xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision 558a465473bde9dfae7f17ff4be2f638586624b9)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopedHashTable.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/RecyclingAllocator.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include <cassert>
57 #include <deque>
58 #include <memory>
59 #include <utility>
60 
61 using namespace llvm;
62 using namespace llvm::PatternMatch;
63 
64 #define DEBUG_TYPE "early-cse"
65 
66 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
67 STATISTIC(NumCSE,      "Number of instructions CSE'd");
68 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
69 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
70 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
71 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
72 
73 //===----------------------------------------------------------------------===//
74 // SimpleValue
75 //===----------------------------------------------------------------------===//
76 
77 namespace {
78 
79 /// \brief Struct representing the available values in the scoped hash table.
80 struct SimpleValue {
81   Instruction *Inst;
82 
83   SimpleValue(Instruction *I) : Inst(I) {
84     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
85   }
86 
87   bool isSentinel() const {
88     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
89            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
90   }
91 
92   static bool canHandle(Instruction *Inst) {
93     // This can only handle non-void readnone functions.
94     if (CallInst *CI = dyn_cast<CallInst>(Inst))
95       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
96     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
97            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
98            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
99            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
100            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
101   }
102 };
103 
104 } // end anonymous namespace
105 
106 namespace llvm {
107 
108 template <> struct DenseMapInfo<SimpleValue> {
109   static inline SimpleValue getEmptyKey() {
110     return DenseMapInfo<Instruction *>::getEmptyKey();
111   }
112 
113   static inline SimpleValue getTombstoneKey() {
114     return DenseMapInfo<Instruction *>::getTombstoneKey();
115   }
116 
117   static unsigned getHashValue(SimpleValue Val);
118   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
119 };
120 
121 } // end namespace llvm
122 
123 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
124   Instruction *Inst = Val.Inst;
125   // Hash in all of the operands as pointers.
126   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
127     Value *LHS = BinOp->getOperand(0);
128     Value *RHS = BinOp->getOperand(1);
129     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
130       std::swap(LHS, RHS);
131 
132     return hash_combine(BinOp->getOpcode(), LHS, RHS);
133   }
134 
135   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
136     Value *LHS = CI->getOperand(0);
137     Value *RHS = CI->getOperand(1);
138     CmpInst::Predicate Pred = CI->getPredicate();
139     if (Inst->getOperand(0) > Inst->getOperand(1)) {
140       std::swap(LHS, RHS);
141       Pred = CI->getSwappedPredicate();
142     }
143     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
144   }
145 
146   // Hash min/max/abs (cmp + select) to allow for commuted operands.
147   // Min/max may also have non-canonical compare predicate (eg, the compare for
148   // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
149   // compare.
150   Value *A, *B;
151   SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor;
152   // TODO: We should also detect FP min/max.
153   if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
154       SPF == SPF_UMIN || SPF == SPF_UMAX ||
155       SPF == SPF_ABS || SPF == SPF_NABS) {
156     if (A > B)
157       std::swap(A, B);
158     return hash_combine(Inst->getOpcode(), SPF, A, B);
159   }
160 
161   if (CastInst *CI = dyn_cast<CastInst>(Inst))
162     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
163 
164   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
165     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
166                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
167 
168   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
169     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
170                         IVI->getOperand(1),
171                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
172 
173   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
174           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
175           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
176           isa<ShuffleVectorInst>(Inst)) &&
177          "Invalid/unknown instruction");
178 
179   // Mix in the opcode.
180   return hash_combine(
181       Inst->getOpcode(),
182       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
183 }
184 
185 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
186   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
187 
188   if (LHS.isSentinel() || RHS.isSentinel())
189     return LHSI == RHSI;
190 
191   if (LHSI->getOpcode() != RHSI->getOpcode())
192     return false;
193   if (LHSI->isIdenticalToWhenDefined(RHSI))
194     return true;
195 
196   // If we're not strictly identical, we still might be a commutable instruction
197   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
198     if (!LHSBinOp->isCommutative())
199       return false;
200 
201     assert(isa<BinaryOperator>(RHSI) &&
202            "same opcode, but different instruction type?");
203     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
204 
205     // Commuted equality
206     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
207            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
208   }
209   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
210     assert(isa<CmpInst>(RHSI) &&
211            "same opcode, but different instruction type?");
212     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
213     // Commuted equality
214     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
215            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
216            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
217   }
218 
219   // Min/max/abs can occur with commuted operands, non-canonical predicates,
220   // and/or non-canonical operands.
221   Value *LHSA, *LHSB;
222   SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor;
223   // TODO: We should also detect FP min/max.
224   if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
225       LSPF == SPF_UMIN || LSPF == SPF_UMAX ||
226       LSPF == SPF_ABS || LSPF == SPF_NABS) {
227     Value *RHSA, *RHSB;
228     SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor;
229     return (LSPF == RSPF && ((LHSA == RHSA && LHSB == RHSB) ||
230                              (LHSA == RHSB && LHSB == RHSA)));
231   }
232 
233   return false;
234 }
235 
236 //===----------------------------------------------------------------------===//
237 // CallValue
238 //===----------------------------------------------------------------------===//
239 
240 namespace {
241 
242 /// \brief Struct representing the available call values in the scoped hash
243 /// table.
244 struct CallValue {
245   Instruction *Inst;
246 
247   CallValue(Instruction *I) : Inst(I) {
248     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
249   }
250 
251   bool isSentinel() const {
252     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
253            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
254   }
255 
256   static bool canHandle(Instruction *Inst) {
257     // Don't value number anything that returns void.
258     if (Inst->getType()->isVoidTy())
259       return false;
260 
261     CallInst *CI = dyn_cast<CallInst>(Inst);
262     if (!CI || !CI->onlyReadsMemory())
263       return false;
264     return true;
265   }
266 };
267 
268 } // end anonymous namespace
269 
270 namespace llvm {
271 
272 template <> struct DenseMapInfo<CallValue> {
273   static inline CallValue getEmptyKey() {
274     return DenseMapInfo<Instruction *>::getEmptyKey();
275   }
276 
277   static inline CallValue getTombstoneKey() {
278     return DenseMapInfo<Instruction *>::getTombstoneKey();
279   }
280 
281   static unsigned getHashValue(CallValue Val);
282   static bool isEqual(CallValue LHS, CallValue RHS);
283 };
284 
285 } // end namespace llvm
286 
287 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
288   Instruction *Inst = Val.Inst;
289   // Hash all of the operands as pointers and mix in the opcode.
290   return hash_combine(
291       Inst->getOpcode(),
292       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
293 }
294 
295 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
296   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
297   if (LHS.isSentinel() || RHS.isSentinel())
298     return LHSI == RHSI;
299   return LHSI->isIdenticalTo(RHSI);
300 }
301 
302 //===----------------------------------------------------------------------===//
303 // EarlyCSE implementation
304 //===----------------------------------------------------------------------===//
305 
306 namespace {
307 
308 /// \brief A simple and fast domtree-based CSE pass.
309 ///
310 /// This pass does a simple depth-first walk over the dominator tree,
311 /// eliminating trivially redundant instructions and using instsimplify to
312 /// canonicalize things as it goes. It is intended to be fast and catch obvious
313 /// cases so that instcombine and other passes are more effective. It is
314 /// expected that a later pass of GVN will catch the interesting/hard cases.
315 class EarlyCSE {
316 public:
317   const TargetLibraryInfo &TLI;
318   const TargetTransformInfo &TTI;
319   DominatorTree &DT;
320   AssumptionCache &AC;
321   const SimplifyQuery SQ;
322   MemorySSA *MSSA;
323   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
324 
325   using AllocatorTy =
326       RecyclingAllocator<BumpPtrAllocator,
327                          ScopedHashTableVal<SimpleValue, Value *>>;
328   using ScopedHTType =
329       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
330                       AllocatorTy>;
331 
332   /// \brief A scoped hash table of the current values of all of our simple
333   /// scalar expressions.
334   ///
335   /// As we walk down the domtree, we look to see if instructions are in this:
336   /// if so, we replace them with what we find, otherwise we insert them so
337   /// that dominated values can succeed in their lookup.
338   ScopedHTType AvailableValues;
339 
340   /// A scoped hash table of the current values of previously encounted memory
341   /// locations.
342   ///
343   /// This allows us to get efficient access to dominating loads or stores when
344   /// we have a fully redundant load.  In addition to the most recent load, we
345   /// keep track of a generation count of the read, which is compared against
346   /// the current generation count.  The current generation count is incremented
347   /// after every possibly writing memory operation, which ensures that we only
348   /// CSE loads with other loads that have no intervening store.  Ordering
349   /// events (such as fences or atomic instructions) increment the generation
350   /// count as well; essentially, we model these as writes to all possible
351   /// locations.  Note that atomic and/or volatile loads and stores can be
352   /// present the table; it is the responsibility of the consumer to inspect
353   /// the atomicity/volatility if needed.
354   struct LoadValue {
355     Instruction *DefInst = nullptr;
356     unsigned Generation = 0;
357     int MatchingId = -1;
358     bool IsAtomic = false;
359     bool IsInvariant = false;
360 
361     LoadValue() = default;
362     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
363               bool IsAtomic, bool IsInvariant)
364         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
365           IsAtomic(IsAtomic), IsInvariant(IsInvariant) {}
366   };
367 
368   using LoadMapAllocator =
369       RecyclingAllocator<BumpPtrAllocator,
370                          ScopedHashTableVal<Value *, LoadValue>>;
371   using LoadHTType =
372       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
373                       LoadMapAllocator>;
374 
375   LoadHTType AvailableLoads;
376 
377   /// \brief A scoped hash table of the current values of read-only call
378   /// values.
379   ///
380   /// It uses the same generation count as loads.
381   using CallHTType =
382       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
383   CallHTType AvailableCalls;
384 
385   /// \brief This is the current generation of the memory value.
386   unsigned CurrentGeneration = 0;
387 
388   /// \brief Set up the EarlyCSE runner for a particular function.
389   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
390            const TargetTransformInfo &TTI, DominatorTree &DT,
391            AssumptionCache &AC, MemorySSA *MSSA)
392       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
393         MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
394 
395   bool run();
396 
397 private:
398   // Almost a POD, but needs to call the constructors for the scoped hash
399   // tables so that a new scope gets pushed on. These are RAII so that the
400   // scope gets popped when the NodeScope is destroyed.
401   class NodeScope {
402   public:
403     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
404               CallHTType &AvailableCalls)
405         : Scope(AvailableValues), LoadScope(AvailableLoads),
406           CallScope(AvailableCalls) {}
407     NodeScope(const NodeScope &) = delete;
408     NodeScope &operator=(const NodeScope &) = delete;
409 
410   private:
411     ScopedHTType::ScopeTy Scope;
412     LoadHTType::ScopeTy LoadScope;
413     CallHTType::ScopeTy CallScope;
414   };
415 
416   // Contains all the needed information to create a stack for doing a depth
417   // first traversal of the tree. This includes scopes for values, loads, and
418   // calls as well as the generation. There is a child iterator so that the
419   // children do not need to be store separately.
420   class StackNode {
421   public:
422     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
423               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
424               DomTreeNode::iterator child, DomTreeNode::iterator end)
425         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
426           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls)
427           {}
428     StackNode(const StackNode &) = delete;
429     StackNode &operator=(const StackNode &) = delete;
430 
431     // Accessors.
432     unsigned currentGeneration() { return CurrentGeneration; }
433     unsigned childGeneration() { return ChildGeneration; }
434     void childGeneration(unsigned generation) { ChildGeneration = generation; }
435     DomTreeNode *node() { return Node; }
436     DomTreeNode::iterator childIter() { return ChildIter; }
437 
438     DomTreeNode *nextChild() {
439       DomTreeNode *child = *ChildIter;
440       ++ChildIter;
441       return child;
442     }
443 
444     DomTreeNode::iterator end() { return EndIter; }
445     bool isProcessed() { return Processed; }
446     void process() { Processed = true; }
447 
448   private:
449     unsigned CurrentGeneration;
450     unsigned ChildGeneration;
451     DomTreeNode *Node;
452     DomTreeNode::iterator ChildIter;
453     DomTreeNode::iterator EndIter;
454     NodeScope Scopes;
455     bool Processed = false;
456   };
457 
458   /// \brief Wrapper class to handle memory instructions, including loads,
459   /// stores and intrinsic loads and stores defined by the target.
460   class ParseMemoryInst {
461   public:
462     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
463       : Inst(Inst) {
464       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
465         if (TTI.getTgtMemIntrinsic(II, Info))
466           IsTargetMemInst = true;
467     }
468 
469     bool isLoad() const {
470       if (IsTargetMemInst) return Info.ReadMem;
471       return isa<LoadInst>(Inst);
472     }
473 
474     bool isStore() const {
475       if (IsTargetMemInst) return Info.WriteMem;
476       return isa<StoreInst>(Inst);
477     }
478 
479     bool isAtomic() const {
480       if (IsTargetMemInst)
481         return Info.Ordering != AtomicOrdering::NotAtomic;
482       return Inst->isAtomic();
483     }
484 
485     bool isUnordered() const {
486       if (IsTargetMemInst)
487         return Info.isUnordered();
488 
489       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
490         return LI->isUnordered();
491       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
492         return SI->isUnordered();
493       }
494       // Conservative answer
495       return !Inst->isAtomic();
496     }
497 
498     bool isVolatile() const {
499       if (IsTargetMemInst)
500         return Info.IsVolatile;
501 
502       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
503         return LI->isVolatile();
504       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
505         return SI->isVolatile();
506       }
507       // Conservative answer
508       return true;
509     }
510 
511     bool isInvariantLoad() const {
512       if (auto *LI = dyn_cast<LoadInst>(Inst))
513         return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
514       return false;
515     }
516 
517     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
518       return (getPointerOperand() == Inst.getPointerOperand() &&
519               getMatchingId() == Inst.getMatchingId());
520     }
521 
522     bool isValid() const { return getPointerOperand() != nullptr; }
523 
524     // For regular (non-intrinsic) loads/stores, this is set to -1. For
525     // intrinsic loads/stores, the id is retrieved from the corresponding
526     // field in the MemIntrinsicInfo structure.  That field contains
527     // non-negative values only.
528     int getMatchingId() const {
529       if (IsTargetMemInst) return Info.MatchingId;
530       return -1;
531     }
532 
533     Value *getPointerOperand() const {
534       if (IsTargetMemInst) return Info.PtrVal;
535       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
536         return LI->getPointerOperand();
537       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
538         return SI->getPointerOperand();
539       }
540       return nullptr;
541     }
542 
543     bool mayReadFromMemory() const {
544       if (IsTargetMemInst) return Info.ReadMem;
545       return Inst->mayReadFromMemory();
546     }
547 
548     bool mayWriteToMemory() const {
549       if (IsTargetMemInst) return Info.WriteMem;
550       return Inst->mayWriteToMemory();
551     }
552 
553   private:
554     bool IsTargetMemInst = false;
555     MemIntrinsicInfo Info;
556     Instruction *Inst;
557   };
558 
559   bool processNode(DomTreeNode *Node);
560 
561   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
562     if (auto *LI = dyn_cast<LoadInst>(Inst))
563       return LI;
564     if (auto *SI = dyn_cast<StoreInst>(Inst))
565       return SI->getValueOperand();
566     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
567     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
568                                                  ExpectedType);
569   }
570 
571   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
572                            Instruction *EarlierInst, Instruction *LaterInst);
573 
574   void removeMSSA(Instruction *Inst) {
575     if (!MSSA)
576       return;
577     // Removing a store here can leave MemorySSA in an unoptimized state by
578     // creating MemoryPhis that have identical arguments and by creating
579     // MemoryUses whose defining access is not an actual clobber.  We handle the
580     // phi case eagerly here.  The non-optimized MemoryUse case is lazily
581     // updated by MemorySSA getClobberingMemoryAccess.
582     if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) {
583       // Optimize MemoryPhi nodes that may become redundant by having all the
584       // same input values once MA is removed.
585       SmallSetVector<MemoryPhi *, 4> PhisToCheck;
586       SmallVector<MemoryAccess *, 8> WorkQueue;
587       WorkQueue.push_back(MA);
588       // Process MemoryPhi nodes in FIFO order using a ever-growing vector since
589       // we shouldn't be processing that many phis and this will avoid an
590       // allocation in almost all cases.
591       for (unsigned I = 0; I < WorkQueue.size(); ++I) {
592         MemoryAccess *WI = WorkQueue[I];
593 
594         for (auto *U : WI->users())
595           if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U))
596             PhisToCheck.insert(MP);
597 
598         MSSAUpdater->removeMemoryAccess(WI);
599 
600         for (MemoryPhi *MP : PhisToCheck) {
601           MemoryAccess *FirstIn = MP->getIncomingValue(0);
602           if (llvm::all_of(MP->incoming_values(),
603                            [=](Use &In) { return In == FirstIn; }))
604             WorkQueue.push_back(MP);
605         }
606         PhisToCheck.clear();
607       }
608     }
609   }
610 };
611 
612 } // end anonymous namespace
613 
614 /// Determine if the memory referenced by LaterInst is from the same heap
615 /// version as EarlierInst.
616 /// This is currently called in two scenarios:
617 ///
618 ///   load p
619 ///   ...
620 ///   load p
621 ///
622 /// and
623 ///
624 ///   x = load p
625 ///   ...
626 ///   store x, p
627 ///
628 /// in both cases we want to verify that there are no possible writes to the
629 /// memory referenced by p between the earlier and later instruction.
630 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
631                                    unsigned LaterGeneration,
632                                    Instruction *EarlierInst,
633                                    Instruction *LaterInst) {
634   // Check the simple memory generation tracking first.
635   if (EarlierGeneration == LaterGeneration)
636     return true;
637 
638   if (!MSSA)
639     return false;
640 
641   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
642   // read/write memory, then we can safely return true here.
643   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
644   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
645   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
646   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
647   // with the default optimization pipeline.
648   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
649   if (!EarlierMA)
650     return true;
651   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
652   if (!LaterMA)
653     return true;
654 
655   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
656   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
657   // EarlierInst and LaterInst and neither can any other write that potentially
658   // clobbers LaterInst.
659   MemoryAccess *LaterDef =
660       MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
661   return MSSA->dominates(LaterDef, EarlierMA);
662 }
663 
664 bool EarlyCSE::processNode(DomTreeNode *Node) {
665   bool Changed = false;
666   BasicBlock *BB = Node->getBlock();
667 
668   // If this block has a single predecessor, then the predecessor is the parent
669   // of the domtree node and all of the live out memory values are still current
670   // in this block.  If this block has multiple predecessors, then they could
671   // have invalidated the live-out memory values of our parent value.  For now,
672   // just be conservative and invalidate memory if this block has multiple
673   // predecessors.
674   if (!BB->getSinglePredecessor())
675     ++CurrentGeneration;
676 
677   // If this node has a single predecessor which ends in a conditional branch,
678   // we can infer the value of the branch condition given that we took this
679   // path.  We need the single predecessor to ensure there's not another path
680   // which reaches this block where the condition might hold a different
681   // value.  Since we're adding this to the scoped hash table (like any other
682   // def), it will have been popped if we encounter a future merge block.
683   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
684     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
685     if (BI && BI->isConditional()) {
686       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
687       if (CondInst && SimpleValue::canHandle(CondInst)) {
688         assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
689         auto *TorF = (BI->getSuccessor(0) == BB)
690                          ? ConstantInt::getTrue(BB->getContext())
691                          : ConstantInt::getFalse(BB->getContext());
692         AvailableValues.insert(CondInst, TorF);
693         DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
694                      << CondInst->getName() << "' as " << *TorF << " in "
695                      << BB->getName() << "\n");
696         // Replace all dominated uses with the known value.
697         if (unsigned Count = replaceDominatedUsesWith(
698                 CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) {
699           Changed = true;
700           NumCSECVP += Count;
701         }
702       }
703     }
704   }
705 
706   /// LastStore - Keep track of the last non-volatile store that we saw... for
707   /// as long as there in no instruction that reads memory.  If we see a store
708   /// to the same location, we delete the dead store.  This zaps trivial dead
709   /// stores which can occur in bitfield code among other things.
710   Instruction *LastStore = nullptr;
711 
712   // See if any instructions in the block can be eliminated.  If so, do it.  If
713   // not, add them to AvailableValues.
714   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
715     Instruction *Inst = &*I++;
716 
717     // Dead instructions should just be removed.
718     if (isInstructionTriviallyDead(Inst, &TLI)) {
719       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
720       removeMSSA(Inst);
721       Inst->eraseFromParent();
722       Changed = true;
723       ++NumSimplify;
724       continue;
725     }
726 
727     // Skip assume intrinsics, they don't really have side effects (although
728     // they're marked as such to ensure preservation of control dependencies),
729     // and this pass will not bother with its removal. However, we should mark
730     // its condition as true for all dominated blocks.
731     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
732       auto *CondI =
733           dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
734       if (CondI && SimpleValue::canHandle(CondI)) {
735         DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst << '\n');
736         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
737       } else
738         DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
739       continue;
740     }
741 
742     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
743     if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
744       DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
745       continue;
746     }
747 
748     // Skip invariant.start intrinsics since they only read memory, and we can
749     // forward values across it. Also, we dont need to consume the last store
750     // since the semantics of invariant.start allow us to perform DSE of the
751     // last store, if there was a store following invariant.start. Consider:
752     //
753     // store 30, i8* p
754     // invariant.start(p)
755     // store 40, i8* p
756     // We can DSE the store to 30, since the store 40 to invariant location p
757     // causes undefined behaviour.
758     if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>()))
759       continue;
760 
761     if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) {
762       if (auto *CondI =
763               dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
764         if (SimpleValue::canHandle(CondI)) {
765           // Do we already know the actual value of this condition?
766           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
767             // Is the condition known to be true?
768             if (isa<ConstantInt>(KnownCond) &&
769                 cast<ConstantInt>(KnownCond)->isOne()) {
770               DEBUG(dbgs() << "EarlyCSE removing guard: " << *Inst << '\n');
771               removeMSSA(Inst);
772               Inst->eraseFromParent();
773               Changed = true;
774               continue;
775             } else
776               // Use the known value if it wasn't true.
777               cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
778           }
779           // The condition we're on guarding here is true for all dominated
780           // locations.
781           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
782         }
783       }
784 
785       // Guard intrinsics read all memory, but don't write any memory.
786       // Accordingly, don't update the generation but consume the last store (to
787       // avoid an incorrect DSE).
788       LastStore = nullptr;
789       continue;
790     }
791 
792     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
793     // its simpler value.
794     if (Value *V = SimplifyInstruction(Inst, SQ)) {
795       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
796       bool Killed = false;
797       if (!Inst->use_empty()) {
798         Inst->replaceAllUsesWith(V);
799         Changed = true;
800       }
801       if (isInstructionTriviallyDead(Inst, &TLI)) {
802         removeMSSA(Inst);
803         Inst->eraseFromParent();
804         Changed = true;
805         Killed = true;
806       }
807       if (Changed)
808         ++NumSimplify;
809       if (Killed)
810         continue;
811     }
812 
813     // If this is a simple instruction that we can value number, process it.
814     if (SimpleValue::canHandle(Inst)) {
815       // See if the instruction has an available value.  If so, use it.
816       if (Value *V = AvailableValues.lookup(Inst)) {
817         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
818         if (auto *I = dyn_cast<Instruction>(V))
819           I->andIRFlags(Inst);
820         Inst->replaceAllUsesWith(V);
821         removeMSSA(Inst);
822         Inst->eraseFromParent();
823         Changed = true;
824         ++NumCSE;
825         continue;
826       }
827 
828       // Otherwise, just remember that this value is available.
829       AvailableValues.insert(Inst, Inst);
830       continue;
831     }
832 
833     ParseMemoryInst MemInst(Inst, TTI);
834     // If this is a non-volatile load, process it.
835     if (MemInst.isValid() && MemInst.isLoad()) {
836       // (conservatively) we can't peak past the ordering implied by this
837       // operation, but we can add this load to our set of available values
838       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
839         LastStore = nullptr;
840         ++CurrentGeneration;
841       }
842 
843       // If we have an available version of this load, and if it is the right
844       // generation or the load is known to be from an invariant location,
845       // replace this instruction.
846       //
847       // If either the dominating load or the current load are invariant, then
848       // we can assume the current load loads the same value as the dominating
849       // load.
850       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
851       if (InVal.DefInst != nullptr &&
852           InVal.MatchingId == MemInst.getMatchingId() &&
853           // We don't yet handle removing loads with ordering of any kind.
854           !MemInst.isVolatile() && MemInst.isUnordered() &&
855           // We can't replace an atomic load with one which isn't also atomic.
856           InVal.IsAtomic >= MemInst.isAtomic() &&
857           (InVal.IsInvariant || MemInst.isInvariantLoad() ||
858            isSameMemGeneration(InVal.Generation, CurrentGeneration,
859                                InVal.DefInst, Inst))) {
860         Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
861         if (Op != nullptr) {
862           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
863                        << "  to: " << *InVal.DefInst << '\n');
864           if (!Inst->use_empty())
865             Inst->replaceAllUsesWith(Op);
866           removeMSSA(Inst);
867           Inst->eraseFromParent();
868           Changed = true;
869           ++NumCSELoad;
870           continue;
871         }
872       }
873 
874       // Otherwise, remember that we have this instruction.
875       AvailableLoads.insert(
876           MemInst.getPointerOperand(),
877           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
878                     MemInst.isAtomic(), MemInst.isInvariantLoad()));
879       LastStore = nullptr;
880       continue;
881     }
882 
883     // If this instruction may read from memory or throw (and potentially read
884     // from memory in the exception handler), forget LastStore.  Load/store
885     // intrinsics will indicate both a read and a write to memory.  The target
886     // may override this (e.g. so that a store intrinsic does not read from
887     // memory, and thus will be treated the same as a regular store for
888     // commoning purposes).
889     if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
890         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
891       LastStore = nullptr;
892 
893     // If this is a read-only call, process it.
894     if (CallValue::canHandle(Inst)) {
895       // If we have an available version of this call, and if it is the right
896       // generation, replace this instruction.
897       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
898       if (InVal.first != nullptr &&
899           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
900                               Inst)) {
901         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
902                      << "  to: " << *InVal.first << '\n');
903         if (!Inst->use_empty())
904           Inst->replaceAllUsesWith(InVal.first);
905         removeMSSA(Inst);
906         Inst->eraseFromParent();
907         Changed = true;
908         ++NumCSECall;
909         continue;
910       }
911 
912       // Otherwise, remember that we have this instruction.
913       AvailableCalls.insert(
914           Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
915       continue;
916     }
917 
918     // A release fence requires that all stores complete before it, but does
919     // not prevent the reordering of following loads 'before' the fence.  As a
920     // result, we don't need to consider it as writing to memory and don't need
921     // to advance the generation.  We do need to prevent DSE across the fence,
922     // but that's handled above.
923     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
924       if (FI->getOrdering() == AtomicOrdering::Release) {
925         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
926         continue;
927       }
928 
929     // write back DSE - If we write back the same value we just loaded from
930     // the same location and haven't passed any intervening writes or ordering
931     // operations, we can remove the write.  The primary benefit is in allowing
932     // the available load table to remain valid and value forward past where
933     // the store originally was.
934     if (MemInst.isValid() && MemInst.isStore()) {
935       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
936       if (InVal.DefInst &&
937           InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
938           InVal.MatchingId == MemInst.getMatchingId() &&
939           // We don't yet handle removing stores with ordering of any kind.
940           !MemInst.isVolatile() && MemInst.isUnordered() &&
941           isSameMemGeneration(InVal.Generation, CurrentGeneration,
942                               InVal.DefInst, Inst)) {
943         // It is okay to have a LastStore to a different pointer here if MemorySSA
944         // tells us that the load and store are from the same memory generation.
945         // In that case, LastStore should keep its present value since we're
946         // removing the current store.
947         assert((!LastStore ||
948                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
949                     MemInst.getPointerOperand() ||
950                 MSSA) &&
951                "can't have an intervening store if not using MemorySSA!");
952         DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
953         removeMSSA(Inst);
954         Inst->eraseFromParent();
955         Changed = true;
956         ++NumDSE;
957         // We can avoid incrementing the generation count since we were able
958         // to eliminate this store.
959         continue;
960       }
961     }
962 
963     // Okay, this isn't something we can CSE at all.  Check to see if it is
964     // something that could modify memory.  If so, our available memory values
965     // cannot be used so bump the generation count.
966     if (Inst->mayWriteToMemory()) {
967       ++CurrentGeneration;
968 
969       if (MemInst.isValid() && MemInst.isStore()) {
970         // We do a trivial form of DSE if there are two stores to the same
971         // location with no intervening loads.  Delete the earlier store.
972         // At the moment, we don't remove ordered stores, but do remove
973         // unordered atomic stores.  There's no special requirement (for
974         // unordered atomics) about removing atomic stores only in favor of
975         // other atomic stores since we we're going to execute the non-atomic
976         // one anyway and the atomic one might never have become visible.
977         if (LastStore) {
978           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
979           assert(LastStoreMemInst.isUnordered() &&
980                  !LastStoreMemInst.isVolatile() &&
981                  "Violated invariant");
982           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
983             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
984                          << "  due to: " << *Inst << '\n');
985             removeMSSA(LastStore);
986             LastStore->eraseFromParent();
987             Changed = true;
988             ++NumDSE;
989             LastStore = nullptr;
990           }
991           // fallthrough - we can exploit information about this store
992         }
993 
994         // Okay, we just invalidated anything we knew about loaded values.  Try
995         // to salvage *something* by remembering that the stored value is a live
996         // version of the pointer.  It is safe to forward from volatile stores
997         // to non-volatile loads, so we don't have to check for volatility of
998         // the store.
999         AvailableLoads.insert(
1000             MemInst.getPointerOperand(),
1001             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1002                       MemInst.isAtomic(), /*IsInvariant=*/false));
1003 
1004         // Remember that this was the last unordered store we saw for DSE. We
1005         // don't yet handle DSE on ordered or volatile stores since we don't
1006         // have a good way to model the ordering requirement for following
1007         // passes  once the store is removed.  We could insert a fence, but
1008         // since fences are slightly stronger than stores in their ordering,
1009         // it's not clear this is a profitable transform. Another option would
1010         // be to merge the ordering with that of the post dominating store.
1011         if (MemInst.isUnordered() && !MemInst.isVolatile())
1012           LastStore = Inst;
1013         else
1014           LastStore = nullptr;
1015       }
1016     }
1017   }
1018 
1019   return Changed;
1020 }
1021 
1022 bool EarlyCSE::run() {
1023   // Note, deque is being used here because there is significant performance
1024   // gains over vector when the container becomes very large due to the
1025   // specific access patterns. For more information see the mailing list
1026   // discussion on this:
1027   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1028   std::deque<StackNode *> nodesToProcess;
1029 
1030   bool Changed = false;
1031 
1032   // Process the root node.
1033   nodesToProcess.push_back(new StackNode(
1034       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
1035       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
1036 
1037   // Save the current generation.
1038   unsigned LiveOutGeneration = CurrentGeneration;
1039 
1040   // Process the stack.
1041   while (!nodesToProcess.empty()) {
1042     // Grab the first item off the stack. Set the current generation, remove
1043     // the node from the stack, and process it.
1044     StackNode *NodeToProcess = nodesToProcess.back();
1045 
1046     // Initialize class members.
1047     CurrentGeneration = NodeToProcess->currentGeneration();
1048 
1049     // Check if the node needs to be processed.
1050     if (!NodeToProcess->isProcessed()) {
1051       // Process the node.
1052       Changed |= processNode(NodeToProcess->node());
1053       NodeToProcess->childGeneration(CurrentGeneration);
1054       NodeToProcess->process();
1055     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1056       // Push the next child onto the stack.
1057       DomTreeNode *child = NodeToProcess->nextChild();
1058       nodesToProcess.push_back(
1059           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
1060                         NodeToProcess->childGeneration(), child, child->begin(),
1061                         child->end()));
1062     } else {
1063       // It has been processed, and there are no more children to process,
1064       // so delete it and pop it off the stack.
1065       delete NodeToProcess;
1066       nodesToProcess.pop_back();
1067     }
1068   } // while (!nodes...)
1069 
1070   // Reset the current generation.
1071   CurrentGeneration = LiveOutGeneration;
1072 
1073   return Changed;
1074 }
1075 
1076 PreservedAnalyses EarlyCSEPass::run(Function &F,
1077                                     FunctionAnalysisManager &AM) {
1078   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1079   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1080   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1081   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1082   auto *MSSA =
1083       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1084 
1085   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1086 
1087   if (!CSE.run())
1088     return PreservedAnalyses::all();
1089 
1090   PreservedAnalyses PA;
1091   PA.preserveSet<CFGAnalyses>();
1092   PA.preserve<GlobalsAA>();
1093   if (UseMemorySSA)
1094     PA.preserve<MemorySSAAnalysis>();
1095   return PA;
1096 }
1097 
1098 namespace {
1099 
1100 /// \brief A simple and fast domtree-based CSE pass.
1101 ///
1102 /// This pass does a simple depth-first walk over the dominator tree,
1103 /// eliminating trivially redundant instructions and using instsimplify to
1104 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1105 /// cases so that instcombine and other passes are more effective. It is
1106 /// expected that a later pass of GVN will catch the interesting/hard cases.
1107 template<bool UseMemorySSA>
1108 class EarlyCSELegacyCommonPass : public FunctionPass {
1109 public:
1110   static char ID;
1111 
1112   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1113     if (UseMemorySSA)
1114       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1115     else
1116       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1117   }
1118 
1119   bool runOnFunction(Function &F) override {
1120     if (skipFunction(F))
1121       return false;
1122 
1123     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1124     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1125     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1126     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1127     auto *MSSA =
1128         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1129 
1130     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1131 
1132     return CSE.run();
1133   }
1134 
1135   void getAnalysisUsage(AnalysisUsage &AU) const override {
1136     AU.addRequired<AssumptionCacheTracker>();
1137     AU.addRequired<DominatorTreeWrapperPass>();
1138     AU.addRequired<TargetLibraryInfoWrapperPass>();
1139     AU.addRequired<TargetTransformInfoWrapperPass>();
1140     if (UseMemorySSA) {
1141       AU.addRequired<MemorySSAWrapperPass>();
1142       AU.addPreserved<MemorySSAWrapperPass>();
1143     }
1144     AU.addPreserved<GlobalsAAWrapperPass>();
1145     AU.setPreservesCFG();
1146   }
1147 };
1148 
1149 } // end anonymous namespace
1150 
1151 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1152 
1153 template<>
1154 char EarlyCSELegacyPass::ID = 0;
1155 
1156 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1157                       false)
1158 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1159 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1161 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1162 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1163 
1164 using EarlyCSEMemSSALegacyPass =
1165     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1166 
1167 template<>
1168 char EarlyCSEMemSSALegacyPass::ID = 0;
1169 
1170 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1171   if (UseMemorySSA)
1172     return new EarlyCSEMemSSALegacyPass();
1173   else
1174     return new EarlyCSELegacyPass();
1175 }
1176 
1177 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1178                       "Early CSE w/ MemorySSA", false, false)
1179 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1180 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1182 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1183 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1184 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1185                     "Early CSE w/ MemorySSA", false, false)
1186