1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/GuardUtils.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/GuardUtils.h" 58 #include <cassert> 59 #include <deque> 60 #include <memory> 61 #include <utility> 62 63 using namespace llvm; 64 using namespace llvm::PatternMatch; 65 66 #define DEBUG_TYPE "early-cse" 67 68 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 69 STATISTIC(NumCSE, "Number of instructions CSE'd"); 70 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 71 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 72 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 73 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 74 75 DEBUG_COUNTER(CSECounter, "early-cse", 76 "Controls which instructions are removed"); 77 78 static cl::opt<unsigned> EarlyCSEMssaOptCap( 79 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 80 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 81 "for faster compile. Caps the MemorySSA clobbering calls.")); 82 83 //===----------------------------------------------------------------------===// 84 // SimpleValue 85 //===----------------------------------------------------------------------===// 86 87 namespace { 88 89 /// Struct representing the available values in the scoped hash table. 90 struct SimpleValue { 91 Instruction *Inst; 92 93 SimpleValue(Instruction *I) : Inst(I) { 94 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 95 } 96 97 bool isSentinel() const { 98 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 99 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 100 } 101 102 static bool canHandle(Instruction *Inst) { 103 // This can only handle non-void readnone functions. 104 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 105 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 106 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 107 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 108 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 109 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 110 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 111 } 112 }; 113 114 } // end anonymous namespace 115 116 namespace llvm { 117 118 template <> struct DenseMapInfo<SimpleValue> { 119 static inline SimpleValue getEmptyKey() { 120 return DenseMapInfo<Instruction *>::getEmptyKey(); 121 } 122 123 static inline SimpleValue getTombstoneKey() { 124 return DenseMapInfo<Instruction *>::getTombstoneKey(); 125 } 126 127 static unsigned getHashValue(SimpleValue Val); 128 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 129 }; 130 131 } // end namespace llvm 132 133 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 134 Instruction *Inst = Val.Inst; 135 // Hash in all of the operands as pointers. 136 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 137 Value *LHS = BinOp->getOperand(0); 138 Value *RHS = BinOp->getOperand(1); 139 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 140 std::swap(LHS, RHS); 141 142 return hash_combine(BinOp->getOpcode(), LHS, RHS); 143 } 144 145 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 146 Value *LHS = CI->getOperand(0); 147 Value *RHS = CI->getOperand(1); 148 CmpInst::Predicate Pred = CI->getPredicate(); 149 if (Inst->getOperand(0) > Inst->getOperand(1)) { 150 std::swap(LHS, RHS); 151 Pred = CI->getSwappedPredicate(); 152 } 153 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 154 } 155 156 // Hash min/max/abs (cmp + select) to allow for commuted operands. 157 // Min/max may also have non-canonical compare predicate (eg, the compare for 158 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 159 // compare. 160 Value *A, *B; 161 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor; 162 // TODO: We should also detect FP min/max. 163 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 164 SPF == SPF_UMIN || SPF == SPF_UMAX) { 165 if (A > B) 166 std::swap(A, B); 167 return hash_combine(Inst->getOpcode(), SPF, A, B); 168 } 169 if (SPF == SPF_ABS || SPF == SPF_NABS) { 170 // ABS/NABS always puts the input in A and its negation in B. 171 return hash_combine(Inst->getOpcode(), SPF, A, B); 172 } 173 174 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 175 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 176 177 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 178 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 179 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 180 181 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 182 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 183 IVI->getOperand(1), 184 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 185 186 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 187 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 188 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 189 isa<ShuffleVectorInst>(Inst)) && 190 "Invalid/unknown instruction"); 191 192 // Mix in the opcode. 193 return hash_combine( 194 Inst->getOpcode(), 195 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 196 } 197 198 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 199 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 200 201 if (LHS.isSentinel() || RHS.isSentinel()) 202 return LHSI == RHSI; 203 204 if (LHSI->getOpcode() != RHSI->getOpcode()) 205 return false; 206 if (LHSI->isIdenticalToWhenDefined(RHSI)) 207 return true; 208 209 // If we're not strictly identical, we still might be a commutable instruction 210 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 211 if (!LHSBinOp->isCommutative()) 212 return false; 213 214 assert(isa<BinaryOperator>(RHSI) && 215 "same opcode, but different instruction type?"); 216 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 217 218 // Commuted equality 219 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 220 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 221 } 222 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 223 assert(isa<CmpInst>(RHSI) && 224 "same opcode, but different instruction type?"); 225 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 226 // Commuted equality 227 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 228 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 229 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 230 } 231 232 // Min/max/abs can occur with commuted operands, non-canonical predicates, 233 // and/or non-canonical operands. 234 Value *LHSA, *LHSB; 235 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor; 236 // TODO: We should also detect FP min/max. 237 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 238 LSPF == SPF_UMIN || LSPF == SPF_UMAX || 239 LSPF == SPF_ABS || LSPF == SPF_NABS) { 240 Value *RHSA, *RHSB; 241 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor; 242 if (LSPF == RSPF) { 243 // Abs results are placed in a defined order by matchSelectPattern. 244 if (LSPF == SPF_ABS || LSPF == SPF_NABS) 245 return LHSA == RHSA && LHSB == RHSB; 246 return ((LHSA == RHSA && LHSB == RHSB) || 247 (LHSA == RHSB && LHSB == RHSA)); 248 } 249 } 250 251 return false; 252 } 253 254 //===----------------------------------------------------------------------===// 255 // CallValue 256 //===----------------------------------------------------------------------===// 257 258 namespace { 259 260 /// Struct representing the available call values in the scoped hash 261 /// table. 262 struct CallValue { 263 Instruction *Inst; 264 265 CallValue(Instruction *I) : Inst(I) { 266 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 267 } 268 269 bool isSentinel() const { 270 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 271 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 272 } 273 274 static bool canHandle(Instruction *Inst) { 275 // Don't value number anything that returns void. 276 if (Inst->getType()->isVoidTy()) 277 return false; 278 279 CallInst *CI = dyn_cast<CallInst>(Inst); 280 if (!CI || !CI->onlyReadsMemory()) 281 return false; 282 return true; 283 } 284 }; 285 286 } // end anonymous namespace 287 288 namespace llvm { 289 290 template <> struct DenseMapInfo<CallValue> { 291 static inline CallValue getEmptyKey() { 292 return DenseMapInfo<Instruction *>::getEmptyKey(); 293 } 294 295 static inline CallValue getTombstoneKey() { 296 return DenseMapInfo<Instruction *>::getTombstoneKey(); 297 } 298 299 static unsigned getHashValue(CallValue Val); 300 static bool isEqual(CallValue LHS, CallValue RHS); 301 }; 302 303 } // end namespace llvm 304 305 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 306 Instruction *Inst = Val.Inst; 307 // Hash all of the operands as pointers and mix in the opcode. 308 return hash_combine( 309 Inst->getOpcode(), 310 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 311 } 312 313 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 314 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 315 if (LHS.isSentinel() || RHS.isSentinel()) 316 return LHSI == RHSI; 317 return LHSI->isIdenticalTo(RHSI); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // EarlyCSE implementation 322 //===----------------------------------------------------------------------===// 323 324 namespace { 325 326 /// A simple and fast domtree-based CSE pass. 327 /// 328 /// This pass does a simple depth-first walk over the dominator tree, 329 /// eliminating trivially redundant instructions and using instsimplify to 330 /// canonicalize things as it goes. It is intended to be fast and catch obvious 331 /// cases so that instcombine and other passes are more effective. It is 332 /// expected that a later pass of GVN will catch the interesting/hard cases. 333 class EarlyCSE { 334 public: 335 const TargetLibraryInfo &TLI; 336 const TargetTransformInfo &TTI; 337 DominatorTree &DT; 338 AssumptionCache &AC; 339 const SimplifyQuery SQ; 340 MemorySSA *MSSA; 341 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 342 343 using AllocatorTy = 344 RecyclingAllocator<BumpPtrAllocator, 345 ScopedHashTableVal<SimpleValue, Value *>>; 346 using ScopedHTType = 347 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 348 AllocatorTy>; 349 350 /// A scoped hash table of the current values of all of our simple 351 /// scalar expressions. 352 /// 353 /// As we walk down the domtree, we look to see if instructions are in this: 354 /// if so, we replace them with what we find, otherwise we insert them so 355 /// that dominated values can succeed in their lookup. 356 ScopedHTType AvailableValues; 357 358 /// A scoped hash table of the current values of previously encountered 359 /// memory locations. 360 /// 361 /// This allows us to get efficient access to dominating loads or stores when 362 /// we have a fully redundant load. In addition to the most recent load, we 363 /// keep track of a generation count of the read, which is compared against 364 /// the current generation count. The current generation count is incremented 365 /// after every possibly writing memory operation, which ensures that we only 366 /// CSE loads with other loads that have no intervening store. Ordering 367 /// events (such as fences or atomic instructions) increment the generation 368 /// count as well; essentially, we model these as writes to all possible 369 /// locations. Note that atomic and/or volatile loads and stores can be 370 /// present the table; it is the responsibility of the consumer to inspect 371 /// the atomicity/volatility if needed. 372 struct LoadValue { 373 Instruction *DefInst = nullptr; 374 unsigned Generation = 0; 375 int MatchingId = -1; 376 bool IsAtomic = false; 377 378 LoadValue() = default; 379 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 380 bool IsAtomic) 381 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 382 IsAtomic(IsAtomic) {} 383 }; 384 385 using LoadMapAllocator = 386 RecyclingAllocator<BumpPtrAllocator, 387 ScopedHashTableVal<Value *, LoadValue>>; 388 using LoadHTType = 389 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 390 LoadMapAllocator>; 391 392 LoadHTType AvailableLoads; 393 394 // A scoped hash table mapping memory locations (represented as typed 395 // addresses) to generation numbers at which that memory location became 396 // (henceforth indefinitely) invariant. 397 using InvariantMapAllocator = 398 RecyclingAllocator<BumpPtrAllocator, 399 ScopedHashTableVal<MemoryLocation, unsigned>>; 400 using InvariantHTType = 401 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 402 InvariantMapAllocator>; 403 InvariantHTType AvailableInvariants; 404 405 /// A scoped hash table of the current values of read-only call 406 /// values. 407 /// 408 /// It uses the same generation count as loads. 409 using CallHTType = 410 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 411 CallHTType AvailableCalls; 412 413 /// This is the current generation of the memory value. 414 unsigned CurrentGeneration = 0; 415 416 /// Set up the EarlyCSE runner for a particular function. 417 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 418 const TargetTransformInfo &TTI, DominatorTree &DT, 419 AssumptionCache &AC, MemorySSA *MSSA) 420 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 421 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} 422 423 bool run(); 424 425 private: 426 unsigned ClobberCounter = 0; 427 // Almost a POD, but needs to call the constructors for the scoped hash 428 // tables so that a new scope gets pushed on. These are RAII so that the 429 // scope gets popped when the NodeScope is destroyed. 430 class NodeScope { 431 public: 432 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 433 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 434 : Scope(AvailableValues), LoadScope(AvailableLoads), 435 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 436 NodeScope(const NodeScope &) = delete; 437 NodeScope &operator=(const NodeScope &) = delete; 438 439 private: 440 ScopedHTType::ScopeTy Scope; 441 LoadHTType::ScopeTy LoadScope; 442 InvariantHTType::ScopeTy InvariantScope; 443 CallHTType::ScopeTy CallScope; 444 }; 445 446 // Contains all the needed information to create a stack for doing a depth 447 // first traversal of the tree. This includes scopes for values, loads, and 448 // calls as well as the generation. There is a child iterator so that the 449 // children do not need to be store separately. 450 class StackNode { 451 public: 452 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 453 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 454 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 455 DomTreeNode::iterator end) 456 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 457 EndIter(end), 458 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 459 AvailableCalls) 460 {} 461 StackNode(const StackNode &) = delete; 462 StackNode &operator=(const StackNode &) = delete; 463 464 // Accessors. 465 unsigned currentGeneration() { return CurrentGeneration; } 466 unsigned childGeneration() { return ChildGeneration; } 467 void childGeneration(unsigned generation) { ChildGeneration = generation; } 468 DomTreeNode *node() { return Node; } 469 DomTreeNode::iterator childIter() { return ChildIter; } 470 471 DomTreeNode *nextChild() { 472 DomTreeNode *child = *ChildIter; 473 ++ChildIter; 474 return child; 475 } 476 477 DomTreeNode::iterator end() { return EndIter; } 478 bool isProcessed() { return Processed; } 479 void process() { Processed = true; } 480 481 private: 482 unsigned CurrentGeneration; 483 unsigned ChildGeneration; 484 DomTreeNode *Node; 485 DomTreeNode::iterator ChildIter; 486 DomTreeNode::iterator EndIter; 487 NodeScope Scopes; 488 bool Processed = false; 489 }; 490 491 /// Wrapper class to handle memory instructions, including loads, 492 /// stores and intrinsic loads and stores defined by the target. 493 class ParseMemoryInst { 494 public: 495 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 496 : Inst(Inst) { 497 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 498 if (TTI.getTgtMemIntrinsic(II, Info)) 499 IsTargetMemInst = true; 500 } 501 502 bool isLoad() const { 503 if (IsTargetMemInst) return Info.ReadMem; 504 return isa<LoadInst>(Inst); 505 } 506 507 bool isStore() const { 508 if (IsTargetMemInst) return Info.WriteMem; 509 return isa<StoreInst>(Inst); 510 } 511 512 bool isAtomic() const { 513 if (IsTargetMemInst) 514 return Info.Ordering != AtomicOrdering::NotAtomic; 515 return Inst->isAtomic(); 516 } 517 518 bool isUnordered() const { 519 if (IsTargetMemInst) 520 return Info.isUnordered(); 521 522 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 523 return LI->isUnordered(); 524 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 525 return SI->isUnordered(); 526 } 527 // Conservative answer 528 return !Inst->isAtomic(); 529 } 530 531 bool isVolatile() const { 532 if (IsTargetMemInst) 533 return Info.IsVolatile; 534 535 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 536 return LI->isVolatile(); 537 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 538 return SI->isVolatile(); 539 } 540 // Conservative answer 541 return true; 542 } 543 544 bool isInvariantLoad() const { 545 if (auto *LI = dyn_cast<LoadInst>(Inst)) 546 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 547 return false; 548 } 549 550 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 551 return (getPointerOperand() == Inst.getPointerOperand() && 552 getMatchingId() == Inst.getMatchingId()); 553 } 554 555 bool isValid() const { return getPointerOperand() != nullptr; } 556 557 // For regular (non-intrinsic) loads/stores, this is set to -1. For 558 // intrinsic loads/stores, the id is retrieved from the corresponding 559 // field in the MemIntrinsicInfo structure. That field contains 560 // non-negative values only. 561 int getMatchingId() const { 562 if (IsTargetMemInst) return Info.MatchingId; 563 return -1; 564 } 565 566 Value *getPointerOperand() const { 567 if (IsTargetMemInst) return Info.PtrVal; 568 return getLoadStorePointerOperand(Inst); 569 } 570 571 bool mayReadFromMemory() const { 572 if (IsTargetMemInst) return Info.ReadMem; 573 return Inst->mayReadFromMemory(); 574 } 575 576 bool mayWriteToMemory() const { 577 if (IsTargetMemInst) return Info.WriteMem; 578 return Inst->mayWriteToMemory(); 579 } 580 581 private: 582 bool IsTargetMemInst = false; 583 MemIntrinsicInfo Info; 584 Instruction *Inst; 585 }; 586 587 bool processNode(DomTreeNode *Node); 588 589 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 590 const BasicBlock *BB, const BasicBlock *Pred); 591 592 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 593 if (auto *LI = dyn_cast<LoadInst>(Inst)) 594 return LI; 595 if (auto *SI = dyn_cast<StoreInst>(Inst)) 596 return SI->getValueOperand(); 597 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 598 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 599 ExpectedType); 600 } 601 602 /// Return true if the instruction is known to only operate on memory 603 /// provably invariant in the given "generation". 604 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 605 606 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 607 Instruction *EarlierInst, Instruction *LaterInst); 608 609 void removeMSSA(Instruction *Inst) { 610 if (!MSSA) 611 return; 612 if (VerifyMemorySSA) 613 MSSA->verifyMemorySSA(); 614 // Removing a store here can leave MemorySSA in an unoptimized state by 615 // creating MemoryPhis that have identical arguments and by creating 616 // MemoryUses whose defining access is not an actual clobber. The phi case 617 // is handled by MemorySSA when passing OptimizePhis = true to 618 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 619 // by MemorySSA's getClobberingMemoryAccess. 620 MSSAUpdater->removeMemoryAccess(Inst, true); 621 } 622 }; 623 624 } // end anonymous namespace 625 626 /// Determine if the memory referenced by LaterInst is from the same heap 627 /// version as EarlierInst. 628 /// This is currently called in two scenarios: 629 /// 630 /// load p 631 /// ... 632 /// load p 633 /// 634 /// and 635 /// 636 /// x = load p 637 /// ... 638 /// store x, p 639 /// 640 /// in both cases we want to verify that there are no possible writes to the 641 /// memory referenced by p between the earlier and later instruction. 642 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 643 unsigned LaterGeneration, 644 Instruction *EarlierInst, 645 Instruction *LaterInst) { 646 // Check the simple memory generation tracking first. 647 if (EarlierGeneration == LaterGeneration) 648 return true; 649 650 if (!MSSA) 651 return false; 652 653 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 654 // read/write memory, then we can safely return true here. 655 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 656 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 657 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 658 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 659 // with the default optimization pipeline. 660 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 661 if (!EarlierMA) 662 return true; 663 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 664 if (!LaterMA) 665 return true; 666 667 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 668 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 669 // EarlierInst and LaterInst and neither can any other write that potentially 670 // clobbers LaterInst. 671 MemoryAccess *LaterDef; 672 if (ClobberCounter < EarlyCSEMssaOptCap) { 673 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 674 ClobberCounter++; 675 } else 676 LaterDef = LaterMA->getDefiningAccess(); 677 678 return MSSA->dominates(LaterDef, EarlierMA); 679 } 680 681 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 682 // A location loaded from with an invariant_load is assumed to *never* change 683 // within the visible scope of the compilation. 684 if (auto *LI = dyn_cast<LoadInst>(I)) 685 if (LI->getMetadata(LLVMContext::MD_invariant_load)) 686 return true; 687 688 auto MemLocOpt = MemoryLocation::getOrNone(I); 689 if (!MemLocOpt) 690 // "target" intrinsic forms of loads aren't currently known to 691 // MemoryLocation::get. TODO 692 return false; 693 MemoryLocation MemLoc = *MemLocOpt; 694 if (!AvailableInvariants.count(MemLoc)) 695 return false; 696 697 // Is the generation at which this became invariant older than the 698 // current one? 699 return AvailableInvariants.lookup(MemLoc) <= GenAt; 700 } 701 702 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 703 const BranchInst *BI, const BasicBlock *BB, 704 const BasicBlock *Pred) { 705 assert(BI->isConditional() && "Should be a conditional branch!"); 706 assert(BI->getCondition() == CondInst && "Wrong condition?"); 707 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 708 auto *TorF = (BI->getSuccessor(0) == BB) 709 ? ConstantInt::getTrue(BB->getContext()) 710 : ConstantInt::getFalse(BB->getContext()); 711 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 712 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 713 return BOp->getOpcode() == Opcode; 714 return false; 715 }; 716 // If the condition is AND operation, we can propagate its operands into the 717 // true branch. If it is OR operation, we can propagate them into the false 718 // branch. 719 unsigned PropagateOpcode = 720 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 721 722 bool MadeChanges = false; 723 SmallVector<Instruction *, 4> WorkList; 724 SmallPtrSet<Instruction *, 4> Visited; 725 WorkList.push_back(CondInst); 726 while (!WorkList.empty()) { 727 Instruction *Curr = WorkList.pop_back_val(); 728 729 AvailableValues.insert(Curr, TorF); 730 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 731 << Curr->getName() << "' as " << *TorF << " in " 732 << BB->getName() << "\n"); 733 if (!DebugCounter::shouldExecute(CSECounter)) { 734 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 735 } else { 736 // Replace all dominated uses with the known value. 737 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 738 BasicBlockEdge(Pred, BB))) { 739 NumCSECVP += Count; 740 MadeChanges = true; 741 } 742 } 743 744 if (MatchBinOp(Curr, PropagateOpcode)) 745 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 746 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 747 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 748 WorkList.push_back(OPI); 749 } 750 751 return MadeChanges; 752 } 753 754 bool EarlyCSE::processNode(DomTreeNode *Node) { 755 bool Changed = false; 756 BasicBlock *BB = Node->getBlock(); 757 758 // If this block has a single predecessor, then the predecessor is the parent 759 // of the domtree node and all of the live out memory values are still current 760 // in this block. If this block has multiple predecessors, then they could 761 // have invalidated the live-out memory values of our parent value. For now, 762 // just be conservative and invalidate memory if this block has multiple 763 // predecessors. 764 if (!BB->getSinglePredecessor()) 765 ++CurrentGeneration; 766 767 // If this node has a single predecessor which ends in a conditional branch, 768 // we can infer the value of the branch condition given that we took this 769 // path. We need the single predecessor to ensure there's not another path 770 // which reaches this block where the condition might hold a different 771 // value. Since we're adding this to the scoped hash table (like any other 772 // def), it will have been popped if we encounter a future merge block. 773 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 774 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 775 if (BI && BI->isConditional()) { 776 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 777 if (CondInst && SimpleValue::canHandle(CondInst)) 778 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 779 } 780 } 781 782 /// LastStore - Keep track of the last non-volatile store that we saw... for 783 /// as long as there in no instruction that reads memory. If we see a store 784 /// to the same location, we delete the dead store. This zaps trivial dead 785 /// stores which can occur in bitfield code among other things. 786 Instruction *LastStore = nullptr; 787 788 // See if any instructions in the block can be eliminated. If so, do it. If 789 // not, add them to AvailableValues. 790 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 791 Instruction *Inst = &*I++; 792 793 // Dead instructions should just be removed. 794 if (isInstructionTriviallyDead(Inst, &TLI)) { 795 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 796 if (!DebugCounter::shouldExecute(CSECounter)) { 797 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 798 continue; 799 } 800 if (!salvageDebugInfo(*Inst)) 801 replaceDbgUsesWithUndef(Inst); 802 removeMSSA(Inst); 803 Inst->eraseFromParent(); 804 Changed = true; 805 ++NumSimplify; 806 continue; 807 } 808 809 // Skip assume intrinsics, they don't really have side effects (although 810 // they're marked as such to ensure preservation of control dependencies), 811 // and this pass will not bother with its removal. However, we should mark 812 // its condition as true for all dominated blocks. 813 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 814 auto *CondI = 815 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 816 if (CondI && SimpleValue::canHandle(CondI)) { 817 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst 818 << '\n'); 819 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 820 } else 821 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 822 continue; 823 } 824 825 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 826 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 827 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 828 continue; 829 } 830 831 // We can skip all invariant.start intrinsics since they only read memory, 832 // and we can forward values across it. For invariant starts without 833 // invariant ends, we can use the fact that the invariantness never ends to 834 // start a scope in the current generaton which is true for all future 835 // generations. Also, we dont need to consume the last store since the 836 // semantics of invariant.start allow us to perform DSE of the last 837 // store, if there was a store following invariant.start. Consider: 838 // 839 // store 30, i8* p 840 // invariant.start(p) 841 // store 40, i8* p 842 // We can DSE the store to 30, since the store 40 to invariant location p 843 // causes undefined behaviour. 844 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 845 // If there are any uses, the scope might end. 846 if (!Inst->use_empty()) 847 continue; 848 auto *CI = cast<CallInst>(Inst); 849 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); 850 // Don't start a scope if we already have a better one pushed 851 if (!AvailableInvariants.count(MemLoc)) 852 AvailableInvariants.insert(MemLoc, CurrentGeneration); 853 continue; 854 } 855 856 if (isGuard(Inst)) { 857 if (auto *CondI = 858 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 859 if (SimpleValue::canHandle(CondI)) { 860 // Do we already know the actual value of this condition? 861 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 862 // Is the condition known to be true? 863 if (isa<ConstantInt>(KnownCond) && 864 cast<ConstantInt>(KnownCond)->isOne()) { 865 LLVM_DEBUG(dbgs() 866 << "EarlyCSE removing guard: " << *Inst << '\n'); 867 removeMSSA(Inst); 868 Inst->eraseFromParent(); 869 Changed = true; 870 continue; 871 } else 872 // Use the known value if it wasn't true. 873 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 874 } 875 // The condition we're on guarding here is true for all dominated 876 // locations. 877 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 878 } 879 } 880 881 // Guard intrinsics read all memory, but don't write any memory. 882 // Accordingly, don't update the generation but consume the last store (to 883 // avoid an incorrect DSE). 884 LastStore = nullptr; 885 continue; 886 } 887 888 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 889 // its simpler value. 890 if (Value *V = SimplifyInstruction(Inst, SQ)) { 891 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V 892 << '\n'); 893 if (!DebugCounter::shouldExecute(CSECounter)) { 894 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 895 } else { 896 bool Killed = false; 897 if (!Inst->use_empty()) { 898 Inst->replaceAllUsesWith(V); 899 Changed = true; 900 } 901 if (isInstructionTriviallyDead(Inst, &TLI)) { 902 removeMSSA(Inst); 903 Inst->eraseFromParent(); 904 Changed = true; 905 Killed = true; 906 } 907 if (Changed) 908 ++NumSimplify; 909 if (Killed) 910 continue; 911 } 912 } 913 914 // If this is a simple instruction that we can value number, process it. 915 if (SimpleValue::canHandle(Inst)) { 916 // See if the instruction has an available value. If so, use it. 917 if (Value *V = AvailableValues.lookup(Inst)) { 918 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V 919 << '\n'); 920 if (!DebugCounter::shouldExecute(CSECounter)) { 921 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 922 continue; 923 } 924 if (auto *I = dyn_cast<Instruction>(V)) 925 I->andIRFlags(Inst); 926 Inst->replaceAllUsesWith(V); 927 removeMSSA(Inst); 928 Inst->eraseFromParent(); 929 Changed = true; 930 ++NumCSE; 931 continue; 932 } 933 934 // Otherwise, just remember that this value is available. 935 AvailableValues.insert(Inst, Inst); 936 continue; 937 } 938 939 ParseMemoryInst MemInst(Inst, TTI); 940 // If this is a non-volatile load, process it. 941 if (MemInst.isValid() && MemInst.isLoad()) { 942 // (conservatively) we can't peak past the ordering implied by this 943 // operation, but we can add this load to our set of available values 944 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 945 LastStore = nullptr; 946 ++CurrentGeneration; 947 } 948 949 if (MemInst.isInvariantLoad()) { 950 // If we pass an invariant load, we know that memory location is 951 // indefinitely constant from the moment of first dereferenceability. 952 // We conservatively treat the invariant_load as that moment. If we 953 // pass a invariant load after already establishing a scope, don't 954 // restart it since we want to preserve the earliest point seen. 955 auto MemLoc = MemoryLocation::get(Inst); 956 if (!AvailableInvariants.count(MemLoc)) 957 AvailableInvariants.insert(MemLoc, CurrentGeneration); 958 } 959 960 // If we have an available version of this load, and if it is the right 961 // generation or the load is known to be from an invariant location, 962 // replace this instruction. 963 // 964 // If either the dominating load or the current load are invariant, then 965 // we can assume the current load loads the same value as the dominating 966 // load. 967 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 968 if (InVal.DefInst != nullptr && 969 InVal.MatchingId == MemInst.getMatchingId() && 970 // We don't yet handle removing loads with ordering of any kind. 971 !MemInst.isVolatile() && MemInst.isUnordered() && 972 // We can't replace an atomic load with one which isn't also atomic. 973 InVal.IsAtomic >= MemInst.isAtomic() && 974 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 975 isSameMemGeneration(InVal.Generation, CurrentGeneration, 976 InVal.DefInst, Inst))) { 977 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 978 if (Op != nullptr) { 979 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 980 << " to: " << *InVal.DefInst << '\n'); 981 if (!DebugCounter::shouldExecute(CSECounter)) { 982 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 983 continue; 984 } 985 if (!Inst->use_empty()) 986 Inst->replaceAllUsesWith(Op); 987 removeMSSA(Inst); 988 Inst->eraseFromParent(); 989 Changed = true; 990 ++NumCSELoad; 991 continue; 992 } 993 } 994 995 // Otherwise, remember that we have this instruction. 996 AvailableLoads.insert( 997 MemInst.getPointerOperand(), 998 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 999 MemInst.isAtomic())); 1000 LastStore = nullptr; 1001 continue; 1002 } 1003 1004 // If this instruction may read from memory or throw (and potentially read 1005 // from memory in the exception handler), forget LastStore. Load/store 1006 // intrinsics will indicate both a read and a write to memory. The target 1007 // may override this (e.g. so that a store intrinsic does not read from 1008 // memory, and thus will be treated the same as a regular store for 1009 // commoning purposes). 1010 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 1011 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1012 LastStore = nullptr; 1013 1014 // If this is a read-only call, process it. 1015 if (CallValue::canHandle(Inst)) { 1016 // If we have an available version of this call, and if it is the right 1017 // generation, replace this instruction. 1018 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 1019 if (InVal.first != nullptr && 1020 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1021 Inst)) { 1022 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 1023 << " to: " << *InVal.first << '\n'); 1024 if (!DebugCounter::shouldExecute(CSECounter)) { 1025 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1026 continue; 1027 } 1028 if (!Inst->use_empty()) 1029 Inst->replaceAllUsesWith(InVal.first); 1030 removeMSSA(Inst); 1031 Inst->eraseFromParent(); 1032 Changed = true; 1033 ++NumCSECall; 1034 continue; 1035 } 1036 1037 // Otherwise, remember that we have this instruction. 1038 AvailableCalls.insert( 1039 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 1040 continue; 1041 } 1042 1043 // A release fence requires that all stores complete before it, but does 1044 // not prevent the reordering of following loads 'before' the fence. As a 1045 // result, we don't need to consider it as writing to memory and don't need 1046 // to advance the generation. We do need to prevent DSE across the fence, 1047 // but that's handled above. 1048 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 1049 if (FI->getOrdering() == AtomicOrdering::Release) { 1050 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 1051 continue; 1052 } 1053 1054 // write back DSE - If we write back the same value we just loaded from 1055 // the same location and haven't passed any intervening writes or ordering 1056 // operations, we can remove the write. The primary benefit is in allowing 1057 // the available load table to remain valid and value forward past where 1058 // the store originally was. 1059 if (MemInst.isValid() && MemInst.isStore()) { 1060 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1061 if (InVal.DefInst && 1062 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 1063 InVal.MatchingId == MemInst.getMatchingId() && 1064 // We don't yet handle removing stores with ordering of any kind. 1065 !MemInst.isVolatile() && MemInst.isUnordered() && 1066 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1067 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1068 InVal.DefInst, Inst))) { 1069 // It is okay to have a LastStore to a different pointer here if MemorySSA 1070 // tells us that the load and store are from the same memory generation. 1071 // In that case, LastStore should keep its present value since we're 1072 // removing the current store. 1073 assert((!LastStore || 1074 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1075 MemInst.getPointerOperand() || 1076 MSSA) && 1077 "can't have an intervening store if not using MemorySSA!"); 1078 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 1079 if (!DebugCounter::shouldExecute(CSECounter)) { 1080 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1081 continue; 1082 } 1083 removeMSSA(Inst); 1084 Inst->eraseFromParent(); 1085 Changed = true; 1086 ++NumDSE; 1087 // We can avoid incrementing the generation count since we were able 1088 // to eliminate this store. 1089 continue; 1090 } 1091 } 1092 1093 // Okay, this isn't something we can CSE at all. Check to see if it is 1094 // something that could modify memory. If so, our available memory values 1095 // cannot be used so bump the generation count. 1096 if (Inst->mayWriteToMemory()) { 1097 ++CurrentGeneration; 1098 1099 if (MemInst.isValid() && MemInst.isStore()) { 1100 // We do a trivial form of DSE if there are two stores to the same 1101 // location with no intervening loads. Delete the earlier store. 1102 // At the moment, we don't remove ordered stores, but do remove 1103 // unordered atomic stores. There's no special requirement (for 1104 // unordered atomics) about removing atomic stores only in favor of 1105 // other atomic stores since we we're going to execute the non-atomic 1106 // one anyway and the atomic one might never have become visible. 1107 if (LastStore) { 1108 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1109 assert(LastStoreMemInst.isUnordered() && 1110 !LastStoreMemInst.isVolatile() && 1111 "Violated invariant"); 1112 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1113 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1114 << " due to: " << *Inst << '\n'); 1115 if (!DebugCounter::shouldExecute(CSECounter)) { 1116 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1117 } else { 1118 removeMSSA(LastStore); 1119 LastStore->eraseFromParent(); 1120 Changed = true; 1121 ++NumDSE; 1122 LastStore = nullptr; 1123 } 1124 } 1125 // fallthrough - we can exploit information about this store 1126 } 1127 1128 // Okay, we just invalidated anything we knew about loaded values. Try 1129 // to salvage *something* by remembering that the stored value is a live 1130 // version of the pointer. It is safe to forward from volatile stores 1131 // to non-volatile loads, so we don't have to check for volatility of 1132 // the store. 1133 AvailableLoads.insert( 1134 MemInst.getPointerOperand(), 1135 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1136 MemInst.isAtomic())); 1137 1138 // Remember that this was the last unordered store we saw for DSE. We 1139 // don't yet handle DSE on ordered or volatile stores since we don't 1140 // have a good way to model the ordering requirement for following 1141 // passes once the store is removed. We could insert a fence, but 1142 // since fences are slightly stronger than stores in their ordering, 1143 // it's not clear this is a profitable transform. Another option would 1144 // be to merge the ordering with that of the post dominating store. 1145 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1146 LastStore = Inst; 1147 else 1148 LastStore = nullptr; 1149 } 1150 } 1151 } 1152 1153 return Changed; 1154 } 1155 1156 bool EarlyCSE::run() { 1157 // Note, deque is being used here because there is significant performance 1158 // gains over vector when the container becomes very large due to the 1159 // specific access patterns. For more information see the mailing list 1160 // discussion on this: 1161 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1162 std::deque<StackNode *> nodesToProcess; 1163 1164 bool Changed = false; 1165 1166 // Process the root node. 1167 nodesToProcess.push_back(new StackNode( 1168 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1169 CurrentGeneration, DT.getRootNode(), 1170 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1171 1172 // Save the current generation. 1173 unsigned LiveOutGeneration = CurrentGeneration; 1174 1175 // Process the stack. 1176 while (!nodesToProcess.empty()) { 1177 // Grab the first item off the stack. Set the current generation, remove 1178 // the node from the stack, and process it. 1179 StackNode *NodeToProcess = nodesToProcess.back(); 1180 1181 // Initialize class members. 1182 CurrentGeneration = NodeToProcess->currentGeneration(); 1183 1184 // Check if the node needs to be processed. 1185 if (!NodeToProcess->isProcessed()) { 1186 // Process the node. 1187 Changed |= processNode(NodeToProcess->node()); 1188 NodeToProcess->childGeneration(CurrentGeneration); 1189 NodeToProcess->process(); 1190 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1191 // Push the next child onto the stack. 1192 DomTreeNode *child = NodeToProcess->nextChild(); 1193 nodesToProcess.push_back( 1194 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1195 AvailableCalls, NodeToProcess->childGeneration(), 1196 child, child->begin(), child->end())); 1197 } else { 1198 // It has been processed, and there are no more children to process, 1199 // so delete it and pop it off the stack. 1200 delete NodeToProcess; 1201 nodesToProcess.pop_back(); 1202 } 1203 } // while (!nodes...) 1204 1205 // Reset the current generation. 1206 CurrentGeneration = LiveOutGeneration; 1207 1208 return Changed; 1209 } 1210 1211 PreservedAnalyses EarlyCSEPass::run(Function &F, 1212 FunctionAnalysisManager &AM) { 1213 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1214 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1215 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1216 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1217 auto *MSSA = 1218 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1219 1220 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1221 1222 if (!CSE.run()) 1223 return PreservedAnalyses::all(); 1224 1225 PreservedAnalyses PA; 1226 PA.preserveSet<CFGAnalyses>(); 1227 PA.preserve<GlobalsAA>(); 1228 if (UseMemorySSA) 1229 PA.preserve<MemorySSAAnalysis>(); 1230 return PA; 1231 } 1232 1233 namespace { 1234 1235 /// A simple and fast domtree-based CSE pass. 1236 /// 1237 /// This pass does a simple depth-first walk over the dominator tree, 1238 /// eliminating trivially redundant instructions and using instsimplify to 1239 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1240 /// cases so that instcombine and other passes are more effective. It is 1241 /// expected that a later pass of GVN will catch the interesting/hard cases. 1242 template<bool UseMemorySSA> 1243 class EarlyCSELegacyCommonPass : public FunctionPass { 1244 public: 1245 static char ID; 1246 1247 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1248 if (UseMemorySSA) 1249 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1250 else 1251 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1252 } 1253 1254 bool runOnFunction(Function &F) override { 1255 if (skipFunction(F)) 1256 return false; 1257 1258 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1259 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1260 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1261 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1262 auto *MSSA = 1263 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1264 1265 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1266 1267 return CSE.run(); 1268 } 1269 1270 void getAnalysisUsage(AnalysisUsage &AU) const override { 1271 AU.addRequired<AssumptionCacheTracker>(); 1272 AU.addRequired<DominatorTreeWrapperPass>(); 1273 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1274 AU.addRequired<TargetTransformInfoWrapperPass>(); 1275 if (UseMemorySSA) { 1276 AU.addRequired<MemorySSAWrapperPass>(); 1277 AU.addPreserved<MemorySSAWrapperPass>(); 1278 } 1279 AU.addPreserved<GlobalsAAWrapperPass>(); 1280 AU.setPreservesCFG(); 1281 } 1282 }; 1283 1284 } // end anonymous namespace 1285 1286 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1287 1288 template<> 1289 char EarlyCSELegacyPass::ID = 0; 1290 1291 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1292 false) 1293 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1294 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1295 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1296 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1297 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1298 1299 using EarlyCSEMemSSALegacyPass = 1300 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1301 1302 template<> 1303 char EarlyCSEMemSSALegacyPass::ID = 0; 1304 1305 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1306 if (UseMemorySSA) 1307 return new EarlyCSEMemSSALegacyPass(); 1308 else 1309 return new EarlyCSELegacyPass(); 1310 } 1311 1312 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1313 "Early CSE w/ MemorySSA", false, false) 1314 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1315 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1316 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1317 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1318 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1319 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1320 "Early CSE w/ MemorySSA", false, false) 1321