1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/MemorySSA.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/TargetTransformInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/RecyclingAllocator.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Transforms/Scalar.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include <deque> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "early-cse" 42 43 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 44 STATISTIC(NumCSE, "Number of instructions CSE'd"); 45 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 46 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 47 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 48 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 49 50 //===----------------------------------------------------------------------===// 51 // SimpleValue 52 //===----------------------------------------------------------------------===// 53 54 namespace { 55 /// \brief Struct representing the available values in the scoped hash table. 56 struct SimpleValue { 57 Instruction *Inst; 58 59 SimpleValue(Instruction *I) : Inst(I) { 60 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 61 } 62 63 bool isSentinel() const { 64 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 65 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 66 } 67 68 static bool canHandle(Instruction *Inst) { 69 // This can only handle non-void readnone functions. 70 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 71 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 72 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 73 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 74 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 75 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 76 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 77 } 78 }; 79 } 80 81 namespace llvm { 82 template <> struct DenseMapInfo<SimpleValue> { 83 static inline SimpleValue getEmptyKey() { 84 return DenseMapInfo<Instruction *>::getEmptyKey(); 85 } 86 static inline SimpleValue getTombstoneKey() { 87 return DenseMapInfo<Instruction *>::getTombstoneKey(); 88 } 89 static unsigned getHashValue(SimpleValue Val); 90 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 91 }; 92 } 93 94 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 95 Instruction *Inst = Val.Inst; 96 // Hash in all of the operands as pointers. 97 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 98 Value *LHS = BinOp->getOperand(0); 99 Value *RHS = BinOp->getOperand(1); 100 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 101 std::swap(LHS, RHS); 102 103 return hash_combine(BinOp->getOpcode(), LHS, RHS); 104 } 105 106 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 107 Value *LHS = CI->getOperand(0); 108 Value *RHS = CI->getOperand(1); 109 CmpInst::Predicate Pred = CI->getPredicate(); 110 if (Inst->getOperand(0) > Inst->getOperand(1)) { 111 std::swap(LHS, RHS); 112 Pred = CI->getSwappedPredicate(); 113 } 114 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 115 } 116 117 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 118 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 119 120 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 121 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 122 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 123 124 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 125 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 126 IVI->getOperand(1), 127 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 128 129 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 130 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 131 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 132 isa<ShuffleVectorInst>(Inst)) && 133 "Invalid/unknown instruction"); 134 135 // Mix in the opcode. 136 return hash_combine( 137 Inst->getOpcode(), 138 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 139 } 140 141 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 142 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 143 144 if (LHS.isSentinel() || RHS.isSentinel()) 145 return LHSI == RHSI; 146 147 if (LHSI->getOpcode() != RHSI->getOpcode()) 148 return false; 149 if (LHSI->isIdenticalToWhenDefined(RHSI)) 150 return true; 151 152 // If we're not strictly identical, we still might be a commutable instruction 153 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 154 if (!LHSBinOp->isCommutative()) 155 return false; 156 157 assert(isa<BinaryOperator>(RHSI) && 158 "same opcode, but different instruction type?"); 159 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 160 161 // Commuted equality 162 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 163 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 164 } 165 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 166 assert(isa<CmpInst>(RHSI) && 167 "same opcode, but different instruction type?"); 168 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 169 // Commuted equality 170 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 171 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 172 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 173 } 174 175 return false; 176 } 177 178 //===----------------------------------------------------------------------===// 179 // CallValue 180 //===----------------------------------------------------------------------===// 181 182 namespace { 183 /// \brief Struct representing the available call values in the scoped hash 184 /// table. 185 struct CallValue { 186 Instruction *Inst; 187 188 CallValue(Instruction *I) : Inst(I) { 189 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 190 } 191 192 bool isSentinel() const { 193 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 194 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 195 } 196 197 static bool canHandle(Instruction *Inst) { 198 // Don't value number anything that returns void. 199 if (Inst->getType()->isVoidTy()) 200 return false; 201 202 CallInst *CI = dyn_cast<CallInst>(Inst); 203 if (!CI || !CI->onlyReadsMemory()) 204 return false; 205 return true; 206 } 207 }; 208 } 209 210 namespace llvm { 211 template <> struct DenseMapInfo<CallValue> { 212 static inline CallValue getEmptyKey() { 213 return DenseMapInfo<Instruction *>::getEmptyKey(); 214 } 215 static inline CallValue getTombstoneKey() { 216 return DenseMapInfo<Instruction *>::getTombstoneKey(); 217 } 218 static unsigned getHashValue(CallValue Val); 219 static bool isEqual(CallValue LHS, CallValue RHS); 220 }; 221 } 222 223 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 224 Instruction *Inst = Val.Inst; 225 // Hash all of the operands as pointers and mix in the opcode. 226 return hash_combine( 227 Inst->getOpcode(), 228 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 229 } 230 231 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 232 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 233 if (LHS.isSentinel() || RHS.isSentinel()) 234 return LHSI == RHSI; 235 return LHSI->isIdenticalTo(RHSI); 236 } 237 238 //===----------------------------------------------------------------------===// 239 // EarlyCSE implementation 240 //===----------------------------------------------------------------------===// 241 242 namespace { 243 /// \brief A simple and fast domtree-based CSE pass. 244 /// 245 /// This pass does a simple depth-first walk over the dominator tree, 246 /// eliminating trivially redundant instructions and using instsimplify to 247 /// canonicalize things as it goes. It is intended to be fast and catch obvious 248 /// cases so that instcombine and other passes are more effective. It is 249 /// expected that a later pass of GVN will catch the interesting/hard cases. 250 class EarlyCSE { 251 public: 252 const TargetLibraryInfo &TLI; 253 const TargetTransformInfo &TTI; 254 DominatorTree &DT; 255 AssumptionCache &AC; 256 MemorySSA *MSSA; 257 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 258 typedef RecyclingAllocator< 259 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 260 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 261 AllocatorTy> ScopedHTType; 262 263 /// \brief A scoped hash table of the current values of all of our simple 264 /// scalar expressions. 265 /// 266 /// As we walk down the domtree, we look to see if instructions are in this: 267 /// if so, we replace them with what we find, otherwise we insert them so 268 /// that dominated values can succeed in their lookup. 269 ScopedHTType AvailableValues; 270 271 /// A scoped hash table of the current values of previously encounted memory 272 /// locations. 273 /// 274 /// This allows us to get efficient access to dominating loads or stores when 275 /// we have a fully redundant load. In addition to the most recent load, we 276 /// keep track of a generation count of the read, which is compared against 277 /// the current generation count. The current generation count is incremented 278 /// after every possibly writing memory operation, which ensures that we only 279 /// CSE loads with other loads that have no intervening store. Ordering 280 /// events (such as fences or atomic instructions) increment the generation 281 /// count as well; essentially, we model these as writes to all possible 282 /// locations. Note that atomic and/or volatile loads and stores can be 283 /// present the table; it is the responsibility of the consumer to inspect 284 /// the atomicity/volatility if needed. 285 struct LoadValue { 286 Instruction *DefInst; 287 unsigned Generation; 288 int MatchingId; 289 bool IsAtomic; 290 bool IsInvariant; 291 LoadValue() 292 : DefInst(nullptr), Generation(0), MatchingId(-1), IsAtomic(false), 293 IsInvariant(false) {} 294 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 295 bool IsAtomic, bool IsInvariant) 296 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 297 IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} 298 }; 299 typedef RecyclingAllocator<BumpPtrAllocator, 300 ScopedHashTableVal<Value *, LoadValue>> 301 LoadMapAllocator; 302 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 303 LoadMapAllocator> LoadHTType; 304 LoadHTType AvailableLoads; 305 306 /// \brief A scoped hash table of the current values of read-only call 307 /// values. 308 /// 309 /// It uses the same generation count as loads. 310 typedef ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>> 311 CallHTType; 312 CallHTType AvailableCalls; 313 314 /// \brief This is the current generation of the memory value. 315 unsigned CurrentGeneration; 316 317 /// \brief Set up the EarlyCSE runner for a particular function. 318 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 319 DominatorTree &DT, AssumptionCache &AC, MemorySSA *MSSA) 320 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), MSSA(MSSA), 321 MSSAUpdater(make_unique<MemorySSAUpdater>(MSSA)), CurrentGeneration(0) { 322 } 323 324 bool run(); 325 326 private: 327 // Almost a POD, but needs to call the constructors for the scoped hash 328 // tables so that a new scope gets pushed on. These are RAII so that the 329 // scope gets popped when the NodeScope is destroyed. 330 class NodeScope { 331 public: 332 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 333 CallHTType &AvailableCalls) 334 : Scope(AvailableValues), LoadScope(AvailableLoads), 335 CallScope(AvailableCalls) {} 336 337 private: 338 NodeScope(const NodeScope &) = delete; 339 void operator=(const NodeScope &) = delete; 340 341 ScopedHTType::ScopeTy Scope; 342 LoadHTType::ScopeTy LoadScope; 343 CallHTType::ScopeTy CallScope; 344 }; 345 346 // Contains all the needed information to create a stack for doing a depth 347 // first traversal of the tree. This includes scopes for values, loads, and 348 // calls as well as the generation. There is a child iterator so that the 349 // children do not need to be store separately. 350 class StackNode { 351 public: 352 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 353 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 354 DomTreeNode::iterator child, DomTreeNode::iterator end) 355 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 356 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 357 Processed(false) {} 358 359 // Accessors. 360 unsigned currentGeneration() { return CurrentGeneration; } 361 unsigned childGeneration() { return ChildGeneration; } 362 void childGeneration(unsigned generation) { ChildGeneration = generation; } 363 DomTreeNode *node() { return Node; } 364 DomTreeNode::iterator childIter() { return ChildIter; } 365 DomTreeNode *nextChild() { 366 DomTreeNode *child = *ChildIter; 367 ++ChildIter; 368 return child; 369 } 370 DomTreeNode::iterator end() { return EndIter; } 371 bool isProcessed() { return Processed; } 372 void process() { Processed = true; } 373 374 private: 375 StackNode(const StackNode &) = delete; 376 void operator=(const StackNode &) = delete; 377 378 // Members. 379 unsigned CurrentGeneration; 380 unsigned ChildGeneration; 381 DomTreeNode *Node; 382 DomTreeNode::iterator ChildIter; 383 DomTreeNode::iterator EndIter; 384 NodeScope Scopes; 385 bool Processed; 386 }; 387 388 /// \brief Wrapper class to handle memory instructions, including loads, 389 /// stores and intrinsic loads and stores defined by the target. 390 class ParseMemoryInst { 391 public: 392 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 393 : IsTargetMemInst(false), Inst(Inst) { 394 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 395 if (TTI.getTgtMemIntrinsic(II, Info)) 396 IsTargetMemInst = true; 397 } 398 bool isLoad() const { 399 if (IsTargetMemInst) return Info.ReadMem; 400 return isa<LoadInst>(Inst); 401 } 402 bool isStore() const { 403 if (IsTargetMemInst) return Info.WriteMem; 404 return isa<StoreInst>(Inst); 405 } 406 bool isAtomic() const { 407 if (IsTargetMemInst) 408 return Info.Ordering != AtomicOrdering::NotAtomic; 409 return Inst->isAtomic(); 410 } 411 bool isUnordered() const { 412 if (IsTargetMemInst) 413 return Info.isUnordered(); 414 415 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 416 return LI->isUnordered(); 417 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 418 return SI->isUnordered(); 419 } 420 // Conservative answer 421 return !Inst->isAtomic(); 422 } 423 424 bool isVolatile() const { 425 if (IsTargetMemInst) 426 return Info.IsVolatile; 427 428 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 429 return LI->isVolatile(); 430 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 431 return SI->isVolatile(); 432 } 433 // Conservative answer 434 return true; 435 } 436 437 bool isInvariantLoad() const { 438 if (auto *LI = dyn_cast<LoadInst>(Inst)) 439 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 440 return false; 441 } 442 443 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 444 return (getPointerOperand() == Inst.getPointerOperand() && 445 getMatchingId() == Inst.getMatchingId()); 446 } 447 bool isValid() const { return getPointerOperand() != nullptr; } 448 449 // For regular (non-intrinsic) loads/stores, this is set to -1. For 450 // intrinsic loads/stores, the id is retrieved from the corresponding 451 // field in the MemIntrinsicInfo structure. That field contains 452 // non-negative values only. 453 int getMatchingId() const { 454 if (IsTargetMemInst) return Info.MatchingId; 455 return -1; 456 } 457 Value *getPointerOperand() const { 458 if (IsTargetMemInst) return Info.PtrVal; 459 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 460 return LI->getPointerOperand(); 461 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 462 return SI->getPointerOperand(); 463 } 464 return nullptr; 465 } 466 bool mayReadFromMemory() const { 467 if (IsTargetMemInst) return Info.ReadMem; 468 return Inst->mayReadFromMemory(); 469 } 470 bool mayWriteToMemory() const { 471 if (IsTargetMemInst) return Info.WriteMem; 472 return Inst->mayWriteToMemory(); 473 } 474 475 private: 476 bool IsTargetMemInst; 477 MemIntrinsicInfo Info; 478 Instruction *Inst; 479 }; 480 481 bool processNode(DomTreeNode *Node); 482 483 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 484 if (auto *LI = dyn_cast<LoadInst>(Inst)) 485 return LI; 486 if (auto *SI = dyn_cast<StoreInst>(Inst)) 487 return SI->getValueOperand(); 488 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 489 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 490 ExpectedType); 491 } 492 493 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 494 Instruction *EarlierInst, Instruction *LaterInst); 495 496 void removeMSSA(Instruction *Inst) { 497 if (!MSSA) 498 return; 499 // Removing a store here can leave MemorySSA in an unoptimized state by 500 // creating MemoryPhis that have identical arguments and by creating 501 // MemoryUses whose defining access is not an actual clobber. We handle the 502 // phi case eagerly here. The non-optimized MemoryUse case is lazily 503 // updated by MemorySSA getClobberingMemoryAccess. 504 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 505 // Optimize MemoryPhi nodes that may become redundant by having all the 506 // same input values once MA is removed. 507 SmallVector<MemoryPhi *, 4> PhisToCheck; 508 SmallVector<MemoryAccess *, 8> WorkQueue; 509 WorkQueue.push_back(MA); 510 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 511 // we shouldn't be processing that many phis and this will avoid an 512 // allocation in almost all cases. 513 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 514 MemoryAccess *WI = WorkQueue[I]; 515 516 for (auto *U : WI->users()) 517 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 518 PhisToCheck.push_back(MP); 519 520 MSSAUpdater->removeMemoryAccess(WI); 521 522 for (MemoryPhi *MP : PhisToCheck) { 523 MemoryAccess *FirstIn = MP->getIncomingValue(0); 524 if (all_of(MP->incoming_values(), 525 [=](Use &In) { return In == FirstIn; })) 526 WorkQueue.push_back(MP); 527 } 528 PhisToCheck.clear(); 529 } 530 } 531 } 532 }; 533 } 534 535 /// Determine if the memory referenced by LaterInst is from the same heap 536 /// version as EarlierInst. 537 /// This is currently called in two scenarios: 538 /// 539 /// load p 540 /// ... 541 /// load p 542 /// 543 /// and 544 /// 545 /// x = load p 546 /// ... 547 /// store x, p 548 /// 549 /// in both cases we want to verify that there are no possible writes to the 550 /// memory referenced by p between the earlier and later instruction. 551 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 552 unsigned LaterGeneration, 553 Instruction *EarlierInst, 554 Instruction *LaterInst) { 555 // Check the simple memory generation tracking first. 556 if (EarlierGeneration == LaterGeneration) 557 return true; 558 559 if (!MSSA) 560 return false; 561 562 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 563 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 564 // EarlierInst and LaterInst and neither can any other write that potentially 565 // clobbers LaterInst. 566 MemoryAccess *LaterDef = 567 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 568 return MSSA->dominates(LaterDef, MSSA->getMemoryAccess(EarlierInst)); 569 } 570 571 bool EarlyCSE::processNode(DomTreeNode *Node) { 572 bool Changed = false; 573 BasicBlock *BB = Node->getBlock(); 574 575 // If this block has a single predecessor, then the predecessor is the parent 576 // of the domtree node and all of the live out memory values are still current 577 // in this block. If this block has multiple predecessors, then they could 578 // have invalidated the live-out memory values of our parent value. For now, 579 // just be conservative and invalidate memory if this block has multiple 580 // predecessors. 581 if (!BB->getSinglePredecessor()) 582 ++CurrentGeneration; 583 584 // If this node has a single predecessor which ends in a conditional branch, 585 // we can infer the value of the branch condition given that we took this 586 // path. We need the single predecessor to ensure there's not another path 587 // which reaches this block where the condition might hold a different 588 // value. Since we're adding this to the scoped hash table (like any other 589 // def), it will have been popped if we encounter a future merge block. 590 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 591 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 592 if (BI && BI->isConditional()) { 593 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 594 if (CondInst && SimpleValue::canHandle(CondInst)) { 595 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 596 auto *TorF = (BI->getSuccessor(0) == BB) 597 ? ConstantInt::getTrue(BB->getContext()) 598 : ConstantInt::getFalse(BB->getContext()); 599 AvailableValues.insert(CondInst, TorF); 600 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 601 << CondInst->getName() << "' as " << *TorF << " in " 602 << BB->getName() << "\n"); 603 // Replace all dominated uses with the known value. 604 if (unsigned Count = replaceDominatedUsesWith( 605 CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) { 606 Changed = true; 607 NumCSECVP = NumCSECVP + Count; 608 } 609 } 610 } 611 } 612 613 /// LastStore - Keep track of the last non-volatile store that we saw... for 614 /// as long as there in no instruction that reads memory. If we see a store 615 /// to the same location, we delete the dead store. This zaps trivial dead 616 /// stores which can occur in bitfield code among other things. 617 Instruction *LastStore = nullptr; 618 619 const DataLayout &DL = BB->getModule()->getDataLayout(); 620 621 // See if any instructions in the block can be eliminated. If so, do it. If 622 // not, add them to AvailableValues. 623 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 624 Instruction *Inst = &*I++; 625 626 // Dead instructions should just be removed. 627 if (isInstructionTriviallyDead(Inst, &TLI)) { 628 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 629 removeMSSA(Inst); 630 Inst->eraseFromParent(); 631 Changed = true; 632 ++NumSimplify; 633 continue; 634 } 635 636 // Skip assume intrinsics, they don't really have side effects (although 637 // they're marked as such to ensure preservation of control dependencies), 638 // and this pass will not disturb any of the assumption's control 639 // dependencies. 640 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 641 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 642 continue; 643 } 644 645 // Skip invariant.start intrinsics since they only read memory, and we can 646 // forward values across it. Also, we dont need to consume the last store 647 // since the semantics of invariant.start allow us to perform DSE of the 648 // last store, if there was a store following invariant.start. Consider: 649 // 650 // store 30, i8* p 651 // invariant.start(p) 652 // store 40, i8* p 653 // We can DSE the store to 30, since the store 40 to invariant location p 654 // causes undefined behaviour. 655 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) 656 continue; 657 658 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 659 if (auto *CondI = 660 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 661 // The condition we're on guarding here is true for all dominated 662 // locations. 663 if (SimpleValue::canHandle(CondI)) 664 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 665 } 666 667 // Guard intrinsics read all memory, but don't write any memory. 668 // Accordingly, don't update the generation but consume the last store (to 669 // avoid an incorrect DSE). 670 LastStore = nullptr; 671 continue; 672 } 673 674 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 675 // its simpler value. 676 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 677 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 678 bool Killed = false; 679 if (!Inst->use_empty()) { 680 Inst->replaceAllUsesWith(V); 681 Changed = true; 682 } 683 if (isInstructionTriviallyDead(Inst, &TLI)) { 684 removeMSSA(Inst); 685 Inst->eraseFromParent(); 686 Changed = true; 687 Killed = true; 688 } 689 if (Changed) 690 ++NumSimplify; 691 if (Killed) 692 continue; 693 } 694 695 // If this is a simple instruction that we can value number, process it. 696 if (SimpleValue::canHandle(Inst)) { 697 // See if the instruction has an available value. If so, use it. 698 if (Value *V = AvailableValues.lookup(Inst)) { 699 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 700 if (auto *I = dyn_cast<Instruction>(V)) 701 I->andIRFlags(Inst); 702 Inst->replaceAllUsesWith(V); 703 removeMSSA(Inst); 704 Inst->eraseFromParent(); 705 Changed = true; 706 ++NumCSE; 707 continue; 708 } 709 710 // Otherwise, just remember that this value is available. 711 AvailableValues.insert(Inst, Inst); 712 continue; 713 } 714 715 ParseMemoryInst MemInst(Inst, TTI); 716 // If this is a non-volatile load, process it. 717 if (MemInst.isValid() && MemInst.isLoad()) { 718 // (conservatively) we can't peak past the ordering implied by this 719 // operation, but we can add this load to our set of available values 720 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 721 LastStore = nullptr; 722 ++CurrentGeneration; 723 } 724 725 // If we have an available version of this load, and if it is the right 726 // generation or the load is known to be from an invariant location, 727 // replace this instruction. 728 // 729 // If either the dominating load or the current load are invariant, then 730 // we can assume the current load loads the same value as the dominating 731 // load. 732 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 733 if (InVal.DefInst != nullptr && 734 InVal.MatchingId == MemInst.getMatchingId() && 735 // We don't yet handle removing loads with ordering of any kind. 736 !MemInst.isVolatile() && MemInst.isUnordered() && 737 // We can't replace an atomic load with one which isn't also atomic. 738 InVal.IsAtomic >= MemInst.isAtomic() && 739 (InVal.IsInvariant || MemInst.isInvariantLoad() || 740 isSameMemGeneration(InVal.Generation, CurrentGeneration, 741 InVal.DefInst, Inst))) { 742 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 743 if (Op != nullptr) { 744 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 745 << " to: " << *InVal.DefInst << '\n'); 746 if (!Inst->use_empty()) 747 Inst->replaceAllUsesWith(Op); 748 removeMSSA(Inst); 749 Inst->eraseFromParent(); 750 Changed = true; 751 ++NumCSELoad; 752 continue; 753 } 754 } 755 756 // Otherwise, remember that we have this instruction. 757 AvailableLoads.insert( 758 MemInst.getPointerOperand(), 759 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 760 MemInst.isAtomic(), MemInst.isInvariantLoad())); 761 LastStore = nullptr; 762 continue; 763 } 764 765 // If this instruction may read from memory or throw (and potentially read 766 // from memory in the exception handler), forget LastStore. Load/store 767 // intrinsics will indicate both a read and a write to memory. The target 768 // may override this (e.g. so that a store intrinsic does not read from 769 // memory, and thus will be treated the same as a regular store for 770 // commoning purposes). 771 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 772 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 773 LastStore = nullptr; 774 775 // If this is a read-only call, process it. 776 if (CallValue::canHandle(Inst)) { 777 // If we have an available version of this call, and if it is the right 778 // generation, replace this instruction. 779 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 780 if (InVal.first != nullptr && 781 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 782 Inst)) { 783 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 784 << " to: " << *InVal.first << '\n'); 785 if (!Inst->use_empty()) 786 Inst->replaceAllUsesWith(InVal.first); 787 removeMSSA(Inst); 788 Inst->eraseFromParent(); 789 Changed = true; 790 ++NumCSECall; 791 continue; 792 } 793 794 // Otherwise, remember that we have this instruction. 795 AvailableCalls.insert( 796 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 797 continue; 798 } 799 800 // A release fence requires that all stores complete before it, but does 801 // not prevent the reordering of following loads 'before' the fence. As a 802 // result, we don't need to consider it as writing to memory and don't need 803 // to advance the generation. We do need to prevent DSE across the fence, 804 // but that's handled above. 805 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 806 if (FI->getOrdering() == AtomicOrdering::Release) { 807 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 808 continue; 809 } 810 811 // write back DSE - If we write back the same value we just loaded from 812 // the same location and haven't passed any intervening writes or ordering 813 // operations, we can remove the write. The primary benefit is in allowing 814 // the available load table to remain valid and value forward past where 815 // the store originally was. 816 if (MemInst.isValid() && MemInst.isStore()) { 817 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 818 if (InVal.DefInst && 819 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 820 InVal.MatchingId == MemInst.getMatchingId() && 821 // We don't yet handle removing stores with ordering of any kind. 822 !MemInst.isVolatile() && MemInst.isUnordered() && 823 isSameMemGeneration(InVal.Generation, CurrentGeneration, 824 InVal.DefInst, Inst)) { 825 // It is okay to have a LastStore to a different pointer here if MemorySSA 826 // tells us that the load and store are from the same memory generation. 827 // In that case, LastStore should keep its present value since we're 828 // removing the current store. 829 assert((!LastStore || 830 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 831 MemInst.getPointerOperand() || 832 MSSA) && 833 "can't have an intervening store if not using MemorySSA!"); 834 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 835 removeMSSA(Inst); 836 Inst->eraseFromParent(); 837 Changed = true; 838 ++NumDSE; 839 // We can avoid incrementing the generation count since we were able 840 // to eliminate this store. 841 continue; 842 } 843 } 844 845 // Okay, this isn't something we can CSE at all. Check to see if it is 846 // something that could modify memory. If so, our available memory values 847 // cannot be used so bump the generation count. 848 if (Inst->mayWriteToMemory()) { 849 ++CurrentGeneration; 850 851 if (MemInst.isValid() && MemInst.isStore()) { 852 // We do a trivial form of DSE if there are two stores to the same 853 // location with no intervening loads. Delete the earlier store. 854 // At the moment, we don't remove ordered stores, but do remove 855 // unordered atomic stores. There's no special requirement (for 856 // unordered atomics) about removing atomic stores only in favor of 857 // other atomic stores since we we're going to execute the non-atomic 858 // one anyway and the atomic one might never have become visible. 859 if (LastStore) { 860 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 861 assert(LastStoreMemInst.isUnordered() && 862 !LastStoreMemInst.isVolatile() && 863 "Violated invariant"); 864 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 865 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 866 << " due to: " << *Inst << '\n'); 867 removeMSSA(LastStore); 868 LastStore->eraseFromParent(); 869 Changed = true; 870 ++NumDSE; 871 LastStore = nullptr; 872 } 873 // fallthrough - we can exploit information about this store 874 } 875 876 // Okay, we just invalidated anything we knew about loaded values. Try 877 // to salvage *something* by remembering that the stored value is a live 878 // version of the pointer. It is safe to forward from volatile stores 879 // to non-volatile loads, so we don't have to check for volatility of 880 // the store. 881 AvailableLoads.insert( 882 MemInst.getPointerOperand(), 883 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 884 MemInst.isAtomic(), /*IsInvariant=*/false)); 885 886 // Remember that this was the last unordered store we saw for DSE. We 887 // don't yet handle DSE on ordered or volatile stores since we don't 888 // have a good way to model the ordering requirement for following 889 // passes once the store is removed. We could insert a fence, but 890 // since fences are slightly stronger than stores in their ordering, 891 // it's not clear this is a profitable transform. Another option would 892 // be to merge the ordering with that of the post dominating store. 893 if (MemInst.isUnordered() && !MemInst.isVolatile()) 894 LastStore = Inst; 895 else 896 LastStore = nullptr; 897 } 898 } 899 } 900 901 return Changed; 902 } 903 904 bool EarlyCSE::run() { 905 // Note, deque is being used here because there is significant performance 906 // gains over vector when the container becomes very large due to the 907 // specific access patterns. For more information see the mailing list 908 // discussion on this: 909 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 910 std::deque<StackNode *> nodesToProcess; 911 912 bool Changed = false; 913 914 // Process the root node. 915 nodesToProcess.push_back(new StackNode( 916 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 917 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 918 919 // Save the current generation. 920 unsigned LiveOutGeneration = CurrentGeneration; 921 922 // Process the stack. 923 while (!nodesToProcess.empty()) { 924 // Grab the first item off the stack. Set the current generation, remove 925 // the node from the stack, and process it. 926 StackNode *NodeToProcess = nodesToProcess.back(); 927 928 // Initialize class members. 929 CurrentGeneration = NodeToProcess->currentGeneration(); 930 931 // Check if the node needs to be processed. 932 if (!NodeToProcess->isProcessed()) { 933 // Process the node. 934 Changed |= processNode(NodeToProcess->node()); 935 NodeToProcess->childGeneration(CurrentGeneration); 936 NodeToProcess->process(); 937 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 938 // Push the next child onto the stack. 939 DomTreeNode *child = NodeToProcess->nextChild(); 940 nodesToProcess.push_back( 941 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 942 NodeToProcess->childGeneration(), child, child->begin(), 943 child->end())); 944 } else { 945 // It has been processed, and there are no more children to process, 946 // so delete it and pop it off the stack. 947 delete NodeToProcess; 948 nodesToProcess.pop_back(); 949 } 950 } // while (!nodes...) 951 952 // Reset the current generation. 953 CurrentGeneration = LiveOutGeneration; 954 955 return Changed; 956 } 957 958 PreservedAnalyses EarlyCSEPass::run(Function &F, 959 FunctionAnalysisManager &AM) { 960 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 961 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 962 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 963 auto &AC = AM.getResult<AssumptionAnalysis>(F); 964 auto *MSSA = 965 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 966 967 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 968 969 if (!CSE.run()) 970 return PreservedAnalyses::all(); 971 972 PreservedAnalyses PA; 973 PA.preserveSet<CFGAnalyses>(); 974 PA.preserve<GlobalsAA>(); 975 if (UseMemorySSA) 976 PA.preserve<MemorySSAAnalysis>(); 977 return PA; 978 } 979 980 namespace { 981 /// \brief A simple and fast domtree-based CSE pass. 982 /// 983 /// This pass does a simple depth-first walk over the dominator tree, 984 /// eliminating trivially redundant instructions and using instsimplify to 985 /// canonicalize things as it goes. It is intended to be fast and catch obvious 986 /// cases so that instcombine and other passes are more effective. It is 987 /// expected that a later pass of GVN will catch the interesting/hard cases. 988 template<bool UseMemorySSA> 989 class EarlyCSELegacyCommonPass : public FunctionPass { 990 public: 991 static char ID; 992 993 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 994 if (UseMemorySSA) 995 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 996 else 997 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 998 } 999 1000 bool runOnFunction(Function &F) override { 1001 if (skipFunction(F)) 1002 return false; 1003 1004 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1005 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1006 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1007 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1008 auto *MSSA = 1009 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1010 1011 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 1012 1013 return CSE.run(); 1014 } 1015 1016 void getAnalysisUsage(AnalysisUsage &AU) const override { 1017 AU.addRequired<AssumptionCacheTracker>(); 1018 AU.addRequired<DominatorTreeWrapperPass>(); 1019 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1020 AU.addRequired<TargetTransformInfoWrapperPass>(); 1021 if (UseMemorySSA) { 1022 AU.addRequired<MemorySSAWrapperPass>(); 1023 AU.addPreserved<MemorySSAWrapperPass>(); 1024 } 1025 AU.addPreserved<GlobalsAAWrapperPass>(); 1026 AU.setPreservesCFG(); 1027 } 1028 }; 1029 } 1030 1031 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1032 1033 template<> 1034 char EarlyCSELegacyPass::ID = 0; 1035 1036 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1037 false) 1038 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1039 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1040 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1041 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1042 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1043 1044 using EarlyCSEMemSSALegacyPass = 1045 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1046 1047 template<> 1048 char EarlyCSEMemSSALegacyPass::ID = 0; 1049 1050 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1051 if (UseMemorySSA) 1052 return new EarlyCSEMemSSALegacyPass(); 1053 else 1054 return new EarlyCSELegacyPass(); 1055 } 1056 1057 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1058 "Early CSE w/ MemorySSA", false, false) 1059 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1060 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1061 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1062 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1063 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1064 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1065 "Early CSE w/ MemorySSA", false, false) 1066