1595 AvailableCalls, NodeToProcess->childGeneration(), 1596 child, child->begin(), child->end())); 1597 } else { 1598 // It has been processed, and there are no more children to process, 1599 // so delete it and pop it off the stack. 1600 delete NodeToProcess; 1601 nodesToProcess.pop_back(); 1602 } 1603 } // while (!nodes...) 1604 1605 return Changed; 1606 } 1607 1608 PreservedAnalyses EarlyCSEPass::run(Function &F, 1609 FunctionAnalysisManager &AM) { 1610 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1611 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1612 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1613 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1614 auto *MSSA = 1615 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1616 1617 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1618 1619 if (!CSE.run()) 1620 return PreservedAnalyses::all(); 1621 1622 PreservedAnalyses PA; 1623 PA.preserveSet<CFGAnalyses>(); 1624 PA.preserve<GlobalsAA>(); 1625 if (UseMemorySSA) 1626 PA.preserve<MemorySSAAnalysis>(); 1627 return PA; 1628 } 1629 1630 namespace { 1631 1632 /// A simple and fast domtree-based CSE pass. 1633 /// 1634 /// This pass does a simple depth-first walk over the dominator tree, 1635 /// eliminating trivially redundant instructions and using instsimplify to 1636 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1637 /// cases so that instcombine and other passes are more effective. It is 1638 /// expected that a later pass of GVN will catch the interesting/hard cases. 1639 template<bool UseMemorySSA> 1640 class EarlyCSELegacyCommonPass : public FunctionPass { 1641 public: 1642 static char ID; 1643 1644 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1645 if (UseMemorySSA) 1646 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1647 else 1648 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1649 } 1650 1651 bool runOnFunction(Function &F) override { 1652 if (skipFunction(F)) 1653 return false; 1654 1655 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1656 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1657 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1658 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1659 auto *MSSA = 1660 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1661 1662 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1663 1664 return CSE.run(); 1665 } 1666 1667 void getAnalysisUsage(AnalysisUsage &AU) const override { 1668 AU.addRequired<AssumptionCacheTracker>(); 1669 AU.addRequired<DominatorTreeWrapperPass>(); 1670 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1671 AU.addRequired<TargetTransformInfoWrapperPass>(); 1672 if (UseMemorySSA) { 1673 AU.addRequired<AAResultsWrapperPass>(); 1674 AU.addRequired<MemorySSAWrapperPass>(); 1675 AU.addPreserved<MemorySSAWrapperPass>(); 1676 } 1677 AU.addPreserved<GlobalsAAWrapperPass>(); 1678 AU.addPreserved<AAResultsWrapperPass>(); 1679 AU.setPreservesCFG(); 1680 } 1681 }; 1682 1683 } // end anonymous namespace 1684 1685 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1686 1687 template<> 1688 char EarlyCSELegacyPass::ID = 0; 1689 1690 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1691 false) 1692 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1693 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1694 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1695 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1696 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1697 1698 using EarlyCSEMemSSALegacyPass = 1699 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1700 1701 template<> 1702 char EarlyCSEMemSSALegacyPass::ID = 0; 1703 1704 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1705 if (UseMemorySSA) 1706 return new EarlyCSEMemSSALegacyPass(); 1707 else 1708 return new EarlyCSELegacyPass(); 1709 } 1710 1711 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1712 "Early CSE w/ MemorySSA", false, false) 1713 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1714 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1715 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1716 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1717 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1718 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1719 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1720 "Early CSE w/ MemorySSA", false, false) 1721