1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/Function.h" 35 #include "llvm/IR/InstrTypes.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/PassManager.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Allocator.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/RecyclingAllocator.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Scalar.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 //===----------------------------------------------------------------------===// 73 // SimpleValue 74 //===----------------------------------------------------------------------===// 75 76 namespace { 77 78 /// \brief Struct representing the available values in the scoped hash table. 79 struct SimpleValue { 80 Instruction *Inst; 81 82 SimpleValue(Instruction *I) : Inst(I) { 83 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 84 } 85 86 bool isSentinel() const { 87 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 88 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 89 } 90 91 static bool canHandle(Instruction *Inst) { 92 // This can only handle non-void readnone functions. 93 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 94 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 95 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 96 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 97 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 98 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 99 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 100 } 101 }; 102 103 } // end anonymous namespace 104 105 namespace llvm { 106 107 template <> struct DenseMapInfo<SimpleValue> { 108 static inline SimpleValue getEmptyKey() { 109 return DenseMapInfo<Instruction *>::getEmptyKey(); 110 } 111 112 static inline SimpleValue getTombstoneKey() { 113 return DenseMapInfo<Instruction *>::getTombstoneKey(); 114 } 115 116 static unsigned getHashValue(SimpleValue Val); 117 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 118 }; 119 120 } // end namespace llvm 121 122 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 123 Instruction *Inst = Val.Inst; 124 // Hash in all of the operands as pointers. 125 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 126 Value *LHS = BinOp->getOperand(0); 127 Value *RHS = BinOp->getOperand(1); 128 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 129 std::swap(LHS, RHS); 130 131 return hash_combine(BinOp->getOpcode(), LHS, RHS); 132 } 133 134 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 135 Value *LHS = CI->getOperand(0); 136 Value *RHS = CI->getOperand(1); 137 CmpInst::Predicate Pred = CI->getPredicate(); 138 if (Inst->getOperand(0) > Inst->getOperand(1)) { 139 std::swap(LHS, RHS); 140 Pred = CI->getSwappedPredicate(); 141 } 142 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 143 } 144 145 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 146 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 147 148 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 149 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 150 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 151 152 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 153 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 154 IVI->getOperand(1), 155 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 156 157 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 158 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 159 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 160 isa<ShuffleVectorInst>(Inst)) && 161 "Invalid/unknown instruction"); 162 163 // Mix in the opcode. 164 return hash_combine( 165 Inst->getOpcode(), 166 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 167 } 168 169 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 170 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 171 172 if (LHS.isSentinel() || RHS.isSentinel()) 173 return LHSI == RHSI; 174 175 if (LHSI->getOpcode() != RHSI->getOpcode()) 176 return false; 177 if (LHSI->isIdenticalToWhenDefined(RHSI)) 178 return true; 179 180 // If we're not strictly identical, we still might be a commutable instruction 181 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 182 if (!LHSBinOp->isCommutative()) 183 return false; 184 185 assert(isa<BinaryOperator>(RHSI) && 186 "same opcode, but different instruction type?"); 187 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 188 189 // Commuted equality 190 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 191 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 192 } 193 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 194 assert(isa<CmpInst>(RHSI) && 195 "same opcode, but different instruction type?"); 196 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 197 // Commuted equality 198 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 199 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 200 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 201 } 202 203 return false; 204 } 205 206 //===----------------------------------------------------------------------===// 207 // CallValue 208 //===----------------------------------------------------------------------===// 209 210 namespace { 211 212 /// \brief Struct representing the available call values in the scoped hash 213 /// table. 214 struct CallValue { 215 Instruction *Inst; 216 217 CallValue(Instruction *I) : Inst(I) { 218 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 219 } 220 221 bool isSentinel() const { 222 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 223 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 224 } 225 226 static bool canHandle(Instruction *Inst) { 227 // Don't value number anything that returns void. 228 if (Inst->getType()->isVoidTy()) 229 return false; 230 231 CallInst *CI = dyn_cast<CallInst>(Inst); 232 if (!CI || !CI->onlyReadsMemory()) 233 return false; 234 return true; 235 } 236 }; 237 238 } // end anonymous namespace 239 240 namespace llvm { 241 242 template <> struct DenseMapInfo<CallValue> { 243 static inline CallValue getEmptyKey() { 244 return DenseMapInfo<Instruction *>::getEmptyKey(); 245 } 246 247 static inline CallValue getTombstoneKey() { 248 return DenseMapInfo<Instruction *>::getTombstoneKey(); 249 } 250 251 static unsigned getHashValue(CallValue Val); 252 static bool isEqual(CallValue LHS, CallValue RHS); 253 }; 254 255 } // end namespace llvm 256 257 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 258 Instruction *Inst = Val.Inst; 259 // Hash all of the operands as pointers and mix in the opcode. 260 return hash_combine( 261 Inst->getOpcode(), 262 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 263 } 264 265 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 266 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 267 if (LHS.isSentinel() || RHS.isSentinel()) 268 return LHSI == RHSI; 269 return LHSI->isIdenticalTo(RHSI); 270 } 271 272 //===----------------------------------------------------------------------===// 273 // EarlyCSE implementation 274 //===----------------------------------------------------------------------===// 275 276 namespace { 277 278 /// \brief A simple and fast domtree-based CSE pass. 279 /// 280 /// This pass does a simple depth-first walk over the dominator tree, 281 /// eliminating trivially redundant instructions and using instsimplify to 282 /// canonicalize things as it goes. It is intended to be fast and catch obvious 283 /// cases so that instcombine and other passes are more effective. It is 284 /// expected that a later pass of GVN will catch the interesting/hard cases. 285 class EarlyCSE { 286 public: 287 const TargetLibraryInfo &TLI; 288 const TargetTransformInfo &TTI; 289 DominatorTree &DT; 290 AssumptionCache &AC; 291 const SimplifyQuery SQ; 292 MemorySSA *MSSA; 293 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 294 295 using AllocatorTy = 296 RecyclingAllocator<BumpPtrAllocator, 297 ScopedHashTableVal<SimpleValue, Value *>>; 298 using ScopedHTType = 299 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 300 AllocatorTy>; 301 302 /// \brief A scoped hash table of the current values of all of our simple 303 /// scalar expressions. 304 /// 305 /// As we walk down the domtree, we look to see if instructions are in this: 306 /// if so, we replace them with what we find, otherwise we insert them so 307 /// that dominated values can succeed in their lookup. 308 ScopedHTType AvailableValues; 309 310 /// A scoped hash table of the current values of previously encounted memory 311 /// locations. 312 /// 313 /// This allows us to get efficient access to dominating loads or stores when 314 /// we have a fully redundant load. In addition to the most recent load, we 315 /// keep track of a generation count of the read, which is compared against 316 /// the current generation count. The current generation count is incremented 317 /// after every possibly writing memory operation, which ensures that we only 318 /// CSE loads with other loads that have no intervening store. Ordering 319 /// events (such as fences or atomic instructions) increment the generation 320 /// count as well; essentially, we model these as writes to all possible 321 /// locations. Note that atomic and/or volatile loads and stores can be 322 /// present the table; it is the responsibility of the consumer to inspect 323 /// the atomicity/volatility if needed. 324 struct LoadValue { 325 Instruction *DefInst = nullptr; 326 unsigned Generation = 0; 327 int MatchingId = -1; 328 bool IsAtomic = false; 329 bool IsInvariant = false; 330 331 LoadValue() = default; 332 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 333 bool IsAtomic, bool IsInvariant) 334 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 335 IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} 336 }; 337 338 using LoadMapAllocator = 339 RecyclingAllocator<BumpPtrAllocator, 340 ScopedHashTableVal<Value *, LoadValue>>; 341 using LoadHTType = 342 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 343 LoadMapAllocator>; 344 345 LoadHTType AvailableLoads; 346 347 /// \brief A scoped hash table of the current values of read-only call 348 /// values. 349 /// 350 /// It uses the same generation count as loads. 351 using CallHTType = 352 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 353 CallHTType AvailableCalls; 354 355 /// \brief This is the current generation of the memory value. 356 unsigned CurrentGeneration = 0; 357 358 /// \brief Set up the EarlyCSE runner for a particular function. 359 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 360 const TargetTransformInfo &TTI, DominatorTree &DT, 361 AssumptionCache &AC, MemorySSA *MSSA) 362 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 363 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} 364 365 bool run(); 366 367 private: 368 // Almost a POD, but needs to call the constructors for the scoped hash 369 // tables so that a new scope gets pushed on. These are RAII so that the 370 // scope gets popped when the NodeScope is destroyed. 371 class NodeScope { 372 public: 373 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 374 CallHTType &AvailableCalls) 375 : Scope(AvailableValues), LoadScope(AvailableLoads), 376 CallScope(AvailableCalls) {} 377 NodeScope(const NodeScope &) = delete; 378 NodeScope &operator=(const NodeScope &) = delete; 379 380 private: 381 ScopedHTType::ScopeTy Scope; 382 LoadHTType::ScopeTy LoadScope; 383 CallHTType::ScopeTy CallScope; 384 }; 385 386 // Contains all the needed information to create a stack for doing a depth 387 // first traversal of the tree. This includes scopes for values, loads, and 388 // calls as well as the generation. There is a child iterator so that the 389 // children do not need to be store separately. 390 class StackNode { 391 public: 392 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 393 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 394 DomTreeNode::iterator child, DomTreeNode::iterator end) 395 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 396 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls) 397 {} 398 StackNode(const StackNode &) = delete; 399 StackNode &operator=(const StackNode &) = delete; 400 401 // Accessors. 402 unsigned currentGeneration() { return CurrentGeneration; } 403 unsigned childGeneration() { return ChildGeneration; } 404 void childGeneration(unsigned generation) { ChildGeneration = generation; } 405 DomTreeNode *node() { return Node; } 406 DomTreeNode::iterator childIter() { return ChildIter; } 407 408 DomTreeNode *nextChild() { 409 DomTreeNode *child = *ChildIter; 410 ++ChildIter; 411 return child; 412 } 413 414 DomTreeNode::iterator end() { return EndIter; } 415 bool isProcessed() { return Processed; } 416 void process() { Processed = true; } 417 418 private: 419 unsigned CurrentGeneration; 420 unsigned ChildGeneration; 421 DomTreeNode *Node; 422 DomTreeNode::iterator ChildIter; 423 DomTreeNode::iterator EndIter; 424 NodeScope Scopes; 425 bool Processed = false; 426 }; 427 428 /// \brief Wrapper class to handle memory instructions, including loads, 429 /// stores and intrinsic loads and stores defined by the target. 430 class ParseMemoryInst { 431 public: 432 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 433 : Inst(Inst) { 434 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 435 if (TTI.getTgtMemIntrinsic(II, Info)) 436 IsTargetMemInst = true; 437 } 438 439 bool isLoad() const { 440 if (IsTargetMemInst) return Info.ReadMem; 441 return isa<LoadInst>(Inst); 442 } 443 444 bool isStore() const { 445 if (IsTargetMemInst) return Info.WriteMem; 446 return isa<StoreInst>(Inst); 447 } 448 449 bool isAtomic() const { 450 if (IsTargetMemInst) 451 return Info.Ordering != AtomicOrdering::NotAtomic; 452 return Inst->isAtomic(); 453 } 454 455 bool isUnordered() const { 456 if (IsTargetMemInst) 457 return Info.isUnordered(); 458 459 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 460 return LI->isUnordered(); 461 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 462 return SI->isUnordered(); 463 } 464 // Conservative answer 465 return !Inst->isAtomic(); 466 } 467 468 bool isVolatile() const { 469 if (IsTargetMemInst) 470 return Info.IsVolatile; 471 472 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 473 return LI->isVolatile(); 474 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 475 return SI->isVolatile(); 476 } 477 // Conservative answer 478 return true; 479 } 480 481 bool isInvariantLoad() const { 482 if (auto *LI = dyn_cast<LoadInst>(Inst)) 483 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 484 return false; 485 } 486 487 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 488 return (getPointerOperand() == Inst.getPointerOperand() && 489 getMatchingId() == Inst.getMatchingId()); 490 } 491 492 bool isValid() const { return getPointerOperand() != nullptr; } 493 494 // For regular (non-intrinsic) loads/stores, this is set to -1. For 495 // intrinsic loads/stores, the id is retrieved from the corresponding 496 // field in the MemIntrinsicInfo structure. That field contains 497 // non-negative values only. 498 int getMatchingId() const { 499 if (IsTargetMemInst) return Info.MatchingId; 500 return -1; 501 } 502 503 Value *getPointerOperand() const { 504 if (IsTargetMemInst) return Info.PtrVal; 505 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 506 return LI->getPointerOperand(); 507 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 508 return SI->getPointerOperand(); 509 } 510 return nullptr; 511 } 512 513 bool mayReadFromMemory() const { 514 if (IsTargetMemInst) return Info.ReadMem; 515 return Inst->mayReadFromMemory(); 516 } 517 518 bool mayWriteToMemory() const { 519 if (IsTargetMemInst) return Info.WriteMem; 520 return Inst->mayWriteToMemory(); 521 } 522 523 private: 524 bool IsTargetMemInst = false; 525 MemIntrinsicInfo Info; 526 Instruction *Inst; 527 }; 528 529 bool processNode(DomTreeNode *Node); 530 531 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 532 if (auto *LI = dyn_cast<LoadInst>(Inst)) 533 return LI; 534 if (auto *SI = dyn_cast<StoreInst>(Inst)) 535 return SI->getValueOperand(); 536 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 537 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 538 ExpectedType); 539 } 540 541 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 542 Instruction *EarlierInst, Instruction *LaterInst); 543 544 void removeMSSA(Instruction *Inst) { 545 if (!MSSA) 546 return; 547 // Removing a store here can leave MemorySSA in an unoptimized state by 548 // creating MemoryPhis that have identical arguments and by creating 549 // MemoryUses whose defining access is not an actual clobber. We handle the 550 // phi case eagerly here. The non-optimized MemoryUse case is lazily 551 // updated by MemorySSA getClobberingMemoryAccess. 552 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 553 // Optimize MemoryPhi nodes that may become redundant by having all the 554 // same input values once MA is removed. 555 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 556 SmallVector<MemoryAccess *, 8> WorkQueue; 557 WorkQueue.push_back(MA); 558 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 559 // we shouldn't be processing that many phis and this will avoid an 560 // allocation in almost all cases. 561 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 562 MemoryAccess *WI = WorkQueue[I]; 563 564 for (auto *U : WI->users()) 565 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 566 PhisToCheck.insert(MP); 567 568 MSSAUpdater->removeMemoryAccess(WI); 569 570 for (MemoryPhi *MP : PhisToCheck) { 571 MemoryAccess *FirstIn = MP->getIncomingValue(0); 572 if (llvm::all_of(MP->incoming_values(), 573 [=](Use &In) { return In == FirstIn; })) 574 WorkQueue.push_back(MP); 575 } 576 PhisToCheck.clear(); 577 } 578 } 579 } 580 }; 581 582 } // end anonymous namespace 583 584 /// Determine if the memory referenced by LaterInst is from the same heap 585 /// version as EarlierInst. 586 /// This is currently called in two scenarios: 587 /// 588 /// load p 589 /// ... 590 /// load p 591 /// 592 /// and 593 /// 594 /// x = load p 595 /// ... 596 /// store x, p 597 /// 598 /// in both cases we want to verify that there are no possible writes to the 599 /// memory referenced by p between the earlier and later instruction. 600 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 601 unsigned LaterGeneration, 602 Instruction *EarlierInst, 603 Instruction *LaterInst) { 604 // Check the simple memory generation tracking first. 605 if (EarlierGeneration == LaterGeneration) 606 return true; 607 608 if (!MSSA) 609 return false; 610 611 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 612 // read/write memory, then we can safely return true here. 613 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 614 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 615 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 616 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 617 // with the default optimization pipeline. 618 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 619 if (!EarlierMA) 620 return true; 621 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 622 if (!LaterMA) 623 return true; 624 625 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 626 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 627 // EarlierInst and LaterInst and neither can any other write that potentially 628 // clobbers LaterInst. 629 MemoryAccess *LaterDef = 630 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 631 return MSSA->dominates(LaterDef, EarlierMA); 632 } 633 634 bool EarlyCSE::processNode(DomTreeNode *Node) { 635 bool Changed = false; 636 BasicBlock *BB = Node->getBlock(); 637 638 // If this block has a single predecessor, then the predecessor is the parent 639 // of the domtree node and all of the live out memory values are still current 640 // in this block. If this block has multiple predecessors, then they could 641 // have invalidated the live-out memory values of our parent value. For now, 642 // just be conservative and invalidate memory if this block has multiple 643 // predecessors. 644 if (!BB->getSinglePredecessor()) 645 ++CurrentGeneration; 646 647 // If this node has a single predecessor which ends in a conditional branch, 648 // we can infer the value of the branch condition given that we took this 649 // path. We need the single predecessor to ensure there's not another path 650 // which reaches this block where the condition might hold a different 651 // value. Since we're adding this to the scoped hash table (like any other 652 // def), it will have been popped if we encounter a future merge block. 653 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 654 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 655 if (BI && BI->isConditional()) { 656 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 657 if (CondInst && SimpleValue::canHandle(CondInst)) { 658 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 659 auto *TorF = (BI->getSuccessor(0) == BB) 660 ? ConstantInt::getTrue(BB->getContext()) 661 : ConstantInt::getFalse(BB->getContext()); 662 AvailableValues.insert(CondInst, TorF); 663 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 664 << CondInst->getName() << "' as " << *TorF << " in " 665 << BB->getName() << "\n"); 666 // Replace all dominated uses with the known value. 667 if (unsigned Count = replaceDominatedUsesWith( 668 CondInst, TorF, DT, BasicBlockEdge(Pred, BB))) { 669 Changed = true; 670 NumCSECVP += Count; 671 } 672 } 673 } 674 } 675 676 /// LastStore - Keep track of the last non-volatile store that we saw... for 677 /// as long as there in no instruction that reads memory. If we see a store 678 /// to the same location, we delete the dead store. This zaps trivial dead 679 /// stores which can occur in bitfield code among other things. 680 Instruction *LastStore = nullptr; 681 682 // See if any instructions in the block can be eliminated. If so, do it. If 683 // not, add them to AvailableValues. 684 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 685 Instruction *Inst = &*I++; 686 687 // Dead instructions should just be removed. 688 if (isInstructionTriviallyDead(Inst, &TLI)) { 689 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 690 removeMSSA(Inst); 691 Inst->eraseFromParent(); 692 Changed = true; 693 ++NumSimplify; 694 continue; 695 } 696 697 // Skip assume intrinsics, they don't really have side effects (although 698 // they're marked as such to ensure preservation of control dependencies), 699 // and this pass will not bother with its removal. However, we should mark 700 // its condition as true for all dominated blocks. 701 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 702 auto *CondI = 703 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 704 if (CondI && SimpleValue::canHandle(CondI)) { 705 DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst << '\n'); 706 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 707 } else 708 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 709 continue; 710 } 711 712 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 713 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 714 DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 715 continue; 716 } 717 718 // Skip invariant.start intrinsics since they only read memory, and we can 719 // forward values across it. Also, we dont need to consume the last store 720 // since the semantics of invariant.start allow us to perform DSE of the 721 // last store, if there was a store following invariant.start. Consider: 722 // 723 // store 30, i8* p 724 // invariant.start(p) 725 // store 40, i8* p 726 // We can DSE the store to 30, since the store 40 to invariant location p 727 // causes undefined behaviour. 728 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) 729 continue; 730 731 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 732 if (auto *CondI = 733 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 734 if (SimpleValue::canHandle(CondI)) { 735 // Do we already know the actual value of this condition? 736 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 737 // Is the condition known to be true? 738 if (isa<ConstantInt>(KnownCond) && 739 cast<ConstantInt>(KnownCond)->isOne()) { 740 DEBUG(dbgs() << "EarlyCSE removing guard: " << *Inst << '\n'); 741 removeMSSA(Inst); 742 Inst->eraseFromParent(); 743 Changed = true; 744 continue; 745 } else 746 // Use the known value if it wasn't true. 747 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 748 } 749 // The condition we're on guarding here is true for all dominated 750 // locations. 751 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 752 } 753 } 754 755 // Guard intrinsics read all memory, but don't write any memory. 756 // Accordingly, don't update the generation but consume the last store (to 757 // avoid an incorrect DSE). 758 LastStore = nullptr; 759 continue; 760 } 761 762 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 763 // its simpler value. 764 if (Value *V = SimplifyInstruction(Inst, SQ)) { 765 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 766 bool Killed = false; 767 if (!Inst->use_empty()) { 768 Inst->replaceAllUsesWith(V); 769 Changed = true; 770 } 771 if (isInstructionTriviallyDead(Inst, &TLI)) { 772 removeMSSA(Inst); 773 Inst->eraseFromParent(); 774 Changed = true; 775 Killed = true; 776 } 777 if (Changed) 778 ++NumSimplify; 779 if (Killed) 780 continue; 781 } 782 783 // If this is a simple instruction that we can value number, process it. 784 if (SimpleValue::canHandle(Inst)) { 785 // See if the instruction has an available value. If so, use it. 786 if (Value *V = AvailableValues.lookup(Inst)) { 787 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 788 if (auto *I = dyn_cast<Instruction>(V)) 789 I->andIRFlags(Inst); 790 Inst->replaceAllUsesWith(V); 791 removeMSSA(Inst); 792 Inst->eraseFromParent(); 793 Changed = true; 794 ++NumCSE; 795 continue; 796 } 797 798 // Otherwise, just remember that this value is available. 799 AvailableValues.insert(Inst, Inst); 800 continue; 801 } 802 803 ParseMemoryInst MemInst(Inst, TTI); 804 // If this is a non-volatile load, process it. 805 if (MemInst.isValid() && MemInst.isLoad()) { 806 // (conservatively) we can't peak past the ordering implied by this 807 // operation, but we can add this load to our set of available values 808 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 809 LastStore = nullptr; 810 ++CurrentGeneration; 811 } 812 813 // If we have an available version of this load, and if it is the right 814 // generation or the load is known to be from an invariant location, 815 // replace this instruction. 816 // 817 // If either the dominating load or the current load are invariant, then 818 // we can assume the current load loads the same value as the dominating 819 // load. 820 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 821 if (InVal.DefInst != nullptr && 822 InVal.MatchingId == MemInst.getMatchingId() && 823 // We don't yet handle removing loads with ordering of any kind. 824 !MemInst.isVolatile() && MemInst.isUnordered() && 825 // We can't replace an atomic load with one which isn't also atomic. 826 InVal.IsAtomic >= MemInst.isAtomic() && 827 (InVal.IsInvariant || MemInst.isInvariantLoad() || 828 isSameMemGeneration(InVal.Generation, CurrentGeneration, 829 InVal.DefInst, Inst))) { 830 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 831 if (Op != nullptr) { 832 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 833 << " to: " << *InVal.DefInst << '\n'); 834 if (!Inst->use_empty()) 835 Inst->replaceAllUsesWith(Op); 836 removeMSSA(Inst); 837 Inst->eraseFromParent(); 838 Changed = true; 839 ++NumCSELoad; 840 continue; 841 } 842 } 843 844 // Otherwise, remember that we have this instruction. 845 AvailableLoads.insert( 846 MemInst.getPointerOperand(), 847 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 848 MemInst.isAtomic(), MemInst.isInvariantLoad())); 849 LastStore = nullptr; 850 continue; 851 } 852 853 // If this instruction may read from memory or throw (and potentially read 854 // from memory in the exception handler), forget LastStore. Load/store 855 // intrinsics will indicate both a read and a write to memory. The target 856 // may override this (e.g. so that a store intrinsic does not read from 857 // memory, and thus will be treated the same as a regular store for 858 // commoning purposes). 859 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 860 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 861 LastStore = nullptr; 862 863 // If this is a read-only call, process it. 864 if (CallValue::canHandle(Inst)) { 865 // If we have an available version of this call, and if it is the right 866 // generation, replace this instruction. 867 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 868 if (InVal.first != nullptr && 869 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 870 Inst)) { 871 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 872 << " to: " << *InVal.first << '\n'); 873 if (!Inst->use_empty()) 874 Inst->replaceAllUsesWith(InVal.first); 875 removeMSSA(Inst); 876 Inst->eraseFromParent(); 877 Changed = true; 878 ++NumCSECall; 879 continue; 880 } 881 882 // Otherwise, remember that we have this instruction. 883 AvailableCalls.insert( 884 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 885 continue; 886 } 887 888 // A release fence requires that all stores complete before it, but does 889 // not prevent the reordering of following loads 'before' the fence. As a 890 // result, we don't need to consider it as writing to memory and don't need 891 // to advance the generation. We do need to prevent DSE across the fence, 892 // but that's handled above. 893 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 894 if (FI->getOrdering() == AtomicOrdering::Release) { 895 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 896 continue; 897 } 898 899 // write back DSE - If we write back the same value we just loaded from 900 // the same location and haven't passed any intervening writes or ordering 901 // operations, we can remove the write. The primary benefit is in allowing 902 // the available load table to remain valid and value forward past where 903 // the store originally was. 904 if (MemInst.isValid() && MemInst.isStore()) { 905 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 906 if (InVal.DefInst && 907 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 908 InVal.MatchingId == MemInst.getMatchingId() && 909 // We don't yet handle removing stores with ordering of any kind. 910 !MemInst.isVolatile() && MemInst.isUnordered() && 911 isSameMemGeneration(InVal.Generation, CurrentGeneration, 912 InVal.DefInst, Inst)) { 913 // It is okay to have a LastStore to a different pointer here if MemorySSA 914 // tells us that the load and store are from the same memory generation. 915 // In that case, LastStore should keep its present value since we're 916 // removing the current store. 917 assert((!LastStore || 918 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 919 MemInst.getPointerOperand() || 920 MSSA) && 921 "can't have an intervening store if not using MemorySSA!"); 922 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 923 removeMSSA(Inst); 924 Inst->eraseFromParent(); 925 Changed = true; 926 ++NumDSE; 927 // We can avoid incrementing the generation count since we were able 928 // to eliminate this store. 929 continue; 930 } 931 } 932 933 // Okay, this isn't something we can CSE at all. Check to see if it is 934 // something that could modify memory. If so, our available memory values 935 // cannot be used so bump the generation count. 936 if (Inst->mayWriteToMemory()) { 937 ++CurrentGeneration; 938 939 if (MemInst.isValid() && MemInst.isStore()) { 940 // We do a trivial form of DSE if there are two stores to the same 941 // location with no intervening loads. Delete the earlier store. 942 // At the moment, we don't remove ordered stores, but do remove 943 // unordered atomic stores. There's no special requirement (for 944 // unordered atomics) about removing atomic stores only in favor of 945 // other atomic stores since we we're going to execute the non-atomic 946 // one anyway and the atomic one might never have become visible. 947 if (LastStore) { 948 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 949 assert(LastStoreMemInst.isUnordered() && 950 !LastStoreMemInst.isVolatile() && 951 "Violated invariant"); 952 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 953 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 954 << " due to: " << *Inst << '\n'); 955 removeMSSA(LastStore); 956 LastStore->eraseFromParent(); 957 Changed = true; 958 ++NumDSE; 959 LastStore = nullptr; 960 } 961 // fallthrough - we can exploit information about this store 962 } 963 964 // Okay, we just invalidated anything we knew about loaded values. Try 965 // to salvage *something* by remembering that the stored value is a live 966 // version of the pointer. It is safe to forward from volatile stores 967 // to non-volatile loads, so we don't have to check for volatility of 968 // the store. 969 AvailableLoads.insert( 970 MemInst.getPointerOperand(), 971 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 972 MemInst.isAtomic(), /*IsInvariant=*/false)); 973 974 // Remember that this was the last unordered store we saw for DSE. We 975 // don't yet handle DSE on ordered or volatile stores since we don't 976 // have a good way to model the ordering requirement for following 977 // passes once the store is removed. We could insert a fence, but 978 // since fences are slightly stronger than stores in their ordering, 979 // it's not clear this is a profitable transform. Another option would 980 // be to merge the ordering with that of the post dominating store. 981 if (MemInst.isUnordered() && !MemInst.isVolatile()) 982 LastStore = Inst; 983 else 984 LastStore = nullptr; 985 } 986 } 987 } 988 989 return Changed; 990 } 991 992 bool EarlyCSE::run() { 993 // Note, deque is being used here because there is significant performance 994 // gains over vector when the container becomes very large due to the 995 // specific access patterns. For more information see the mailing list 996 // discussion on this: 997 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 998 std::deque<StackNode *> nodesToProcess; 999 1000 bool Changed = false; 1001 1002 // Process the root node. 1003 nodesToProcess.push_back(new StackNode( 1004 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 1005 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 1006 1007 // Save the current generation. 1008 unsigned LiveOutGeneration = CurrentGeneration; 1009 1010 // Process the stack. 1011 while (!nodesToProcess.empty()) { 1012 // Grab the first item off the stack. Set the current generation, remove 1013 // the node from the stack, and process it. 1014 StackNode *NodeToProcess = nodesToProcess.back(); 1015 1016 // Initialize class members. 1017 CurrentGeneration = NodeToProcess->currentGeneration(); 1018 1019 // Check if the node needs to be processed. 1020 if (!NodeToProcess->isProcessed()) { 1021 // Process the node. 1022 Changed |= processNode(NodeToProcess->node()); 1023 NodeToProcess->childGeneration(CurrentGeneration); 1024 NodeToProcess->process(); 1025 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1026 // Push the next child onto the stack. 1027 DomTreeNode *child = NodeToProcess->nextChild(); 1028 nodesToProcess.push_back( 1029 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 1030 NodeToProcess->childGeneration(), child, child->begin(), 1031 child->end())); 1032 } else { 1033 // It has been processed, and there are no more children to process, 1034 // so delete it and pop it off the stack. 1035 delete NodeToProcess; 1036 nodesToProcess.pop_back(); 1037 } 1038 } // while (!nodes...) 1039 1040 // Reset the current generation. 1041 CurrentGeneration = LiveOutGeneration; 1042 1043 return Changed; 1044 } 1045 1046 PreservedAnalyses EarlyCSEPass::run(Function &F, 1047 FunctionAnalysisManager &AM) { 1048 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1049 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1050 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1051 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1052 auto *MSSA = 1053 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1054 1055 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1056 1057 if (!CSE.run()) 1058 return PreservedAnalyses::all(); 1059 1060 PreservedAnalyses PA; 1061 PA.preserveSet<CFGAnalyses>(); 1062 PA.preserve<GlobalsAA>(); 1063 if (UseMemorySSA) 1064 PA.preserve<MemorySSAAnalysis>(); 1065 return PA; 1066 } 1067 1068 namespace { 1069 1070 /// \brief A simple and fast domtree-based CSE pass. 1071 /// 1072 /// This pass does a simple depth-first walk over the dominator tree, 1073 /// eliminating trivially redundant instructions and using instsimplify to 1074 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1075 /// cases so that instcombine and other passes are more effective. It is 1076 /// expected that a later pass of GVN will catch the interesting/hard cases. 1077 template<bool UseMemorySSA> 1078 class EarlyCSELegacyCommonPass : public FunctionPass { 1079 public: 1080 static char ID; 1081 1082 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1083 if (UseMemorySSA) 1084 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1085 else 1086 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1087 } 1088 1089 bool runOnFunction(Function &F) override { 1090 if (skipFunction(F)) 1091 return false; 1092 1093 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1094 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1095 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1096 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1097 auto *MSSA = 1098 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1099 1100 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1101 1102 return CSE.run(); 1103 } 1104 1105 void getAnalysisUsage(AnalysisUsage &AU) const override { 1106 AU.addRequired<AssumptionCacheTracker>(); 1107 AU.addRequired<DominatorTreeWrapperPass>(); 1108 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1109 AU.addRequired<TargetTransformInfoWrapperPass>(); 1110 if (UseMemorySSA) { 1111 AU.addRequired<MemorySSAWrapperPass>(); 1112 AU.addPreserved<MemorySSAWrapperPass>(); 1113 } 1114 AU.addPreserved<GlobalsAAWrapperPass>(); 1115 AU.setPreservesCFG(); 1116 } 1117 }; 1118 1119 } // end anonymous namespace 1120 1121 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1122 1123 template<> 1124 char EarlyCSELegacyPass::ID = 0; 1125 1126 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1127 false) 1128 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1129 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1131 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1132 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1133 1134 using EarlyCSEMemSSALegacyPass = 1135 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1136 1137 template<> 1138 char EarlyCSEMemSSALegacyPass::ID = 0; 1139 1140 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1141 if (UseMemorySSA) 1142 return new EarlyCSEMemSSALegacyPass(); 1143 else 1144 return new EarlyCSELegacyPass(); 1145 } 1146 1147 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1148 "Early CSE w/ MemorySSA", false, false) 1149 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1150 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1153 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1154 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1155 "Early CSE w/ MemorySSA", false, false) 1156