1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd"); 71 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 72 73 DEBUG_COUNTER(CSECounter, "early-cse", 74 "Controls which instructions are removed"); 75 76 static cl::opt<unsigned> EarlyCSEMssaOptCap( 77 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 78 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 79 "for faster compile. Caps the MemorySSA clobbering calls.")); 80 81 static cl::opt<bool> EarlyCSEDebugHash( 82 "earlycse-debug-hash", cl::init(false), cl::Hidden, 83 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 84 "function is well-behaved w.r.t. its isEqual predicate")); 85 86 //===----------------------------------------------------------------------===// 87 // SimpleValue 88 //===----------------------------------------------------------------------===// 89 90 namespace { 91 92 /// Struct representing the available values in the scoped hash table. 93 struct SimpleValue { 94 Instruction *Inst; 95 96 SimpleValue(Instruction *I) : Inst(I) { 97 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 98 } 99 100 bool isSentinel() const { 101 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 102 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 103 } 104 105 static bool canHandle(Instruction *Inst) { 106 // This can only handle non-void readnone functions. 107 // Also handled are constrained intrinsic that look like the types 108 // of instruction handled below (UnaryOperator, etc.). 109 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 110 if (Function *F = CI->getCalledFunction()) { 111 switch ((Intrinsic::ID)F->getIntrinsicID()) { 112 case Intrinsic::experimental_constrained_fadd: 113 case Intrinsic::experimental_constrained_fsub: 114 case Intrinsic::experimental_constrained_fmul: 115 case Intrinsic::experimental_constrained_fdiv: 116 case Intrinsic::experimental_constrained_frem: 117 case Intrinsic::experimental_constrained_fptosi: 118 case Intrinsic::experimental_constrained_sitofp: 119 case Intrinsic::experimental_constrained_fptoui: 120 case Intrinsic::experimental_constrained_uitofp: 121 case Intrinsic::experimental_constrained_fcmp: 122 case Intrinsic::experimental_constrained_fcmps: { 123 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 124 if (CFP->getExceptionBehavior() && 125 CFP->getExceptionBehavior() == fp::ebStrict) 126 return false; 127 // Since we CSE across function calls we must not allow 128 // the rounding mode to change. 129 if (CFP->getRoundingMode() && 130 CFP->getRoundingMode() == RoundingMode::Dynamic) 131 return false; 132 return true; 133 } 134 } 135 } 136 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && 137 // FIXME: Currently the calls which may access the thread id may 138 // be considered as not accessing the memory. But this is 139 // problematic for coroutines, since coroutines may resume in a 140 // different thread. So we disable the optimization here for the 141 // correctness. However, it may block many other correct 142 // optimizations. Revert this one when we detect the memory 143 // accessing kind more precisely. 144 !CI->getFunction()->isPresplitCoroutine(); 145 } 146 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 147 isa<BinaryOperator>(Inst) || isa<CmpInst>(Inst) || 148 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 149 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 150 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst) || 151 isa<FreezeInst>(Inst); 152 } 153 }; 154 155 } // end anonymous namespace 156 157 namespace llvm { 158 159 template <> struct DenseMapInfo<SimpleValue> { 160 static inline SimpleValue getEmptyKey() { 161 return DenseMapInfo<Instruction *>::getEmptyKey(); 162 } 163 164 static inline SimpleValue getTombstoneKey() { 165 return DenseMapInfo<Instruction *>::getTombstoneKey(); 166 } 167 168 static unsigned getHashValue(SimpleValue Val); 169 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 170 }; 171 172 } // end namespace llvm 173 174 /// Match a 'select' including an optional 'not's of the condition. 175 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 176 Value *&B, 177 SelectPatternFlavor &Flavor) { 178 // Return false if V is not even a select. 179 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 180 return false; 181 182 // Look through a 'not' of the condition operand by swapping A/B. 183 Value *CondNot; 184 if (match(Cond, m_Not(m_Value(CondNot)))) { 185 Cond = CondNot; 186 std::swap(A, B); 187 } 188 189 // Match canonical forms of min/max. We are not using ValueTracking's 190 // more powerful matchSelectPattern() because it may rely on instruction flags 191 // such as "nsw". That would be incompatible with the current hashing 192 // mechanism that may remove flags to increase the likelihood of CSE. 193 194 Flavor = SPF_UNKNOWN; 195 CmpInst::Predicate Pred; 196 197 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 198 // Check for commuted variants of min/max by swapping predicate. 199 // If we do not match the standard or commuted patterns, this is not a 200 // recognized form of min/max, but it is still a select, so return true. 201 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 202 return true; 203 Pred = ICmpInst::getSwappedPredicate(Pred); 204 } 205 206 switch (Pred) { 207 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 208 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 209 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 210 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 211 // Non-strict inequalities. 212 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 213 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 214 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 215 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 216 default: break; 217 } 218 219 return true; 220 } 221 222 static unsigned hashCallInst(CallInst *CI) { 223 // Don't CSE convergent calls in different basic blocks, because they 224 // implicitly depend on the set of threads that is currently executing. 225 if (CI->isConvergent()) { 226 return hash_combine( 227 CI->getOpcode(), CI->getParent(), 228 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 229 } 230 return hash_combine( 231 CI->getOpcode(), 232 hash_combine_range(CI->value_op_begin(), CI->value_op_end())); 233 } 234 235 static unsigned getHashValueImpl(SimpleValue Val) { 236 Instruction *Inst = Val.Inst; 237 // Hash in all of the operands as pointers. 238 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 239 Value *LHS = BinOp->getOperand(0); 240 Value *RHS = BinOp->getOperand(1); 241 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 242 std::swap(LHS, RHS); 243 244 return hash_combine(BinOp->getOpcode(), LHS, RHS); 245 } 246 247 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 248 // Compares can be commuted by swapping the comparands and 249 // updating the predicate. Choose the form that has the 250 // comparands in sorted order, or in the case of a tie, the 251 // one with the lower predicate. 252 Value *LHS = CI->getOperand(0); 253 Value *RHS = CI->getOperand(1); 254 CmpInst::Predicate Pred = CI->getPredicate(); 255 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 256 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 257 std::swap(LHS, RHS); 258 Pred = SwappedPred; 259 } 260 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 261 } 262 263 // Hash general selects to allow matching commuted true/false operands. 264 SelectPatternFlavor SPF; 265 Value *Cond, *A, *B; 266 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 267 // Hash min/max (cmp + select) to allow for commuted operands. 268 // Min/max may also have non-canonical compare predicate (eg, the compare for 269 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 270 // compare. 271 // TODO: We should also detect FP min/max. 272 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 273 SPF == SPF_UMIN || SPF == SPF_UMAX) { 274 if (A > B) 275 std::swap(A, B); 276 return hash_combine(Inst->getOpcode(), SPF, A, B); 277 } 278 279 // Hash general selects to allow matching commuted true/false operands. 280 281 // If we do not have a compare as the condition, just hash in the condition. 282 CmpInst::Predicate Pred; 283 Value *X, *Y; 284 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 285 return hash_combine(Inst->getOpcode(), Cond, A, B); 286 287 // Similar to cmp normalization (above) - canonicalize the predicate value: 288 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 289 if (CmpInst::getInversePredicate(Pred) < Pred) { 290 Pred = CmpInst::getInversePredicate(Pred); 291 std::swap(A, B); 292 } 293 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 294 } 295 296 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 297 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 298 299 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 300 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 301 302 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 303 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 304 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 305 306 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 307 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 308 IVI->getOperand(1), 309 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 310 311 assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) || 312 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 313 isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) && 314 "Invalid/unknown instruction"); 315 316 // Handle intrinsics with commutative operands. 317 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 318 // 2 operands are commutative. 319 auto *II = dyn_cast<IntrinsicInst>(Inst); 320 if (II && II->isCommutative() && II->arg_size() == 2) { 321 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 322 if (LHS > RHS) 323 std::swap(LHS, RHS); 324 return hash_combine(II->getOpcode(), LHS, RHS); 325 } 326 327 // gc.relocate is 'special' call: its second and third operands are 328 // not real values, but indices into statepoint's argument list. 329 // Get values they point to. 330 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 331 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 332 GCR->getBasePtr(), GCR->getDerivedPtr()); 333 334 // Don't CSE convergent calls in different basic blocks, because they 335 // implicitly depend on the set of threads that is currently executing. 336 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 337 return hashCallInst(CI); 338 339 // Mix in the opcode. 340 return hash_combine( 341 Inst->getOpcode(), 342 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 343 } 344 345 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 346 #ifndef NDEBUG 347 // If -earlycse-debug-hash was specified, return a constant -- this 348 // will force all hashing to collide, so we'll exhaustively search 349 // the table for a match, and the assertion in isEqual will fire if 350 // there's a bug causing equal keys to hash differently. 351 if (EarlyCSEDebugHash) 352 return 0; 353 #endif 354 return getHashValueImpl(Val); 355 } 356 357 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 358 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 359 360 if (LHS.isSentinel() || RHS.isSentinel()) 361 return LHSI == RHSI; 362 363 if (LHSI->getOpcode() != RHSI->getOpcode()) 364 return false; 365 if (LHSI->isIdenticalToWhenDefined(RHSI)) { 366 // Convergent calls implicitly depend on the set of threads that is 367 // currently executing, so conservatively return false if they are in 368 // different basic blocks. 369 if (CallInst *CI = dyn_cast<CallInst>(LHSI); 370 CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 371 return false; 372 373 return true; 374 } 375 376 // If we're not strictly identical, we still might be a commutable instruction 377 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 378 if (!LHSBinOp->isCommutative()) 379 return false; 380 381 assert(isa<BinaryOperator>(RHSI) && 382 "same opcode, but different instruction type?"); 383 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 384 385 // Commuted equality 386 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 387 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 388 } 389 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 390 assert(isa<CmpInst>(RHSI) && 391 "same opcode, but different instruction type?"); 392 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 393 // Commuted equality 394 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 395 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 396 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 397 } 398 399 // TODO: Extend this for >2 args by matching the trailing N-2 args. 400 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 401 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 402 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 403 LII->isCommutative() && LII->arg_size() == 2) { 404 return LII->getArgOperand(0) == RII->getArgOperand(1) && 405 LII->getArgOperand(1) == RII->getArgOperand(0); 406 } 407 408 // See comment above in `getHashValue()`. 409 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 410 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 411 return GCR1->getOperand(0) == GCR2->getOperand(0) && 412 GCR1->getBasePtr() == GCR2->getBasePtr() && 413 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 414 415 // Min/max can occur with commuted operands, non-canonical predicates, 416 // and/or non-canonical operands. 417 // Selects can be non-trivially equivalent via inverted conditions and swaps. 418 SelectPatternFlavor LSPF, RSPF; 419 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 420 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 421 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 422 if (LSPF == RSPF) { 423 // TODO: We should also detect FP min/max. 424 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 425 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 426 return ((LHSA == RHSA && LHSB == RHSB) || 427 (LHSA == RHSB && LHSB == RHSA)); 428 429 // select Cond, A, B <--> select not(Cond), B, A 430 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 431 return true; 432 } 433 434 // If the true/false operands are swapped and the conditions are compares 435 // with inverted predicates, the selects are equal: 436 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 437 // 438 // This also handles patterns with a double-negation in the sense of not + 439 // inverse, because we looked through a 'not' in the matching function and 440 // swapped A/B: 441 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 442 // 443 // This intentionally does NOT handle patterns with a double-negation in 444 // the sense of not + not, because doing so could result in values 445 // comparing 446 // as equal that hash differently in the min/max cases like: 447 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 448 // ^ hashes as min ^ would not hash as min 449 // In the context of the EarlyCSE pass, however, such cases never reach 450 // this code, as we simplify the double-negation before hashing the second 451 // select (and so still succeed at CSEing them). 452 if (LHSA == RHSB && LHSB == RHSA) { 453 CmpInst::Predicate PredL, PredR; 454 Value *X, *Y; 455 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 456 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 457 CmpInst::getInversePredicate(PredL) == PredR) 458 return true; 459 } 460 } 461 462 return false; 463 } 464 465 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 466 // These comparisons are nontrivial, so assert that equality implies 467 // hash equality (DenseMap demands this as an invariant). 468 bool Result = isEqualImpl(LHS, RHS); 469 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 470 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 471 return Result; 472 } 473 474 //===----------------------------------------------------------------------===// 475 // CallValue 476 //===----------------------------------------------------------------------===// 477 478 namespace { 479 480 /// Struct representing the available call values in the scoped hash 481 /// table. 482 struct CallValue { 483 Instruction *Inst; 484 485 CallValue(Instruction *I) : Inst(I) { 486 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 487 } 488 489 bool isSentinel() const { 490 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 491 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 492 } 493 494 static bool canHandle(Instruction *Inst) { 495 // Don't value number anything that returns void. 496 if (Inst->getType()->isVoidTy()) 497 return false; 498 499 CallInst *CI = dyn_cast<CallInst>(Inst); 500 if (!CI || !CI->onlyReadsMemory() || 501 // FIXME: Currently the calls which may access the thread id may 502 // be considered as not accessing the memory. But this is 503 // problematic for coroutines, since coroutines may resume in a 504 // different thread. So we disable the optimization here for the 505 // correctness. However, it may block many other correct 506 // optimizations. Revert this one when we detect the memory 507 // accessing kind more precisely. 508 CI->getFunction()->isPresplitCoroutine()) 509 return false; 510 return true; 511 } 512 }; 513 514 } // end anonymous namespace 515 516 namespace llvm { 517 518 template <> struct DenseMapInfo<CallValue> { 519 static inline CallValue getEmptyKey() { 520 return DenseMapInfo<Instruction *>::getEmptyKey(); 521 } 522 523 static inline CallValue getTombstoneKey() { 524 return DenseMapInfo<Instruction *>::getTombstoneKey(); 525 } 526 527 static unsigned getHashValue(CallValue Val); 528 static bool isEqual(CallValue LHS, CallValue RHS); 529 }; 530 531 } // end namespace llvm 532 533 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 534 Instruction *Inst = Val.Inst; 535 536 // Hash all of the operands as pointers and mix in the opcode. 537 return hashCallInst(cast<CallInst>(Inst)); 538 } 539 540 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 541 if (LHS.isSentinel() || RHS.isSentinel()) 542 return LHS.Inst == RHS.Inst; 543 544 CallInst *LHSI = cast<CallInst>(LHS.Inst); 545 CallInst *RHSI = cast<CallInst>(RHS.Inst); 546 547 // Convergent calls implicitly depend on the set of threads that is 548 // currently executing, so conservatively return false if they are in 549 // different basic blocks. 550 if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 551 return false; 552 553 return LHSI->isIdenticalTo(RHSI); 554 } 555 556 //===----------------------------------------------------------------------===// 557 // GEPValue 558 //===----------------------------------------------------------------------===// 559 560 namespace { 561 562 struct GEPValue { 563 Instruction *Inst; 564 std::optional<int64_t> ConstantOffset; 565 566 GEPValue(Instruction *I) : Inst(I) { 567 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 568 } 569 570 GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset) 571 : Inst(I), ConstantOffset(ConstantOffset) { 572 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 573 } 574 575 bool isSentinel() const { 576 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 577 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 578 } 579 580 static bool canHandle(Instruction *Inst) { 581 return isa<GetElementPtrInst>(Inst); 582 } 583 }; 584 585 } // namespace 586 587 namespace llvm { 588 589 template <> struct DenseMapInfo<GEPValue> { 590 static inline GEPValue getEmptyKey() { 591 return DenseMapInfo<Instruction *>::getEmptyKey(); 592 } 593 594 static inline GEPValue getTombstoneKey() { 595 return DenseMapInfo<Instruction *>::getTombstoneKey(); 596 } 597 598 static unsigned getHashValue(const GEPValue &Val); 599 static bool isEqual(const GEPValue &LHS, const GEPValue &RHS); 600 }; 601 602 } // end namespace llvm 603 604 unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) { 605 auto *GEP = cast<GetElementPtrInst>(Val.Inst); 606 if (Val.ConstantOffset.has_value()) 607 return hash_combine(GEP->getOpcode(), GEP->getPointerOperand(), 608 Val.ConstantOffset.value()); 609 return hash_combine( 610 GEP->getOpcode(), 611 hash_combine_range(GEP->value_op_begin(), GEP->value_op_end())); 612 } 613 614 bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) { 615 if (LHS.isSentinel() || RHS.isSentinel()) 616 return LHS.Inst == RHS.Inst; 617 auto *LGEP = cast<GetElementPtrInst>(LHS.Inst); 618 auto *RGEP = cast<GetElementPtrInst>(RHS.Inst); 619 if (LGEP->getPointerOperand() != RGEP->getPointerOperand()) 620 return false; 621 if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value()) 622 return LHS.ConstantOffset.value() == RHS.ConstantOffset.value(); 623 return LGEP->isIdenticalToWhenDefined(RGEP); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // EarlyCSE implementation 628 //===----------------------------------------------------------------------===// 629 630 namespace { 631 632 /// A simple and fast domtree-based CSE pass. 633 /// 634 /// This pass does a simple depth-first walk over the dominator tree, 635 /// eliminating trivially redundant instructions and using instsimplify to 636 /// canonicalize things as it goes. It is intended to be fast and catch obvious 637 /// cases so that instcombine and other passes are more effective. It is 638 /// expected that a later pass of GVN will catch the interesting/hard cases. 639 class EarlyCSE { 640 public: 641 const TargetLibraryInfo &TLI; 642 const TargetTransformInfo &TTI; 643 DominatorTree &DT; 644 AssumptionCache &AC; 645 const SimplifyQuery SQ; 646 MemorySSA *MSSA; 647 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 648 649 using AllocatorTy = 650 RecyclingAllocator<BumpPtrAllocator, 651 ScopedHashTableVal<SimpleValue, Value *>>; 652 using ScopedHTType = 653 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 654 AllocatorTy>; 655 656 /// A scoped hash table of the current values of all of our simple 657 /// scalar expressions. 658 /// 659 /// As we walk down the domtree, we look to see if instructions are in this: 660 /// if so, we replace them with what we find, otherwise we insert them so 661 /// that dominated values can succeed in their lookup. 662 ScopedHTType AvailableValues; 663 664 /// A scoped hash table of the current values of previously encountered 665 /// memory locations. 666 /// 667 /// This allows us to get efficient access to dominating loads or stores when 668 /// we have a fully redundant load. In addition to the most recent load, we 669 /// keep track of a generation count of the read, which is compared against 670 /// the current generation count. The current generation count is incremented 671 /// after every possibly writing memory operation, which ensures that we only 672 /// CSE loads with other loads that have no intervening store. Ordering 673 /// events (such as fences or atomic instructions) increment the generation 674 /// count as well; essentially, we model these as writes to all possible 675 /// locations. Note that atomic and/or volatile loads and stores can be 676 /// present the table; it is the responsibility of the consumer to inspect 677 /// the atomicity/volatility if needed. 678 struct LoadValue { 679 Instruction *DefInst = nullptr; 680 unsigned Generation = 0; 681 int MatchingId = -1; 682 bool IsAtomic = false; 683 bool IsLoad = false; 684 685 LoadValue() = default; 686 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 687 bool IsAtomic, bool IsLoad) 688 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 689 IsAtomic(IsAtomic), IsLoad(IsLoad) {} 690 }; 691 692 using LoadMapAllocator = 693 RecyclingAllocator<BumpPtrAllocator, 694 ScopedHashTableVal<Value *, LoadValue>>; 695 using LoadHTType = 696 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 697 LoadMapAllocator>; 698 699 LoadHTType AvailableLoads; 700 701 // A scoped hash table mapping memory locations (represented as typed 702 // addresses) to generation numbers at which that memory location became 703 // (henceforth indefinitely) invariant. 704 using InvariantMapAllocator = 705 RecyclingAllocator<BumpPtrAllocator, 706 ScopedHashTableVal<MemoryLocation, unsigned>>; 707 using InvariantHTType = 708 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 709 InvariantMapAllocator>; 710 InvariantHTType AvailableInvariants; 711 712 /// A scoped hash table of the current values of read-only call 713 /// values. 714 /// 715 /// It uses the same generation count as loads. 716 using CallHTType = 717 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 718 CallHTType AvailableCalls; 719 720 using GEPMapAllocatorTy = 721 RecyclingAllocator<BumpPtrAllocator, 722 ScopedHashTableVal<GEPValue, Value *>>; 723 using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>, 724 GEPMapAllocatorTy>; 725 GEPHTType AvailableGEPs; 726 727 /// This is the current generation of the memory value. 728 unsigned CurrentGeneration = 0; 729 730 /// Set up the EarlyCSE runner for a particular function. 731 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 732 const TargetTransformInfo &TTI, DominatorTree &DT, 733 AssumptionCache &AC, MemorySSA *MSSA) 734 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 735 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 736 737 bool run(); 738 739 private: 740 unsigned ClobberCounter = 0; 741 // Almost a POD, but needs to call the constructors for the scoped hash 742 // tables so that a new scope gets pushed on. These are RAII so that the 743 // scope gets popped when the NodeScope is destroyed. 744 class NodeScope { 745 public: 746 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 747 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 748 GEPHTType &AvailableGEPs) 749 : Scope(AvailableValues), LoadScope(AvailableLoads), 750 InvariantScope(AvailableInvariants), CallScope(AvailableCalls), 751 GEPScope(AvailableGEPs) {} 752 NodeScope(const NodeScope &) = delete; 753 NodeScope &operator=(const NodeScope &) = delete; 754 755 private: 756 ScopedHTType::ScopeTy Scope; 757 LoadHTType::ScopeTy LoadScope; 758 InvariantHTType::ScopeTy InvariantScope; 759 CallHTType::ScopeTy CallScope; 760 GEPHTType::ScopeTy GEPScope; 761 }; 762 763 // Contains all the needed information to create a stack for doing a depth 764 // first traversal of the tree. This includes scopes for values, loads, and 765 // calls as well as the generation. There is a child iterator so that the 766 // children do not need to be store separately. 767 class StackNode { 768 public: 769 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 770 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 771 GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n, 772 DomTreeNode::const_iterator child, 773 DomTreeNode::const_iterator end) 774 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 775 EndIter(end), 776 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 777 AvailableCalls, AvailableGEPs) {} 778 StackNode(const StackNode &) = delete; 779 StackNode &operator=(const StackNode &) = delete; 780 781 // Accessors. 782 unsigned currentGeneration() const { return CurrentGeneration; } 783 unsigned childGeneration() const { return ChildGeneration; } 784 void childGeneration(unsigned generation) { ChildGeneration = generation; } 785 DomTreeNode *node() { return Node; } 786 DomTreeNode::const_iterator childIter() const { return ChildIter; } 787 788 DomTreeNode *nextChild() { 789 DomTreeNode *child = *ChildIter; 790 ++ChildIter; 791 return child; 792 } 793 794 DomTreeNode::const_iterator end() const { return EndIter; } 795 bool isProcessed() const { return Processed; } 796 void process() { Processed = true; } 797 798 private: 799 unsigned CurrentGeneration; 800 unsigned ChildGeneration; 801 DomTreeNode *Node; 802 DomTreeNode::const_iterator ChildIter; 803 DomTreeNode::const_iterator EndIter; 804 NodeScope Scopes; 805 bool Processed = false; 806 }; 807 808 /// Wrapper class to handle memory instructions, including loads, 809 /// stores and intrinsic loads and stores defined by the target. 810 class ParseMemoryInst { 811 public: 812 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 813 : Inst(Inst) { 814 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 815 IntrID = II->getIntrinsicID(); 816 if (TTI.getTgtMemIntrinsic(II, Info)) 817 return; 818 if (isHandledNonTargetIntrinsic(IntrID)) { 819 switch (IntrID) { 820 case Intrinsic::masked_load: 821 Info.PtrVal = Inst->getOperand(0); 822 Info.MatchingId = Intrinsic::masked_load; 823 Info.ReadMem = true; 824 Info.WriteMem = false; 825 Info.IsVolatile = false; 826 break; 827 case Intrinsic::masked_store: 828 Info.PtrVal = Inst->getOperand(1); 829 // Use the ID of masked load as the "matching id". This will 830 // prevent matching non-masked loads/stores with masked ones 831 // (which could be done), but at the moment, the code here 832 // does not support matching intrinsics with non-intrinsics, 833 // so keep the MatchingIds specific to masked instructions 834 // for now (TODO). 835 Info.MatchingId = Intrinsic::masked_load; 836 Info.ReadMem = false; 837 Info.WriteMem = true; 838 Info.IsVolatile = false; 839 break; 840 } 841 } 842 } 843 } 844 845 Instruction *get() { return Inst; } 846 const Instruction *get() const { return Inst; } 847 848 bool isLoad() const { 849 if (IntrID != 0) 850 return Info.ReadMem; 851 return isa<LoadInst>(Inst); 852 } 853 854 bool isStore() const { 855 if (IntrID != 0) 856 return Info.WriteMem; 857 return isa<StoreInst>(Inst); 858 } 859 860 bool isAtomic() const { 861 if (IntrID != 0) 862 return Info.Ordering != AtomicOrdering::NotAtomic; 863 return Inst->isAtomic(); 864 } 865 866 bool isUnordered() const { 867 if (IntrID != 0) 868 return Info.isUnordered(); 869 870 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 871 return LI->isUnordered(); 872 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 873 return SI->isUnordered(); 874 } 875 // Conservative answer 876 return !Inst->isAtomic(); 877 } 878 879 bool isVolatile() const { 880 if (IntrID != 0) 881 return Info.IsVolatile; 882 883 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 884 return LI->isVolatile(); 885 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 886 return SI->isVolatile(); 887 } 888 // Conservative answer 889 return true; 890 } 891 892 bool isInvariantLoad() const { 893 if (auto *LI = dyn_cast<LoadInst>(Inst)) 894 return LI->hasMetadata(LLVMContext::MD_invariant_load); 895 return false; 896 } 897 898 bool isValid() const { return getPointerOperand() != nullptr; } 899 900 // For regular (non-intrinsic) loads/stores, this is set to -1. For 901 // intrinsic loads/stores, the id is retrieved from the corresponding 902 // field in the MemIntrinsicInfo structure. That field contains 903 // non-negative values only. 904 int getMatchingId() const { 905 if (IntrID != 0) 906 return Info.MatchingId; 907 return -1; 908 } 909 910 Value *getPointerOperand() const { 911 if (IntrID != 0) 912 return Info.PtrVal; 913 return getLoadStorePointerOperand(Inst); 914 } 915 916 Type *getValueType() const { 917 // TODO: handle target-specific intrinsics. 918 return Inst->getAccessType(); 919 } 920 921 bool mayReadFromMemory() const { 922 if (IntrID != 0) 923 return Info.ReadMem; 924 return Inst->mayReadFromMemory(); 925 } 926 927 bool mayWriteToMemory() const { 928 if (IntrID != 0) 929 return Info.WriteMem; 930 return Inst->mayWriteToMemory(); 931 } 932 933 private: 934 Intrinsic::ID IntrID = 0; 935 MemIntrinsicInfo Info; 936 Instruction *Inst; 937 }; 938 939 // This function is to prevent accidentally passing a non-target 940 // intrinsic ID to TargetTransformInfo. 941 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 942 switch (ID) { 943 case Intrinsic::masked_load: 944 case Intrinsic::masked_store: 945 return true; 946 } 947 return false; 948 } 949 static bool isHandledNonTargetIntrinsic(const Value *V) { 950 if (auto *II = dyn_cast<IntrinsicInst>(V)) 951 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 952 return false; 953 } 954 955 bool processNode(DomTreeNode *Node); 956 957 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 958 const BasicBlock *BB, const BasicBlock *Pred); 959 960 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 961 unsigned CurrentGeneration); 962 963 bool overridingStores(const ParseMemoryInst &Earlier, 964 const ParseMemoryInst &Later); 965 966 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 967 // TODO: We could insert relevant casts on type mismatch here. 968 if (auto *LI = dyn_cast<LoadInst>(Inst)) 969 return LI->getType() == ExpectedType ? LI : nullptr; 970 if (auto *SI = dyn_cast<StoreInst>(Inst)) { 971 Value *V = SI->getValueOperand(); 972 return V->getType() == ExpectedType ? V : nullptr; 973 } 974 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 975 auto *II = cast<IntrinsicInst>(Inst); 976 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 977 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 978 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 979 } 980 981 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 982 Type *ExpectedType) const { 983 // TODO: We could insert relevant casts on type mismatch here. 984 switch (II->getIntrinsicID()) { 985 case Intrinsic::masked_load: 986 return II->getType() == ExpectedType ? II : nullptr; 987 case Intrinsic::masked_store: { 988 Value *V = II->getOperand(0); 989 return V->getType() == ExpectedType ? V : nullptr; 990 } 991 } 992 return nullptr; 993 } 994 995 /// Return true if the instruction is known to only operate on memory 996 /// provably invariant in the given "generation". 997 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 998 999 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 1000 Instruction *EarlierInst, Instruction *LaterInst); 1001 1002 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 1003 const IntrinsicInst *Later) { 1004 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 1005 // Is Mask0 a submask of Mask1? 1006 if (Mask0 == Mask1) 1007 return true; 1008 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 1009 return false; 1010 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 1011 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 1012 if (!Vec0 || !Vec1) 1013 return false; 1014 if (Vec0->getType() != Vec1->getType()) 1015 return false; 1016 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 1017 Constant *Elem0 = Vec0->getOperand(i); 1018 Constant *Elem1 = Vec1->getOperand(i); 1019 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 1020 if (Int0 && Int0->isZero()) 1021 continue; 1022 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 1023 if (Int1 && !Int1->isZero()) 1024 continue; 1025 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 1026 return false; 1027 if (Elem0 == Elem1) 1028 continue; 1029 return false; 1030 } 1031 return true; 1032 }; 1033 auto PtrOp = [](const IntrinsicInst *II) { 1034 if (II->getIntrinsicID() == Intrinsic::masked_load) 1035 return II->getOperand(0); 1036 if (II->getIntrinsicID() == Intrinsic::masked_store) 1037 return II->getOperand(1); 1038 llvm_unreachable("Unexpected IntrinsicInst"); 1039 }; 1040 auto MaskOp = [](const IntrinsicInst *II) { 1041 if (II->getIntrinsicID() == Intrinsic::masked_load) 1042 return II->getOperand(2); 1043 if (II->getIntrinsicID() == Intrinsic::masked_store) 1044 return II->getOperand(3); 1045 llvm_unreachable("Unexpected IntrinsicInst"); 1046 }; 1047 auto ThruOp = [](const IntrinsicInst *II) { 1048 if (II->getIntrinsicID() == Intrinsic::masked_load) 1049 return II->getOperand(3); 1050 llvm_unreachable("Unexpected IntrinsicInst"); 1051 }; 1052 1053 if (PtrOp(Earlier) != PtrOp(Later)) 1054 return false; 1055 1056 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 1057 Intrinsic::ID IDL = Later->getIntrinsicID(); 1058 // We could really use specific intrinsic classes for masked loads 1059 // and stores in IntrinsicInst.h. 1060 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 1061 // Trying to replace later masked load with the earlier one. 1062 // Check that the pointers are the same, and 1063 // - masks and pass-throughs are the same, or 1064 // - replacee's pass-through is "undef" and replacer's mask is a 1065 // super-set of the replacee's mask. 1066 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 1067 return true; 1068 if (!isa<UndefValue>(ThruOp(Later))) 1069 return false; 1070 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1071 } 1072 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 1073 // Trying to replace a load of a stored value with the store's value. 1074 // Check that the pointers are the same, and 1075 // - load's mask is a subset of store's mask, and 1076 // - load's pass-through is "undef". 1077 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 1078 return false; 1079 return isa<UndefValue>(ThruOp(Later)); 1080 } 1081 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 1082 // Trying to remove a store of the loaded value. 1083 // Check that the pointers are the same, and 1084 // - store's mask is a subset of the load's mask. 1085 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1086 } 1087 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 1088 // Trying to remove a dead store (earlier). 1089 // Check that the pointers are the same, 1090 // - the to-be-removed store's mask is a subset of the other store's 1091 // mask. 1092 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 1093 } 1094 return false; 1095 } 1096 1097 void removeMSSA(Instruction &Inst) { 1098 if (!MSSA) 1099 return; 1100 if (VerifyMemorySSA) 1101 MSSA->verifyMemorySSA(); 1102 // Removing a store here can leave MemorySSA in an unoptimized state by 1103 // creating MemoryPhis that have identical arguments and by creating 1104 // MemoryUses whose defining access is not an actual clobber. The phi case 1105 // is handled by MemorySSA when passing OptimizePhis = true to 1106 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 1107 // by MemorySSA's getClobberingMemoryAccess. 1108 MSSAUpdater->removeMemoryAccess(&Inst, true); 1109 } 1110 }; 1111 1112 } // end anonymous namespace 1113 1114 /// Determine if the memory referenced by LaterInst is from the same heap 1115 /// version as EarlierInst. 1116 /// This is currently called in two scenarios: 1117 /// 1118 /// load p 1119 /// ... 1120 /// load p 1121 /// 1122 /// and 1123 /// 1124 /// x = load p 1125 /// ... 1126 /// store x, p 1127 /// 1128 /// in both cases we want to verify that there are no possible writes to the 1129 /// memory referenced by p between the earlier and later instruction. 1130 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1131 unsigned LaterGeneration, 1132 Instruction *EarlierInst, 1133 Instruction *LaterInst) { 1134 // Check the simple memory generation tracking first. 1135 if (EarlierGeneration == LaterGeneration) 1136 return true; 1137 1138 if (!MSSA) 1139 return false; 1140 1141 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1142 // read/write memory, then we can safely return true here. 1143 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1144 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1145 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1146 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1147 // with the default optimization pipeline. 1148 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1149 if (!EarlierMA) 1150 return true; 1151 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1152 if (!LaterMA) 1153 return true; 1154 1155 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1156 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1157 // EarlierInst and LaterInst and neither can any other write that potentially 1158 // clobbers LaterInst. 1159 MemoryAccess *LaterDef; 1160 if (ClobberCounter < EarlyCSEMssaOptCap) { 1161 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1162 ClobberCounter++; 1163 } else 1164 LaterDef = LaterMA->getDefiningAccess(); 1165 1166 return MSSA->dominates(LaterDef, EarlierMA); 1167 } 1168 1169 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1170 // A location loaded from with an invariant_load is assumed to *never* change 1171 // within the visible scope of the compilation. 1172 if (auto *LI = dyn_cast<LoadInst>(I)) 1173 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1174 return true; 1175 1176 auto MemLocOpt = MemoryLocation::getOrNone(I); 1177 if (!MemLocOpt) 1178 // "target" intrinsic forms of loads aren't currently known to 1179 // MemoryLocation::get. TODO 1180 return false; 1181 MemoryLocation MemLoc = *MemLocOpt; 1182 if (!AvailableInvariants.count(MemLoc)) 1183 return false; 1184 1185 // Is the generation at which this became invariant older than the 1186 // current one? 1187 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1188 } 1189 1190 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1191 const BranchInst *BI, const BasicBlock *BB, 1192 const BasicBlock *Pred) { 1193 assert(BI->isConditional() && "Should be a conditional branch!"); 1194 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1195 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1196 auto *TorF = (BI->getSuccessor(0) == BB) 1197 ? ConstantInt::getTrue(BB->getContext()) 1198 : ConstantInt::getFalse(BB->getContext()); 1199 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1200 Value *&RHS) { 1201 if (Opcode == Instruction::And && 1202 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1203 return true; 1204 else if (Opcode == Instruction::Or && 1205 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1206 return true; 1207 return false; 1208 }; 1209 // If the condition is AND operation, we can propagate its operands into the 1210 // true branch. If it is OR operation, we can propagate them into the false 1211 // branch. 1212 unsigned PropagateOpcode = 1213 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1214 1215 bool MadeChanges = false; 1216 SmallVector<Instruction *, 4> WorkList; 1217 SmallPtrSet<Instruction *, 4> Visited; 1218 WorkList.push_back(CondInst); 1219 while (!WorkList.empty()) { 1220 Instruction *Curr = WorkList.pop_back_val(); 1221 1222 AvailableValues.insert(Curr, TorF); 1223 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1224 << Curr->getName() << "' as " << *TorF << " in " 1225 << BB->getName() << "\n"); 1226 if (!DebugCounter::shouldExecute(CSECounter)) { 1227 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1228 } else { 1229 // Replace all dominated uses with the known value. 1230 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1231 BasicBlockEdge(Pred, BB))) { 1232 NumCSECVP += Count; 1233 MadeChanges = true; 1234 } 1235 } 1236 1237 Value *LHS, *RHS; 1238 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1239 for (auto *Op : { LHS, RHS }) 1240 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1241 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1242 WorkList.push_back(OPI); 1243 } 1244 1245 return MadeChanges; 1246 } 1247 1248 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1249 unsigned CurrentGeneration) { 1250 if (InVal.DefInst == nullptr) 1251 return nullptr; 1252 if (InVal.MatchingId != MemInst.getMatchingId()) 1253 return nullptr; 1254 // We don't yet handle removing loads with ordering of any kind. 1255 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1256 return nullptr; 1257 // We can't replace an atomic load with one which isn't also atomic. 1258 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1259 return nullptr; 1260 // The value V returned from this function is used differently depending 1261 // on whether MemInst is a load or a store. If it's a load, we will replace 1262 // MemInst with V, if it's a store, we will check if V is the same as the 1263 // available value. 1264 bool MemInstMatching = !MemInst.isLoad(); 1265 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1266 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1267 1268 // For stores check the result values before checking memory generation 1269 // (otherwise isSameMemGeneration may crash). 1270 Value *Result = MemInst.isStore() 1271 ? getOrCreateResult(Matching, Other->getType()) 1272 : nullptr; 1273 if (MemInst.isStore() && InVal.DefInst != Result) 1274 return nullptr; 1275 1276 // Deal with non-target memory intrinsics. 1277 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1278 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1279 if (OtherNTI != MatchingNTI) 1280 return nullptr; 1281 if (OtherNTI && MatchingNTI) { 1282 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1283 cast<IntrinsicInst>(MemInst.get()))) 1284 return nullptr; 1285 } 1286 1287 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1288 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1289 MemInst.get())) 1290 return nullptr; 1291 1292 if (!Result) 1293 Result = getOrCreateResult(Matching, Other->getType()); 1294 return Result; 1295 } 1296 1297 static void combineIRFlags(Instruction &From, Value *To) { 1298 if (auto *I = dyn_cast<Instruction>(To)) { 1299 // If I being poison triggers UB, there is no need to drop those 1300 // flags. Otherwise, only retain flags present on both I and Inst. 1301 // TODO: Currently some fast-math flags are not treated as 1302 // poison-generating even though they should. Until this is fixed, 1303 // always retain flags present on both I and Inst for floating point 1304 // instructions. 1305 if (isa<FPMathOperator>(I) || 1306 (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1307 I->andIRFlags(&From); 1308 } 1309 } 1310 1311 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1312 const ParseMemoryInst &Later) { 1313 // Can we remove Earlier store because of Later store? 1314 1315 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1316 "Violated invariant"); 1317 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1318 return false; 1319 if (!Earlier.getValueType() || !Later.getValueType() || 1320 Earlier.getValueType() != Later.getValueType()) 1321 return false; 1322 if (Earlier.getMatchingId() != Later.getMatchingId()) 1323 return false; 1324 // At the moment, we don't remove ordered stores, but do remove 1325 // unordered atomic stores. There's no special requirement (for 1326 // unordered atomics) about removing atomic stores only in favor of 1327 // other atomic stores since we were going to execute the non-atomic 1328 // one anyway and the atomic one might never have become visible. 1329 if (!Earlier.isUnordered() || !Later.isUnordered()) 1330 return false; 1331 1332 // Deal with non-target memory intrinsics. 1333 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1334 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1335 if (ENTI && LNTI) 1336 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1337 cast<IntrinsicInst>(Later.get())); 1338 1339 // Because of the check above, at least one of them is false. 1340 // For now disallow matching intrinsics with non-intrinsics, 1341 // so assume that the stores match if neither is an intrinsic. 1342 return ENTI == LNTI; 1343 } 1344 1345 bool EarlyCSE::processNode(DomTreeNode *Node) { 1346 bool Changed = false; 1347 BasicBlock *BB = Node->getBlock(); 1348 1349 // If this block has a single predecessor, then the predecessor is the parent 1350 // of the domtree node and all of the live out memory values are still current 1351 // in this block. If this block has multiple predecessors, then they could 1352 // have invalidated the live-out memory values of our parent value. For now, 1353 // just be conservative and invalidate memory if this block has multiple 1354 // predecessors. 1355 if (!BB->getSinglePredecessor()) 1356 ++CurrentGeneration; 1357 1358 // If this node has a single predecessor which ends in a conditional branch, 1359 // we can infer the value of the branch condition given that we took this 1360 // path. We need the single predecessor to ensure there's not another path 1361 // which reaches this block where the condition might hold a different 1362 // value. Since we're adding this to the scoped hash table (like any other 1363 // def), it will have been popped if we encounter a future merge block. 1364 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1365 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1366 if (BI && BI->isConditional()) { 1367 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1368 if (CondInst && SimpleValue::canHandle(CondInst)) 1369 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1370 } 1371 } 1372 1373 /// LastStore - Keep track of the last non-volatile store that we saw... for 1374 /// as long as there in no instruction that reads memory. If we see a store 1375 /// to the same location, we delete the dead store. This zaps trivial dead 1376 /// stores which can occur in bitfield code among other things. 1377 Instruction *LastStore = nullptr; 1378 1379 // See if any instructions in the block can be eliminated. If so, do it. If 1380 // not, add them to AvailableValues. 1381 for (Instruction &Inst : make_early_inc_range(*BB)) { 1382 // Dead instructions should just be removed. 1383 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1384 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1385 if (!DebugCounter::shouldExecute(CSECounter)) { 1386 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1387 continue; 1388 } 1389 1390 salvageKnowledge(&Inst, &AC); 1391 salvageDebugInfo(Inst); 1392 removeMSSA(Inst); 1393 Inst.eraseFromParent(); 1394 Changed = true; 1395 ++NumSimplify; 1396 continue; 1397 } 1398 1399 // Skip assume intrinsics, they don't really have side effects (although 1400 // they're marked as such to ensure preservation of control dependencies), 1401 // and this pass will not bother with its removal. However, we should mark 1402 // its condition as true for all dominated blocks. 1403 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1404 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1405 if (CondI && SimpleValue::canHandle(CondI)) { 1406 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1407 << '\n'); 1408 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1409 } else 1410 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1411 continue; 1412 } 1413 1414 // Likewise, noalias intrinsics don't actually write. 1415 if (match(&Inst, 1416 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1417 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1418 << '\n'); 1419 continue; 1420 } 1421 1422 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1423 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1424 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1425 continue; 1426 } 1427 1428 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1429 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1430 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1431 continue; 1432 } 1433 1434 // We can skip all invariant.start intrinsics since they only read memory, 1435 // and we can forward values across it. For invariant starts without 1436 // invariant ends, we can use the fact that the invariantness never ends to 1437 // start a scope in the current generaton which is true for all future 1438 // generations. Also, we dont need to consume the last store since the 1439 // semantics of invariant.start allow us to perform DSE of the last 1440 // store, if there was a store following invariant.start. Consider: 1441 // 1442 // store 30, i8* p 1443 // invariant.start(p) 1444 // store 40, i8* p 1445 // We can DSE the store to 30, since the store 40 to invariant location p 1446 // causes undefined behaviour. 1447 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1448 // If there are any uses, the scope might end. 1449 if (!Inst.use_empty()) 1450 continue; 1451 MemoryLocation MemLoc = 1452 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1453 // Don't start a scope if we already have a better one pushed 1454 if (!AvailableInvariants.count(MemLoc)) 1455 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1456 continue; 1457 } 1458 1459 if (isGuard(&Inst)) { 1460 if (auto *CondI = 1461 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1462 if (SimpleValue::canHandle(CondI)) { 1463 // Do we already know the actual value of this condition? 1464 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1465 // Is the condition known to be true? 1466 if (isa<ConstantInt>(KnownCond) && 1467 cast<ConstantInt>(KnownCond)->isOne()) { 1468 LLVM_DEBUG(dbgs() 1469 << "EarlyCSE removing guard: " << Inst << '\n'); 1470 salvageKnowledge(&Inst, &AC); 1471 removeMSSA(Inst); 1472 Inst.eraseFromParent(); 1473 Changed = true; 1474 continue; 1475 } else 1476 // Use the known value if it wasn't true. 1477 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1478 } 1479 // The condition we're on guarding here is true for all dominated 1480 // locations. 1481 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1482 } 1483 } 1484 1485 // Guard intrinsics read all memory, but don't write any memory. 1486 // Accordingly, don't update the generation but consume the last store (to 1487 // avoid an incorrect DSE). 1488 LastStore = nullptr; 1489 continue; 1490 } 1491 1492 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1493 // its simpler value. 1494 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1495 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1496 << '\n'); 1497 if (!DebugCounter::shouldExecute(CSECounter)) { 1498 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1499 } else { 1500 bool Killed = false; 1501 if (!Inst.use_empty()) { 1502 Inst.replaceAllUsesWith(V); 1503 Changed = true; 1504 } 1505 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1506 salvageKnowledge(&Inst, &AC); 1507 removeMSSA(Inst); 1508 Inst.eraseFromParent(); 1509 Changed = true; 1510 Killed = true; 1511 } 1512 if (Changed) 1513 ++NumSimplify; 1514 if (Killed) 1515 continue; 1516 } 1517 } 1518 1519 // If this is a simple instruction that we can value number, process it. 1520 if (SimpleValue::canHandle(&Inst)) { 1521 if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1522 assert(CI->getExceptionBehavior() != fp::ebStrict && 1523 "Unexpected ebStrict from SimpleValue::canHandle()"); 1524 assert((!CI->getRoundingMode() || 1525 CI->getRoundingMode() != RoundingMode::Dynamic) && 1526 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1527 } 1528 // See if the instruction has an available value. If so, use it. 1529 if (Value *V = AvailableValues.lookup(&Inst)) { 1530 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1531 << '\n'); 1532 if (!DebugCounter::shouldExecute(CSECounter)) { 1533 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1534 continue; 1535 } 1536 combineIRFlags(Inst, V); 1537 Inst.replaceAllUsesWith(V); 1538 salvageKnowledge(&Inst, &AC); 1539 removeMSSA(Inst); 1540 Inst.eraseFromParent(); 1541 Changed = true; 1542 ++NumCSE; 1543 continue; 1544 } 1545 1546 // Otherwise, just remember that this value is available. 1547 AvailableValues.insert(&Inst, &Inst); 1548 continue; 1549 } 1550 1551 ParseMemoryInst MemInst(&Inst, TTI); 1552 // If this is a non-volatile load, process it. 1553 if (MemInst.isValid() && MemInst.isLoad()) { 1554 // (conservatively) we can't peak past the ordering implied by this 1555 // operation, but we can add this load to our set of available values 1556 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1557 LastStore = nullptr; 1558 ++CurrentGeneration; 1559 } 1560 1561 if (MemInst.isInvariantLoad()) { 1562 // If we pass an invariant load, we know that memory location is 1563 // indefinitely constant from the moment of first dereferenceability. 1564 // We conservatively treat the invariant_load as that moment. If we 1565 // pass a invariant load after already establishing a scope, don't 1566 // restart it since we want to preserve the earliest point seen. 1567 auto MemLoc = MemoryLocation::get(&Inst); 1568 if (!AvailableInvariants.count(MemLoc)) 1569 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1570 } 1571 1572 // If we have an available version of this load, and if it is the right 1573 // generation or the load is known to be from an invariant location, 1574 // replace this instruction. 1575 // 1576 // If either the dominating load or the current load are invariant, then 1577 // we can assume the current load loads the same value as the dominating 1578 // load. 1579 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1580 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1581 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1582 << " to: " << *InVal.DefInst << '\n'); 1583 if (!DebugCounter::shouldExecute(CSECounter)) { 1584 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1585 continue; 1586 } 1587 if (InVal.IsLoad) 1588 if (auto *I = dyn_cast<Instruction>(Op)) 1589 combineMetadataForCSE(I, &Inst, false); 1590 if (!Inst.use_empty()) 1591 Inst.replaceAllUsesWith(Op); 1592 salvageKnowledge(&Inst, &AC); 1593 removeMSSA(Inst); 1594 Inst.eraseFromParent(); 1595 Changed = true; 1596 ++NumCSELoad; 1597 continue; 1598 } 1599 1600 // Otherwise, remember that we have this instruction. 1601 AvailableLoads.insert(MemInst.getPointerOperand(), 1602 LoadValue(&Inst, CurrentGeneration, 1603 MemInst.getMatchingId(), 1604 MemInst.isAtomic(), 1605 MemInst.isLoad())); 1606 LastStore = nullptr; 1607 continue; 1608 } 1609 1610 // If this instruction may read from memory or throw (and potentially read 1611 // from memory in the exception handler), forget LastStore. Load/store 1612 // intrinsics will indicate both a read and a write to memory. The target 1613 // may override this (e.g. so that a store intrinsic does not read from 1614 // memory, and thus will be treated the same as a regular store for 1615 // commoning purposes). 1616 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1617 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1618 LastStore = nullptr; 1619 1620 // If this is a read-only call, process it. 1621 if (CallValue::canHandle(&Inst)) { 1622 // If we have an available version of this call, and if it is the right 1623 // generation, replace this instruction. 1624 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1625 if (InVal.first != nullptr && 1626 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1627 &Inst)) { 1628 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1629 << " to: " << *InVal.first << '\n'); 1630 if (!DebugCounter::shouldExecute(CSECounter)) { 1631 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1632 continue; 1633 } 1634 if (!Inst.use_empty()) 1635 Inst.replaceAllUsesWith(InVal.first); 1636 salvageKnowledge(&Inst, &AC); 1637 removeMSSA(Inst); 1638 Inst.eraseFromParent(); 1639 Changed = true; 1640 ++NumCSECall; 1641 continue; 1642 } 1643 1644 // Otherwise, remember that we have this instruction. 1645 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1646 continue; 1647 } 1648 1649 // Compare GEP instructions based on offset. 1650 if (GEPValue::canHandle(&Inst)) { 1651 auto *GEP = cast<GetElementPtrInst>(&Inst); 1652 APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(GEP->getType()), 0); 1653 GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(SQ.DL, Offset) 1654 ? Offset.trySExtValue() 1655 : std::nullopt); 1656 if (Value *V = AvailableGEPs.lookup(GEPVal)) { 1657 LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << " to: " << *V 1658 << '\n'); 1659 combineIRFlags(Inst, V); 1660 Inst.replaceAllUsesWith(V); 1661 salvageKnowledge(&Inst, &AC); 1662 removeMSSA(Inst); 1663 Inst.eraseFromParent(); 1664 Changed = true; 1665 ++NumCSEGEP; 1666 continue; 1667 } 1668 1669 // Otherwise, just remember that we have this GEP. 1670 AvailableGEPs.insert(GEPVal, &Inst); 1671 continue; 1672 } 1673 1674 // A release fence requires that all stores complete before it, but does 1675 // not prevent the reordering of following loads 'before' the fence. As a 1676 // result, we don't need to consider it as writing to memory and don't need 1677 // to advance the generation. We do need to prevent DSE across the fence, 1678 // but that's handled above. 1679 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1680 if (FI->getOrdering() == AtomicOrdering::Release) { 1681 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1682 continue; 1683 } 1684 1685 // write back DSE - If we write back the same value we just loaded from 1686 // the same location and haven't passed any intervening writes or ordering 1687 // operations, we can remove the write. The primary benefit is in allowing 1688 // the available load table to remain valid and value forward past where 1689 // the store originally was. 1690 if (MemInst.isValid() && MemInst.isStore()) { 1691 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1692 if (InVal.DefInst && 1693 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1694 // It is okay to have a LastStore to a different pointer here if MemorySSA 1695 // tells us that the load and store are from the same memory generation. 1696 // In that case, LastStore should keep its present value since we're 1697 // removing the current store. 1698 assert((!LastStore || 1699 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1700 MemInst.getPointerOperand() || 1701 MSSA) && 1702 "can't have an intervening store if not using MemorySSA!"); 1703 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1704 if (!DebugCounter::shouldExecute(CSECounter)) { 1705 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1706 continue; 1707 } 1708 salvageKnowledge(&Inst, &AC); 1709 removeMSSA(Inst); 1710 Inst.eraseFromParent(); 1711 Changed = true; 1712 ++NumDSE; 1713 // We can avoid incrementing the generation count since we were able 1714 // to eliminate this store. 1715 continue; 1716 } 1717 } 1718 1719 // Okay, this isn't something we can CSE at all. Check to see if it is 1720 // something that could modify memory. If so, our available memory values 1721 // cannot be used so bump the generation count. 1722 if (Inst.mayWriteToMemory()) { 1723 ++CurrentGeneration; 1724 1725 if (MemInst.isValid() && MemInst.isStore()) { 1726 // We do a trivial form of DSE if there are two stores to the same 1727 // location with no intervening loads. Delete the earlier store. 1728 if (LastStore) { 1729 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1730 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1731 << " due to: " << Inst << '\n'); 1732 if (!DebugCounter::shouldExecute(CSECounter)) { 1733 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1734 } else { 1735 salvageKnowledge(&Inst, &AC); 1736 removeMSSA(*LastStore); 1737 LastStore->eraseFromParent(); 1738 Changed = true; 1739 ++NumDSE; 1740 LastStore = nullptr; 1741 } 1742 } 1743 // fallthrough - we can exploit information about this store 1744 } 1745 1746 // Okay, we just invalidated anything we knew about loaded values. Try 1747 // to salvage *something* by remembering that the stored value is a live 1748 // version of the pointer. It is safe to forward from volatile stores 1749 // to non-volatile loads, so we don't have to check for volatility of 1750 // the store. 1751 AvailableLoads.insert(MemInst.getPointerOperand(), 1752 LoadValue(&Inst, CurrentGeneration, 1753 MemInst.getMatchingId(), 1754 MemInst.isAtomic(), 1755 MemInst.isLoad())); 1756 1757 // Remember that this was the last unordered store we saw for DSE. We 1758 // don't yet handle DSE on ordered or volatile stores since we don't 1759 // have a good way to model the ordering requirement for following 1760 // passes once the store is removed. We could insert a fence, but 1761 // since fences are slightly stronger than stores in their ordering, 1762 // it's not clear this is a profitable transform. Another option would 1763 // be to merge the ordering with that of the post dominating store. 1764 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1765 LastStore = &Inst; 1766 else 1767 LastStore = nullptr; 1768 } 1769 } 1770 } 1771 1772 return Changed; 1773 } 1774 1775 bool EarlyCSE::run() { 1776 // Note, deque is being used here because there is significant performance 1777 // gains over vector when the container becomes very large due to the 1778 // specific access patterns. For more information see the mailing list 1779 // discussion on this: 1780 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1781 std::deque<StackNode *> nodesToProcess; 1782 1783 bool Changed = false; 1784 1785 // Process the root node. 1786 nodesToProcess.push_back(new StackNode( 1787 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1788 AvailableGEPs, CurrentGeneration, DT.getRootNode(), 1789 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1790 1791 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1792 1793 // Process the stack. 1794 while (!nodesToProcess.empty()) { 1795 // Grab the first item off the stack. Set the current generation, remove 1796 // the node from the stack, and process it. 1797 StackNode *NodeToProcess = nodesToProcess.back(); 1798 1799 // Initialize class members. 1800 CurrentGeneration = NodeToProcess->currentGeneration(); 1801 1802 // Check if the node needs to be processed. 1803 if (!NodeToProcess->isProcessed()) { 1804 // Process the node. 1805 Changed |= processNode(NodeToProcess->node()); 1806 NodeToProcess->childGeneration(CurrentGeneration); 1807 NodeToProcess->process(); 1808 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1809 // Push the next child onto the stack. 1810 DomTreeNode *child = NodeToProcess->nextChild(); 1811 nodesToProcess.push_back(new StackNode( 1812 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1813 AvailableGEPs, NodeToProcess->childGeneration(), child, 1814 child->begin(), child->end())); 1815 } else { 1816 // It has been processed, and there are no more children to process, 1817 // so delete it and pop it off the stack. 1818 delete NodeToProcess; 1819 nodesToProcess.pop_back(); 1820 } 1821 } // while (!nodes...) 1822 1823 return Changed; 1824 } 1825 1826 PreservedAnalyses EarlyCSEPass::run(Function &F, 1827 FunctionAnalysisManager &AM) { 1828 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1829 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1830 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1831 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1832 auto *MSSA = 1833 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1834 1835 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1836 1837 if (!CSE.run()) 1838 return PreservedAnalyses::all(); 1839 1840 PreservedAnalyses PA; 1841 PA.preserveSet<CFGAnalyses>(); 1842 if (UseMemorySSA) 1843 PA.preserve<MemorySSAAnalysis>(); 1844 return PA; 1845 } 1846 1847 void EarlyCSEPass::printPipeline( 1848 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1849 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1850 OS, MapClassName2PassName); 1851 OS << '<'; 1852 if (UseMemorySSA) 1853 OS << "memssa"; 1854 OS << '>'; 1855 } 1856 1857 namespace { 1858 1859 /// A simple and fast domtree-based CSE pass. 1860 /// 1861 /// This pass does a simple depth-first walk over the dominator tree, 1862 /// eliminating trivially redundant instructions and using instsimplify to 1863 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1864 /// cases so that instcombine and other passes are more effective. It is 1865 /// expected that a later pass of GVN will catch the interesting/hard cases. 1866 template<bool UseMemorySSA> 1867 class EarlyCSELegacyCommonPass : public FunctionPass { 1868 public: 1869 static char ID; 1870 1871 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1872 if (UseMemorySSA) 1873 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1874 else 1875 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1876 } 1877 1878 bool runOnFunction(Function &F) override { 1879 if (skipFunction(F)) 1880 return false; 1881 1882 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1883 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1884 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1885 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1886 auto *MSSA = 1887 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1888 1889 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1890 1891 return CSE.run(); 1892 } 1893 1894 void getAnalysisUsage(AnalysisUsage &AU) const override { 1895 AU.addRequired<AssumptionCacheTracker>(); 1896 AU.addRequired<DominatorTreeWrapperPass>(); 1897 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1898 AU.addRequired<TargetTransformInfoWrapperPass>(); 1899 if (UseMemorySSA) { 1900 AU.addRequired<AAResultsWrapperPass>(); 1901 AU.addRequired<MemorySSAWrapperPass>(); 1902 AU.addPreserved<MemorySSAWrapperPass>(); 1903 } 1904 AU.addPreserved<GlobalsAAWrapperPass>(); 1905 AU.addPreserved<AAResultsWrapperPass>(); 1906 AU.setPreservesCFG(); 1907 } 1908 }; 1909 1910 } // end anonymous namespace 1911 1912 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1913 1914 template<> 1915 char EarlyCSELegacyPass::ID = 0; 1916 1917 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1918 false) 1919 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1921 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1922 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1923 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1924 1925 using EarlyCSEMemSSALegacyPass = 1926 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1927 1928 template<> 1929 char EarlyCSEMemSSALegacyPass::ID = 0; 1930 1931 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1932 if (UseMemorySSA) 1933 return new EarlyCSEMemSSALegacyPass(); 1934 else 1935 return new EarlyCSELegacyPass(); 1936 } 1937 1938 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1939 "Early CSE w/ MemorySSA", false, false) 1940 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1941 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1942 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1943 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1944 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1945 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1946 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1947 "Early CSE w/ MemorySSA", false, false) 1948