1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include <deque> 36 using namespace llvm; 37 using namespace llvm::PatternMatch; 38 39 #define DEBUG_TYPE "early-cse" 40 41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 42 STATISTIC(NumCSE, "Number of instructions CSE'd"); 43 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 44 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 45 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 46 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 47 48 //===----------------------------------------------------------------------===// 49 // SimpleValue 50 //===----------------------------------------------------------------------===// 51 52 namespace { 53 /// \brief Struct representing the available values in the scoped hash table. 54 struct SimpleValue { 55 Instruction *Inst; 56 57 SimpleValue(Instruction *I) : Inst(I) { 58 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 59 } 60 61 bool isSentinel() const { 62 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 63 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 64 } 65 66 static bool canHandle(Instruction *Inst) { 67 // This can only handle non-void readnone functions. 68 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 69 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 70 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 71 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 72 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 73 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 74 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 75 } 76 }; 77 } 78 79 namespace llvm { 80 template <> struct DenseMapInfo<SimpleValue> { 81 static inline SimpleValue getEmptyKey() { 82 return DenseMapInfo<Instruction *>::getEmptyKey(); 83 } 84 static inline SimpleValue getTombstoneKey() { 85 return DenseMapInfo<Instruction *>::getTombstoneKey(); 86 } 87 static unsigned getHashValue(SimpleValue Val); 88 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 89 }; 90 } 91 92 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 93 Instruction *Inst = Val.Inst; 94 // Hash in all of the operands as pointers. 95 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 96 Value *LHS = BinOp->getOperand(0); 97 Value *RHS = BinOp->getOperand(1); 98 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 99 std::swap(LHS, RHS); 100 101 return hash_combine(BinOp->getOpcode(), LHS, RHS); 102 } 103 104 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 105 Value *LHS = CI->getOperand(0); 106 Value *RHS = CI->getOperand(1); 107 CmpInst::Predicate Pred = CI->getPredicate(); 108 if (Inst->getOperand(0) > Inst->getOperand(1)) { 109 std::swap(LHS, RHS); 110 Pred = CI->getSwappedPredicate(); 111 } 112 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 113 } 114 115 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 116 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 117 118 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 119 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 120 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 121 122 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 123 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 124 IVI->getOperand(1), 125 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 126 127 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 128 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 129 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 130 isa<ShuffleVectorInst>(Inst)) && 131 "Invalid/unknown instruction"); 132 133 // Mix in the opcode. 134 return hash_combine( 135 Inst->getOpcode(), 136 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 137 } 138 139 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 140 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 141 142 if (LHS.isSentinel() || RHS.isSentinel()) 143 return LHSI == RHSI; 144 145 if (LHSI->getOpcode() != RHSI->getOpcode()) 146 return false; 147 if (LHSI->isIdenticalToWhenDefined(RHSI)) 148 return true; 149 150 // If we're not strictly identical, we still might be a commutable instruction 151 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 152 if (!LHSBinOp->isCommutative()) 153 return false; 154 155 assert(isa<BinaryOperator>(RHSI) && 156 "same opcode, but different instruction type?"); 157 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 158 159 // Commuted equality 160 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 161 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 162 } 163 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 164 assert(isa<CmpInst>(RHSI) && 165 "same opcode, but different instruction type?"); 166 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 167 // Commuted equality 168 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 169 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 170 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 171 } 172 173 return false; 174 } 175 176 //===----------------------------------------------------------------------===// 177 // CallValue 178 //===----------------------------------------------------------------------===// 179 180 namespace { 181 /// \brief Struct representing the available call values in the scoped hash 182 /// table. 183 struct CallValue { 184 Instruction *Inst; 185 186 CallValue(Instruction *I) : Inst(I) { 187 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 188 } 189 190 bool isSentinel() const { 191 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 192 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 193 } 194 195 static bool canHandle(Instruction *Inst) { 196 // Don't value number anything that returns void. 197 if (Inst->getType()->isVoidTy()) 198 return false; 199 200 CallInst *CI = dyn_cast<CallInst>(Inst); 201 if (!CI || !CI->onlyReadsMemory()) 202 return false; 203 return true; 204 } 205 }; 206 } 207 208 namespace llvm { 209 template <> struct DenseMapInfo<CallValue> { 210 static inline CallValue getEmptyKey() { 211 return DenseMapInfo<Instruction *>::getEmptyKey(); 212 } 213 static inline CallValue getTombstoneKey() { 214 return DenseMapInfo<Instruction *>::getTombstoneKey(); 215 } 216 static unsigned getHashValue(CallValue Val); 217 static bool isEqual(CallValue LHS, CallValue RHS); 218 }; 219 } 220 221 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 222 Instruction *Inst = Val.Inst; 223 // Hash all of the operands as pointers and mix in the opcode. 224 return hash_combine( 225 Inst->getOpcode(), 226 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 227 } 228 229 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 230 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 231 if (LHS.isSentinel() || RHS.isSentinel()) 232 return LHSI == RHSI; 233 return LHSI->isIdenticalTo(RHSI); 234 } 235 236 //===----------------------------------------------------------------------===// 237 // EarlyCSE implementation 238 //===----------------------------------------------------------------------===// 239 240 namespace { 241 /// \brief A simple and fast domtree-based CSE pass. 242 /// 243 /// This pass does a simple depth-first walk over the dominator tree, 244 /// eliminating trivially redundant instructions and using instsimplify to 245 /// canonicalize things as it goes. It is intended to be fast and catch obvious 246 /// cases so that instcombine and other passes are more effective. It is 247 /// expected that a later pass of GVN will catch the interesting/hard cases. 248 class EarlyCSE { 249 public: 250 const TargetLibraryInfo &TLI; 251 const TargetTransformInfo &TTI; 252 DominatorTree &DT; 253 AssumptionCache &AC; 254 typedef RecyclingAllocator< 255 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 256 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 257 AllocatorTy> ScopedHTType; 258 259 /// \brief A scoped hash table of the current values of all of our simple 260 /// scalar expressions. 261 /// 262 /// As we walk down the domtree, we look to see if instructions are in this: 263 /// if so, we replace them with what we find, otherwise we insert them so 264 /// that dominated values can succeed in their lookup. 265 ScopedHTType AvailableValues; 266 267 /// A scoped hash table of the current values of previously encounted memory 268 /// locations. 269 /// 270 /// This allows us to get efficient access to dominating loads or stores when 271 /// we have a fully redundant load. In addition to the most recent load, we 272 /// keep track of a generation count of the read, which is compared against 273 /// the current generation count. The current generation count is incremented 274 /// after every possibly writing memory operation, which ensures that we only 275 /// CSE loads with other loads that have no intervening store. Ordering 276 /// events (such as fences or atomic instructions) increment the generation 277 /// count as well; essentially, we model these as writes to all possible 278 /// locations. Note that atomic and/or volatile loads and stores can be 279 /// present the table; it is the responsibility of the consumer to inspect 280 /// the atomicity/volatility if needed. 281 struct LoadValue { 282 Instruction *DefInst; 283 unsigned Generation; 284 int MatchingId; 285 bool IsAtomic; 286 bool IsInvariant; 287 LoadValue() 288 : DefInst(nullptr), Generation(0), MatchingId(-1), IsAtomic(false), 289 IsInvariant(false) {} 290 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 291 bool IsAtomic, bool IsInvariant) 292 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 293 IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} 294 }; 295 typedef RecyclingAllocator<BumpPtrAllocator, 296 ScopedHashTableVal<Value *, LoadValue>> 297 LoadMapAllocator; 298 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 299 LoadMapAllocator> LoadHTType; 300 LoadHTType AvailableLoads; 301 302 /// \brief A scoped hash table of the current values of read-only call 303 /// values. 304 /// 305 /// It uses the same generation count as loads. 306 typedef ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>> 307 CallHTType; 308 CallHTType AvailableCalls; 309 310 /// \brief This is the current generation of the memory value. 311 unsigned CurrentGeneration; 312 313 /// \brief Set up the EarlyCSE runner for a particular function. 314 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 315 DominatorTree &DT, AssumptionCache &AC) 316 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {} 317 318 bool run(); 319 320 private: 321 // Almost a POD, but needs to call the constructors for the scoped hash 322 // tables so that a new scope gets pushed on. These are RAII so that the 323 // scope gets popped when the NodeScope is destroyed. 324 class NodeScope { 325 public: 326 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 327 CallHTType &AvailableCalls) 328 : Scope(AvailableValues), LoadScope(AvailableLoads), 329 CallScope(AvailableCalls) {} 330 331 private: 332 NodeScope(const NodeScope &) = delete; 333 void operator=(const NodeScope &) = delete; 334 335 ScopedHTType::ScopeTy Scope; 336 LoadHTType::ScopeTy LoadScope; 337 CallHTType::ScopeTy CallScope; 338 }; 339 340 // Contains all the needed information to create a stack for doing a depth 341 // first tranversal of the tree. This includes scopes for values, loads, and 342 // calls as well as the generation. There is a child iterator so that the 343 // children do not need to be store separately. 344 class StackNode { 345 public: 346 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 347 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 348 DomTreeNode::iterator child, DomTreeNode::iterator end) 349 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 350 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 351 Processed(false) {} 352 353 // Accessors. 354 unsigned currentGeneration() { return CurrentGeneration; } 355 unsigned childGeneration() { return ChildGeneration; } 356 void childGeneration(unsigned generation) { ChildGeneration = generation; } 357 DomTreeNode *node() { return Node; } 358 DomTreeNode::iterator childIter() { return ChildIter; } 359 DomTreeNode *nextChild() { 360 DomTreeNode *child = *ChildIter; 361 ++ChildIter; 362 return child; 363 } 364 DomTreeNode::iterator end() { return EndIter; } 365 bool isProcessed() { return Processed; } 366 void process() { Processed = true; } 367 368 private: 369 StackNode(const StackNode &) = delete; 370 void operator=(const StackNode &) = delete; 371 372 // Members. 373 unsigned CurrentGeneration; 374 unsigned ChildGeneration; 375 DomTreeNode *Node; 376 DomTreeNode::iterator ChildIter; 377 DomTreeNode::iterator EndIter; 378 NodeScope Scopes; 379 bool Processed; 380 }; 381 382 /// \brief Wrapper class to handle memory instructions, including loads, 383 /// stores and intrinsic loads and stores defined by the target. 384 class ParseMemoryInst { 385 public: 386 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 387 : IsTargetMemInst(false), Inst(Inst) { 388 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 389 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1) 390 IsTargetMemInst = true; 391 } 392 bool isLoad() const { 393 if (IsTargetMemInst) return Info.ReadMem; 394 return isa<LoadInst>(Inst); 395 } 396 bool isStore() const { 397 if (IsTargetMemInst) return Info.WriteMem; 398 return isa<StoreInst>(Inst); 399 } 400 bool isAtomic() const { 401 if (IsTargetMemInst) { 402 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 403 return false; 404 } 405 return Inst->isAtomic(); 406 } 407 bool isUnordered() const { 408 if (IsTargetMemInst) { 409 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 410 return true; 411 } 412 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 413 return LI->isUnordered(); 414 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 415 return SI->isUnordered(); 416 } 417 // Conservative answer 418 return !Inst->isAtomic(); 419 } 420 421 bool isVolatile() const { 422 if (IsTargetMemInst) { 423 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 424 return false; 425 } 426 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 427 return LI->isVolatile(); 428 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 429 return SI->isVolatile(); 430 } 431 // Conservative answer 432 return true; 433 } 434 435 bool isInvariantLoad() const { 436 if (auto *LI = dyn_cast<LoadInst>(Inst)) 437 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 438 return false; 439 } 440 441 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 442 return (getPointerOperand() == Inst.getPointerOperand() && 443 getMatchingId() == Inst.getMatchingId()); 444 } 445 bool isValid() const { return getPointerOperand() != nullptr; } 446 447 // For regular (non-intrinsic) loads/stores, this is set to -1. For 448 // intrinsic loads/stores, the id is retrieved from the corresponding 449 // field in the MemIntrinsicInfo structure. That field contains 450 // non-negative values only. 451 int getMatchingId() const { 452 if (IsTargetMemInst) return Info.MatchingId; 453 return -1; 454 } 455 Value *getPointerOperand() const { 456 if (IsTargetMemInst) return Info.PtrVal; 457 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 458 return LI->getPointerOperand(); 459 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 460 return SI->getPointerOperand(); 461 } 462 return nullptr; 463 } 464 bool mayReadFromMemory() const { 465 if (IsTargetMemInst) return Info.ReadMem; 466 return Inst->mayReadFromMemory(); 467 } 468 bool mayWriteToMemory() const { 469 if (IsTargetMemInst) return Info.WriteMem; 470 return Inst->mayWriteToMemory(); 471 } 472 473 private: 474 bool IsTargetMemInst; 475 MemIntrinsicInfo Info; 476 Instruction *Inst; 477 }; 478 479 bool processNode(DomTreeNode *Node); 480 481 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 482 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 483 return LI; 484 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 485 return SI->getValueOperand(); 486 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 487 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 488 ExpectedType); 489 } 490 }; 491 } 492 493 bool EarlyCSE::processNode(DomTreeNode *Node) { 494 bool Changed = false; 495 BasicBlock *BB = Node->getBlock(); 496 497 // If this block has a single predecessor, then the predecessor is the parent 498 // of the domtree node and all of the live out memory values are still current 499 // in this block. If this block has multiple predecessors, then they could 500 // have invalidated the live-out memory values of our parent value. For now, 501 // just be conservative and invalidate memory if this block has multiple 502 // predecessors. 503 if (!BB->getSinglePredecessor()) 504 ++CurrentGeneration; 505 506 // If this node has a single predecessor which ends in a conditional branch, 507 // we can infer the value of the branch condition given that we took this 508 // path. We need the single predecessor to ensure there's not another path 509 // which reaches this block where the condition might hold a different 510 // value. Since we're adding this to the scoped hash table (like any other 511 // def), it will have been popped if we encounter a future merge block. 512 if (BasicBlock *Pred = BB->getSinglePredecessor()) 513 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 514 if (BI->isConditional()) 515 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 516 if (SimpleValue::canHandle(CondInst)) { 517 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 518 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 519 ConstantInt::getTrue(BB->getContext()) : 520 ConstantInt::getFalse(BB->getContext()); 521 AvailableValues.insert(CondInst, ConditionalConstant); 522 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 523 << CondInst->getName() << "' as " << *ConditionalConstant 524 << " in " << BB->getName() << "\n"); 525 // Replace all dominated uses with the known value. 526 if (unsigned Count = 527 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 528 BasicBlockEdge(Pred, BB))) { 529 Changed = true; 530 NumCSECVP = NumCSECVP + Count; 531 } 532 } 533 534 /// LastStore - Keep track of the last non-volatile store that we saw... for 535 /// as long as there in no instruction that reads memory. If we see a store 536 /// to the same location, we delete the dead store. This zaps trivial dead 537 /// stores which can occur in bitfield code among other things. 538 Instruction *LastStore = nullptr; 539 540 const DataLayout &DL = BB->getModule()->getDataLayout(); 541 542 // See if any instructions in the block can be eliminated. If so, do it. If 543 // not, add them to AvailableValues. 544 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 545 Instruction *Inst = &*I++; 546 547 // Dead instructions should just be removed. 548 if (isInstructionTriviallyDead(Inst, &TLI)) { 549 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 550 Inst->eraseFromParent(); 551 Changed = true; 552 ++NumSimplify; 553 continue; 554 } 555 556 // Skip assume intrinsics, they don't really have side effects (although 557 // they're marked as such to ensure preservation of control dependencies), 558 // and this pass will not disturb any of the assumption's control 559 // dependencies. 560 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 561 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 562 continue; 563 } 564 565 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 566 if (auto *CondI = 567 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 568 // The condition we're on guarding here is true for all dominated 569 // locations. 570 if (SimpleValue::canHandle(CondI)) 571 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 572 } 573 574 // Guard intrinsics read all memory, but don't write any memory. 575 // Accordingly, don't update the generation but consume the last store (to 576 // avoid an incorrect DSE). 577 LastStore = nullptr; 578 continue; 579 } 580 581 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 582 // its simpler value. 583 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 584 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 585 bool Killed = false; 586 if (!Inst->use_empty()) { 587 Inst->replaceAllUsesWith(V); 588 Changed = true; 589 } 590 if (isInstructionTriviallyDead(Inst, &TLI)) { 591 Inst->eraseFromParent(); 592 Changed = true; 593 Killed = true; 594 } 595 if (Changed) 596 ++NumSimplify; 597 if (Killed) 598 continue; 599 } 600 601 // If this is a simple instruction that we can value number, process it. 602 if (SimpleValue::canHandle(Inst)) { 603 // See if the instruction has an available value. If so, use it. 604 if (Value *V = AvailableValues.lookup(Inst)) { 605 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 606 if (auto *I = dyn_cast<Instruction>(V)) 607 I->andIRFlags(Inst); 608 Inst->replaceAllUsesWith(V); 609 Inst->eraseFromParent(); 610 Changed = true; 611 ++NumCSE; 612 continue; 613 } 614 615 // Otherwise, just remember that this value is available. 616 AvailableValues.insert(Inst, Inst); 617 continue; 618 } 619 620 ParseMemoryInst MemInst(Inst, TTI); 621 // If this is a non-volatile load, process it. 622 if (MemInst.isValid() && MemInst.isLoad()) { 623 // (conservatively) we can't peak past the ordering implied by this 624 // operation, but we can add this load to our set of available values 625 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 626 LastStore = nullptr; 627 ++CurrentGeneration; 628 } 629 630 // If we have an available version of this load, and if it is the right 631 // generation or the load is known to be from an invariant location, 632 // replace this instruction. 633 // 634 // A dominating invariant load implies that the location loaded from is 635 // unchanging beginning at the point of the invariant load, so the load 636 // we're CSE'ing _away_ does not need to be invariant, only the available 637 // load we're CSE'ing _to_ does. 638 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 639 if (InVal.DefInst != nullptr && 640 (InVal.Generation == CurrentGeneration || InVal.IsInvariant) && 641 InVal.MatchingId == MemInst.getMatchingId() && 642 // We don't yet handle removing loads with ordering of any kind. 643 !MemInst.isVolatile() && MemInst.isUnordered() && 644 // We can't replace an atomic load with one which isn't also atomic. 645 InVal.IsAtomic >= MemInst.isAtomic()) { 646 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 647 if (Op != nullptr) { 648 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 649 << " to: " << *InVal.DefInst << '\n'); 650 if (!Inst->use_empty()) 651 Inst->replaceAllUsesWith(Op); 652 Inst->eraseFromParent(); 653 Changed = true; 654 ++NumCSELoad; 655 continue; 656 } 657 } 658 659 // Otherwise, remember that we have this instruction. 660 AvailableLoads.insert( 661 MemInst.getPointerOperand(), 662 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 663 MemInst.isAtomic(), MemInst.isInvariantLoad())); 664 LastStore = nullptr; 665 continue; 666 } 667 668 // If this instruction may read from memory, forget LastStore. 669 // Load/store intrinsics will indicate both a read and a write to 670 // memory. The target may override this (e.g. so that a store intrinsic 671 // does not read from memory, and thus will be treated the same as a 672 // regular store for commoning purposes). 673 if (Inst->mayReadFromMemory() && 674 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 675 LastStore = nullptr; 676 677 // If this is a read-only call, process it. 678 if (CallValue::canHandle(Inst)) { 679 // If we have an available version of this call, and if it is the right 680 // generation, replace this instruction. 681 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 682 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 683 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 684 << " to: " << *InVal.first << '\n'); 685 if (!Inst->use_empty()) 686 Inst->replaceAllUsesWith(InVal.first); 687 Inst->eraseFromParent(); 688 Changed = true; 689 ++NumCSECall; 690 continue; 691 } 692 693 // Otherwise, remember that we have this instruction. 694 AvailableCalls.insert( 695 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 696 continue; 697 } 698 699 // A release fence requires that all stores complete before it, but does 700 // not prevent the reordering of following loads 'before' the fence. As a 701 // result, we don't need to consider it as writing to memory and don't need 702 // to advance the generation. We do need to prevent DSE across the fence, 703 // but that's handled above. 704 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 705 if (FI->getOrdering() == AtomicOrdering::Release) { 706 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 707 continue; 708 } 709 710 // write back DSE - If we write back the same value we just loaded from 711 // the same location and haven't passed any intervening writes or ordering 712 // operations, we can remove the write. The primary benefit is in allowing 713 // the available load table to remain valid and value forward past where 714 // the store originally was. 715 if (MemInst.isValid() && MemInst.isStore()) { 716 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 717 if (InVal.DefInst && 718 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 719 InVal.Generation == CurrentGeneration && 720 InVal.MatchingId == MemInst.getMatchingId() && 721 // We don't yet handle removing stores with ordering of any kind. 722 !MemInst.isVolatile() && MemInst.isUnordered()) { 723 assert((!LastStore || 724 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 725 MemInst.getPointerOperand()) && 726 "can't have an intervening store!"); 727 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 728 Inst->eraseFromParent(); 729 Changed = true; 730 ++NumDSE; 731 // We can avoid incrementing the generation count since we were able 732 // to eliminate this store. 733 continue; 734 } 735 } 736 737 // Okay, this isn't something we can CSE at all. Check to see if it is 738 // something that could modify memory. If so, our available memory values 739 // cannot be used so bump the generation count. 740 if (Inst->mayWriteToMemory()) { 741 ++CurrentGeneration; 742 743 if (MemInst.isValid() && MemInst.isStore()) { 744 // We do a trivial form of DSE if there are two stores to the same 745 // location with no intervening loads. Delete the earlier store. 746 // At the moment, we don't remove ordered stores, but do remove 747 // unordered atomic stores. There's no special requirement (for 748 // unordered atomics) about removing atomic stores only in favor of 749 // other atomic stores since we we're going to execute the non-atomic 750 // one anyway and the atomic one might never have become visible. 751 if (LastStore) { 752 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 753 assert(LastStoreMemInst.isUnordered() && 754 !LastStoreMemInst.isVolatile() && 755 "Violated invariant"); 756 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 757 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 758 << " due to: " << *Inst << '\n'); 759 LastStore->eraseFromParent(); 760 Changed = true; 761 ++NumDSE; 762 LastStore = nullptr; 763 } 764 // fallthrough - we can exploit information about this store 765 } 766 767 // Okay, we just invalidated anything we knew about loaded values. Try 768 // to salvage *something* by remembering that the stored value is a live 769 // version of the pointer. It is safe to forward from volatile stores 770 // to non-volatile loads, so we don't have to check for volatility of 771 // the store. 772 AvailableLoads.insert( 773 MemInst.getPointerOperand(), 774 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 775 MemInst.isAtomic(), /*IsInvariant=*/false)); 776 777 // Remember that this was the last unordered store we saw for DSE. We 778 // don't yet handle DSE on ordered or volatile stores since we don't 779 // have a good way to model the ordering requirement for following 780 // passes once the store is removed. We could insert a fence, but 781 // since fences are slightly stronger than stores in their ordering, 782 // it's not clear this is a profitable transform. Another option would 783 // be to merge the ordering with that of the post dominating store. 784 if (MemInst.isUnordered() && !MemInst.isVolatile()) 785 LastStore = Inst; 786 else 787 LastStore = nullptr; 788 } 789 } 790 } 791 792 return Changed; 793 } 794 795 bool EarlyCSE::run() { 796 // Note, deque is being used here because there is significant performance 797 // gains over vector when the container becomes very large due to the 798 // specific access patterns. For more information see the mailing list 799 // discussion on this: 800 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 801 std::deque<StackNode *> nodesToProcess; 802 803 bool Changed = false; 804 805 // Process the root node. 806 nodesToProcess.push_back(new StackNode( 807 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 808 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 809 810 // Save the current generation. 811 unsigned LiveOutGeneration = CurrentGeneration; 812 813 // Process the stack. 814 while (!nodesToProcess.empty()) { 815 // Grab the first item off the stack. Set the current generation, remove 816 // the node from the stack, and process it. 817 StackNode *NodeToProcess = nodesToProcess.back(); 818 819 // Initialize class members. 820 CurrentGeneration = NodeToProcess->currentGeneration(); 821 822 // Check if the node needs to be processed. 823 if (!NodeToProcess->isProcessed()) { 824 // Process the node. 825 Changed |= processNode(NodeToProcess->node()); 826 NodeToProcess->childGeneration(CurrentGeneration); 827 NodeToProcess->process(); 828 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 829 // Push the next child onto the stack. 830 DomTreeNode *child = NodeToProcess->nextChild(); 831 nodesToProcess.push_back( 832 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 833 NodeToProcess->childGeneration(), child, child->begin(), 834 child->end())); 835 } else { 836 // It has been processed, and there are no more children to process, 837 // so delete it and pop it off the stack. 838 delete NodeToProcess; 839 nodesToProcess.pop_back(); 840 } 841 } // while (!nodes...) 842 843 // Reset the current generation. 844 CurrentGeneration = LiveOutGeneration; 845 846 return Changed; 847 } 848 849 PreservedAnalyses EarlyCSEPass::run(Function &F, 850 FunctionAnalysisManager &AM) { 851 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 852 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 853 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 854 auto &AC = AM.getResult<AssumptionAnalysis>(F); 855 856 EarlyCSE CSE(TLI, TTI, DT, AC); 857 858 if (!CSE.run()) 859 return PreservedAnalyses::all(); 860 861 // CSE preserves the dominator tree because it doesn't mutate the CFG. 862 // FIXME: Bundle this with other CFG-preservation. 863 PreservedAnalyses PA; 864 PA.preserve<DominatorTreeAnalysis>(); 865 PA.preserve<GlobalsAA>(); 866 return PA; 867 } 868 869 namespace { 870 /// \brief A simple and fast domtree-based CSE pass. 871 /// 872 /// This pass does a simple depth-first walk over the dominator tree, 873 /// eliminating trivially redundant instructions and using instsimplify to 874 /// canonicalize things as it goes. It is intended to be fast and catch obvious 875 /// cases so that instcombine and other passes are more effective. It is 876 /// expected that a later pass of GVN will catch the interesting/hard cases. 877 class EarlyCSELegacyPass : public FunctionPass { 878 public: 879 static char ID; 880 881 EarlyCSELegacyPass() : FunctionPass(ID) { 882 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 883 } 884 885 bool runOnFunction(Function &F) override { 886 if (skipFunction(F)) 887 return false; 888 889 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 890 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 891 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 892 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 893 894 EarlyCSE CSE(TLI, TTI, DT, AC); 895 896 return CSE.run(); 897 } 898 899 void getAnalysisUsage(AnalysisUsage &AU) const override { 900 AU.addRequired<AssumptionCacheTracker>(); 901 AU.addRequired<DominatorTreeWrapperPass>(); 902 AU.addRequired<TargetLibraryInfoWrapperPass>(); 903 AU.addRequired<TargetTransformInfoWrapperPass>(); 904 AU.addPreserved<GlobalsAAWrapperPass>(); 905 AU.setPreservesCFG(); 906 } 907 }; 908 } 909 910 char EarlyCSELegacyPass::ID = 0; 911 912 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 913 914 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 915 false) 916 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 917 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 918 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 919 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 920 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 921