1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/DenseMapInfo.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/ScopedHashTable.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Transforms/Utils/Local.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Allocator.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/DebugCounter.h" 54 #include "llvm/Support/RecyclingAllocator.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include <cassert> 58 #include <deque> 59 #include <memory> 60 #include <utility> 61 62 using namespace llvm; 63 using namespace llvm::PatternMatch; 64 65 #define DEBUG_TYPE "early-cse" 66 67 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 68 STATISTIC(NumCSE, "Number of instructions CSE'd"); 69 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 70 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 71 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 72 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 73 74 DEBUG_COUNTER(CSECounter, "early-cse", 75 "Controls which instructions are removed"); 76 77 //===----------------------------------------------------------------------===// 78 // SimpleValue 79 //===----------------------------------------------------------------------===// 80 81 namespace { 82 83 /// Struct representing the available values in the scoped hash table. 84 struct SimpleValue { 85 Instruction *Inst; 86 87 SimpleValue(Instruction *I) : Inst(I) { 88 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 89 } 90 91 bool isSentinel() const { 92 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 93 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 94 } 95 96 static bool canHandle(Instruction *Inst) { 97 // This can only handle non-void readnone functions. 98 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 99 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 100 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 101 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 102 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 103 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 104 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 105 } 106 }; 107 108 } // end anonymous namespace 109 110 namespace llvm { 111 112 template <> struct DenseMapInfo<SimpleValue> { 113 static inline SimpleValue getEmptyKey() { 114 return DenseMapInfo<Instruction *>::getEmptyKey(); 115 } 116 117 static inline SimpleValue getTombstoneKey() { 118 return DenseMapInfo<Instruction *>::getTombstoneKey(); 119 } 120 121 static unsigned getHashValue(SimpleValue Val); 122 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 123 }; 124 125 } // end namespace llvm 126 127 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 128 Instruction *Inst = Val.Inst; 129 // Hash in all of the operands as pointers. 130 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 131 Value *LHS = BinOp->getOperand(0); 132 Value *RHS = BinOp->getOperand(1); 133 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 134 std::swap(LHS, RHS); 135 136 return hash_combine(BinOp->getOpcode(), LHS, RHS); 137 } 138 139 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 140 Value *LHS = CI->getOperand(0); 141 Value *RHS = CI->getOperand(1); 142 CmpInst::Predicate Pred = CI->getPredicate(); 143 if (Inst->getOperand(0) > Inst->getOperand(1)) { 144 std::swap(LHS, RHS); 145 Pred = CI->getSwappedPredicate(); 146 } 147 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 148 } 149 150 // Hash min/max/abs (cmp + select) to allow for commuted operands. 151 // Min/max may also have non-canonical compare predicate (eg, the compare for 152 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 153 // compare. 154 Value *A, *B; 155 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor; 156 // TODO: We should also detect FP min/max. 157 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 158 SPF == SPF_UMIN || SPF == SPF_UMAX) { 159 if (A > B) 160 std::swap(A, B); 161 return hash_combine(Inst->getOpcode(), SPF, A, B); 162 } 163 if (SPF == SPF_ABS || SPF == SPF_NABS) { 164 // ABS/NABS always puts the input in A and its negation in B. 165 return hash_combine(Inst->getOpcode(), SPF, A, B); 166 } 167 168 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 169 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 170 171 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 172 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 173 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 174 175 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 176 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 177 IVI->getOperand(1), 178 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 179 180 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 181 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 182 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 183 isa<ShuffleVectorInst>(Inst)) && 184 "Invalid/unknown instruction"); 185 186 // Mix in the opcode. 187 return hash_combine( 188 Inst->getOpcode(), 189 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 190 } 191 192 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 193 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 194 195 if (LHS.isSentinel() || RHS.isSentinel()) 196 return LHSI == RHSI; 197 198 if (LHSI->getOpcode() != RHSI->getOpcode()) 199 return false; 200 if (LHSI->isIdenticalToWhenDefined(RHSI)) 201 return true; 202 203 // If we're not strictly identical, we still might be a commutable instruction 204 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 205 if (!LHSBinOp->isCommutative()) 206 return false; 207 208 assert(isa<BinaryOperator>(RHSI) && 209 "same opcode, but different instruction type?"); 210 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 211 212 // Commuted equality 213 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 214 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 215 } 216 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 217 assert(isa<CmpInst>(RHSI) && 218 "same opcode, but different instruction type?"); 219 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 220 // Commuted equality 221 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 222 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 223 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 224 } 225 226 // Min/max/abs can occur with commuted operands, non-canonical predicates, 227 // and/or non-canonical operands. 228 Value *LHSA, *LHSB; 229 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor; 230 // TODO: We should also detect FP min/max. 231 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 232 LSPF == SPF_UMIN || LSPF == SPF_UMAX || 233 LSPF == SPF_ABS || LSPF == SPF_NABS) { 234 Value *RHSA, *RHSB; 235 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor; 236 if (LSPF == RSPF) { 237 // Abs results are placed in a defined order by matchSelectPattern. 238 if (LSPF == SPF_ABS || LSPF == SPF_NABS) 239 return LHSA == RHSA && LHSB == RHSB; 240 return ((LHSA == RHSA && LHSB == RHSB) || 241 (LHSA == RHSB && LHSB == RHSA)); 242 } 243 } 244 245 return false; 246 } 247 248 //===----------------------------------------------------------------------===// 249 // CallValue 250 //===----------------------------------------------------------------------===// 251 252 namespace { 253 254 /// Struct representing the available call values in the scoped hash 255 /// table. 256 struct CallValue { 257 Instruction *Inst; 258 259 CallValue(Instruction *I) : Inst(I) { 260 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 261 } 262 263 bool isSentinel() const { 264 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 265 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 266 } 267 268 static bool canHandle(Instruction *Inst) { 269 // Don't value number anything that returns void. 270 if (Inst->getType()->isVoidTy()) 271 return false; 272 273 CallInst *CI = dyn_cast<CallInst>(Inst); 274 if (!CI || !CI->onlyReadsMemory()) 275 return false; 276 return true; 277 } 278 }; 279 280 } // end anonymous namespace 281 282 namespace llvm { 283 284 template <> struct DenseMapInfo<CallValue> { 285 static inline CallValue getEmptyKey() { 286 return DenseMapInfo<Instruction *>::getEmptyKey(); 287 } 288 289 static inline CallValue getTombstoneKey() { 290 return DenseMapInfo<Instruction *>::getTombstoneKey(); 291 } 292 293 static unsigned getHashValue(CallValue Val); 294 static bool isEqual(CallValue LHS, CallValue RHS); 295 }; 296 297 } // end namespace llvm 298 299 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 300 Instruction *Inst = Val.Inst; 301 // Hash all of the operands as pointers and mix in the opcode. 302 return hash_combine( 303 Inst->getOpcode(), 304 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 305 } 306 307 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 308 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 309 if (LHS.isSentinel() || RHS.isSentinel()) 310 return LHSI == RHSI; 311 return LHSI->isIdenticalTo(RHSI); 312 } 313 314 //===----------------------------------------------------------------------===// 315 // EarlyCSE implementation 316 //===----------------------------------------------------------------------===// 317 318 namespace { 319 320 /// A simple and fast domtree-based CSE pass. 321 /// 322 /// This pass does a simple depth-first walk over the dominator tree, 323 /// eliminating trivially redundant instructions and using instsimplify to 324 /// canonicalize things as it goes. It is intended to be fast and catch obvious 325 /// cases so that instcombine and other passes are more effective. It is 326 /// expected that a later pass of GVN will catch the interesting/hard cases. 327 class EarlyCSE { 328 public: 329 const TargetLibraryInfo &TLI; 330 const TargetTransformInfo &TTI; 331 DominatorTree &DT; 332 AssumptionCache &AC; 333 const SimplifyQuery SQ; 334 MemorySSA *MSSA; 335 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 336 337 using AllocatorTy = 338 RecyclingAllocator<BumpPtrAllocator, 339 ScopedHashTableVal<SimpleValue, Value *>>; 340 using ScopedHTType = 341 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 342 AllocatorTy>; 343 344 /// A scoped hash table of the current values of all of our simple 345 /// scalar expressions. 346 /// 347 /// As we walk down the domtree, we look to see if instructions are in this: 348 /// if so, we replace them with what we find, otherwise we insert them so 349 /// that dominated values can succeed in their lookup. 350 ScopedHTType AvailableValues; 351 352 /// A scoped hash table of the current values of previously encountered 353 /// memory locations. 354 /// 355 /// This allows us to get efficient access to dominating loads or stores when 356 /// we have a fully redundant load. In addition to the most recent load, we 357 /// keep track of a generation count of the read, which is compared against 358 /// the current generation count. The current generation count is incremented 359 /// after every possibly writing memory operation, which ensures that we only 360 /// CSE loads with other loads that have no intervening store. Ordering 361 /// events (such as fences or atomic instructions) increment the generation 362 /// count as well; essentially, we model these as writes to all possible 363 /// locations. Note that atomic and/or volatile loads and stores can be 364 /// present the table; it is the responsibility of the consumer to inspect 365 /// the atomicity/volatility if needed. 366 struct LoadValue { 367 Instruction *DefInst = nullptr; 368 unsigned Generation = 0; 369 int MatchingId = -1; 370 bool IsAtomic = false; 371 372 LoadValue() = default; 373 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 374 bool IsAtomic) 375 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 376 IsAtomic(IsAtomic) {} 377 }; 378 379 using LoadMapAllocator = 380 RecyclingAllocator<BumpPtrAllocator, 381 ScopedHashTableVal<Value *, LoadValue>>; 382 using LoadHTType = 383 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 384 LoadMapAllocator>; 385 386 LoadHTType AvailableLoads; 387 388 // A scoped hash table mapping memory locations (represented as typed 389 // addresses) to generation numbers at which that memory location became 390 // (henceforth indefinitely) invariant. 391 using InvariantMapAllocator = 392 RecyclingAllocator<BumpPtrAllocator, 393 ScopedHashTableVal<MemoryLocation, unsigned>>; 394 using InvariantHTType = 395 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 396 InvariantMapAllocator>; 397 InvariantHTType AvailableInvariants; 398 399 /// A scoped hash table of the current values of read-only call 400 /// values. 401 /// 402 /// It uses the same generation count as loads. 403 using CallHTType = 404 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 405 CallHTType AvailableCalls; 406 407 /// This is the current generation of the memory value. 408 unsigned CurrentGeneration = 0; 409 410 /// Set up the EarlyCSE runner for a particular function. 411 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 412 const TargetTransformInfo &TTI, DominatorTree &DT, 413 AssumptionCache &AC, MemorySSA *MSSA) 414 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 415 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {} 416 417 bool run(); 418 419 private: 420 // Almost a POD, but needs to call the constructors for the scoped hash 421 // tables so that a new scope gets pushed on. These are RAII so that the 422 // scope gets popped when the NodeScope is destroyed. 423 class NodeScope { 424 public: 425 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 426 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 427 : Scope(AvailableValues), LoadScope(AvailableLoads), 428 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 429 NodeScope(const NodeScope &) = delete; 430 NodeScope &operator=(const NodeScope &) = delete; 431 432 private: 433 ScopedHTType::ScopeTy Scope; 434 LoadHTType::ScopeTy LoadScope; 435 InvariantHTType::ScopeTy InvariantScope; 436 CallHTType::ScopeTy CallScope; 437 }; 438 439 // Contains all the needed information to create a stack for doing a depth 440 // first traversal of the tree. This includes scopes for values, loads, and 441 // calls as well as the generation. There is a child iterator so that the 442 // children do not need to be store separately. 443 class StackNode { 444 public: 445 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 446 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 447 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child, 448 DomTreeNode::iterator end) 449 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 450 EndIter(end), 451 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 452 AvailableCalls) 453 {} 454 StackNode(const StackNode &) = delete; 455 StackNode &operator=(const StackNode &) = delete; 456 457 // Accessors. 458 unsigned currentGeneration() { return CurrentGeneration; } 459 unsigned childGeneration() { return ChildGeneration; } 460 void childGeneration(unsigned generation) { ChildGeneration = generation; } 461 DomTreeNode *node() { return Node; } 462 DomTreeNode::iterator childIter() { return ChildIter; } 463 464 DomTreeNode *nextChild() { 465 DomTreeNode *child = *ChildIter; 466 ++ChildIter; 467 return child; 468 } 469 470 DomTreeNode::iterator end() { return EndIter; } 471 bool isProcessed() { return Processed; } 472 void process() { Processed = true; } 473 474 private: 475 unsigned CurrentGeneration; 476 unsigned ChildGeneration; 477 DomTreeNode *Node; 478 DomTreeNode::iterator ChildIter; 479 DomTreeNode::iterator EndIter; 480 NodeScope Scopes; 481 bool Processed = false; 482 }; 483 484 /// Wrapper class to handle memory instructions, including loads, 485 /// stores and intrinsic loads and stores defined by the target. 486 class ParseMemoryInst { 487 public: 488 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 489 : Inst(Inst) { 490 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 491 if (TTI.getTgtMemIntrinsic(II, Info)) 492 IsTargetMemInst = true; 493 } 494 495 bool isLoad() const { 496 if (IsTargetMemInst) return Info.ReadMem; 497 return isa<LoadInst>(Inst); 498 } 499 500 bool isStore() const { 501 if (IsTargetMemInst) return Info.WriteMem; 502 return isa<StoreInst>(Inst); 503 } 504 505 bool isAtomic() const { 506 if (IsTargetMemInst) 507 return Info.Ordering != AtomicOrdering::NotAtomic; 508 return Inst->isAtomic(); 509 } 510 511 bool isUnordered() const { 512 if (IsTargetMemInst) 513 return Info.isUnordered(); 514 515 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 516 return LI->isUnordered(); 517 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 518 return SI->isUnordered(); 519 } 520 // Conservative answer 521 return !Inst->isAtomic(); 522 } 523 524 bool isVolatile() const { 525 if (IsTargetMemInst) 526 return Info.IsVolatile; 527 528 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 529 return LI->isVolatile(); 530 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 531 return SI->isVolatile(); 532 } 533 // Conservative answer 534 return true; 535 } 536 537 bool isInvariantLoad() const { 538 if (auto *LI = dyn_cast<LoadInst>(Inst)) 539 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 540 return false; 541 } 542 543 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 544 return (getPointerOperand() == Inst.getPointerOperand() && 545 getMatchingId() == Inst.getMatchingId()); 546 } 547 548 bool isValid() const { return getPointerOperand() != nullptr; } 549 550 // For regular (non-intrinsic) loads/stores, this is set to -1. For 551 // intrinsic loads/stores, the id is retrieved from the corresponding 552 // field in the MemIntrinsicInfo structure. That field contains 553 // non-negative values only. 554 int getMatchingId() const { 555 if (IsTargetMemInst) return Info.MatchingId; 556 return -1; 557 } 558 559 Value *getPointerOperand() const { 560 if (IsTargetMemInst) return Info.PtrVal; 561 return getLoadStorePointerOperand(Inst); 562 } 563 564 bool mayReadFromMemory() const { 565 if (IsTargetMemInst) return Info.ReadMem; 566 return Inst->mayReadFromMemory(); 567 } 568 569 bool mayWriteToMemory() const { 570 if (IsTargetMemInst) return Info.WriteMem; 571 return Inst->mayWriteToMemory(); 572 } 573 574 private: 575 bool IsTargetMemInst = false; 576 MemIntrinsicInfo Info; 577 Instruction *Inst; 578 }; 579 580 bool processNode(DomTreeNode *Node); 581 582 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 583 const BasicBlock *BB, const BasicBlock *Pred); 584 585 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 586 if (auto *LI = dyn_cast<LoadInst>(Inst)) 587 return LI; 588 if (auto *SI = dyn_cast<StoreInst>(Inst)) 589 return SI->getValueOperand(); 590 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 591 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 592 ExpectedType); 593 } 594 595 /// Return true if the instruction is known to only operate on memory 596 /// provably invariant in the given "generation". 597 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 598 599 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 600 Instruction *EarlierInst, Instruction *LaterInst); 601 602 void removeMSSA(Instruction *Inst) { 603 if (!MSSA) 604 return; 605 // Removing a store here can leave MemorySSA in an unoptimized state by 606 // creating MemoryPhis that have identical arguments and by creating 607 // MemoryUses whose defining access is not an actual clobber. We handle the 608 // phi case eagerly here. The non-optimized MemoryUse case is lazily 609 // updated by MemorySSA getClobberingMemoryAccess. 610 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 611 // Optimize MemoryPhi nodes that may become redundant by having all the 612 // same input values once MA is removed. 613 SmallSetVector<MemoryPhi *, 4> PhisToCheck; 614 SmallVector<MemoryAccess *, 8> WorkQueue; 615 WorkQueue.push_back(MA); 616 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 617 // we shouldn't be processing that many phis and this will avoid an 618 // allocation in almost all cases. 619 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 620 MemoryAccess *WI = WorkQueue[I]; 621 622 for (auto *U : WI->users()) 623 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 624 PhisToCheck.insert(MP); 625 626 MSSAUpdater->removeMemoryAccess(WI); 627 628 for (MemoryPhi *MP : PhisToCheck) { 629 MemoryAccess *FirstIn = MP->getIncomingValue(0); 630 if (llvm::all_of(MP->incoming_values(), 631 [=](Use &In) { return In == FirstIn; })) 632 WorkQueue.push_back(MP); 633 } 634 PhisToCheck.clear(); 635 } 636 } 637 } 638 }; 639 640 } // end anonymous namespace 641 642 /// Determine if the memory referenced by LaterInst is from the same heap 643 /// version as EarlierInst. 644 /// This is currently called in two scenarios: 645 /// 646 /// load p 647 /// ... 648 /// load p 649 /// 650 /// and 651 /// 652 /// x = load p 653 /// ... 654 /// store x, p 655 /// 656 /// in both cases we want to verify that there are no possible writes to the 657 /// memory referenced by p between the earlier and later instruction. 658 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 659 unsigned LaterGeneration, 660 Instruction *EarlierInst, 661 Instruction *LaterInst) { 662 // Check the simple memory generation tracking first. 663 if (EarlierGeneration == LaterGeneration) 664 return true; 665 666 if (!MSSA) 667 return false; 668 669 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 670 // read/write memory, then we can safely return true here. 671 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 672 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 673 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 674 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 675 // with the default optimization pipeline. 676 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 677 if (!EarlierMA) 678 return true; 679 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 680 if (!LaterMA) 681 return true; 682 683 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 684 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 685 // EarlierInst and LaterInst and neither can any other write that potentially 686 // clobbers LaterInst. 687 MemoryAccess *LaterDef = 688 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 689 return MSSA->dominates(LaterDef, EarlierMA); 690 } 691 692 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 693 // A location loaded from with an invariant_load is assumed to *never* change 694 // within the visible scope of the compilation. 695 if (auto *LI = dyn_cast<LoadInst>(I)) 696 if (LI->getMetadata(LLVMContext::MD_invariant_load)) 697 return true; 698 699 auto MemLocOpt = MemoryLocation::getOrNone(I); 700 if (!MemLocOpt) 701 // "target" intrinsic forms of loads aren't currently known to 702 // MemoryLocation::get. TODO 703 return false; 704 MemoryLocation MemLoc = *MemLocOpt; 705 if (!AvailableInvariants.count(MemLoc)) 706 return false; 707 708 // Is the generation at which this became invariant older than the 709 // current one? 710 return AvailableInvariants.lookup(MemLoc) <= GenAt; 711 } 712 713 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 714 const BranchInst *BI, const BasicBlock *BB, 715 const BasicBlock *Pred) { 716 assert(BI->isConditional() && "Should be a conditional branch!"); 717 assert(BI->getCondition() == CondInst && "Wrong condition?"); 718 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 719 auto *TorF = (BI->getSuccessor(0) == BB) 720 ? ConstantInt::getTrue(BB->getContext()) 721 : ConstantInt::getFalse(BB->getContext()); 722 auto MatchBinOp = [](Instruction *I, unsigned Opcode) { 723 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I)) 724 return BOp->getOpcode() == Opcode; 725 return false; 726 }; 727 // If the condition is AND operation, we can propagate its operands into the 728 // true branch. If it is OR operation, we can propagate them into the false 729 // branch. 730 unsigned PropagateOpcode = 731 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 732 733 bool MadeChanges = false; 734 SmallVector<Instruction *, 4> WorkList; 735 SmallPtrSet<Instruction *, 4> Visited; 736 WorkList.push_back(CondInst); 737 while (!WorkList.empty()) { 738 Instruction *Curr = WorkList.pop_back_val(); 739 740 AvailableValues.insert(Curr, TorF); 741 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 742 << Curr->getName() << "' as " << *TorF << " in " 743 << BB->getName() << "\n"); 744 if (!DebugCounter::shouldExecute(CSECounter)) { 745 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 746 } else { 747 // Replace all dominated uses with the known value. 748 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 749 BasicBlockEdge(Pred, BB))) { 750 NumCSECVP += Count; 751 MadeChanges = true; 752 } 753 } 754 755 if (MatchBinOp(Curr, PropagateOpcode)) 756 for (auto &Op : cast<BinaryOperator>(Curr)->operands()) 757 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 758 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 759 WorkList.push_back(OPI); 760 } 761 762 return MadeChanges; 763 } 764 765 bool EarlyCSE::processNode(DomTreeNode *Node) { 766 bool Changed = false; 767 BasicBlock *BB = Node->getBlock(); 768 769 // If this block has a single predecessor, then the predecessor is the parent 770 // of the domtree node and all of the live out memory values are still current 771 // in this block. If this block has multiple predecessors, then they could 772 // have invalidated the live-out memory values of our parent value. For now, 773 // just be conservative and invalidate memory if this block has multiple 774 // predecessors. 775 if (!BB->getSinglePredecessor()) 776 ++CurrentGeneration; 777 778 // If this node has a single predecessor which ends in a conditional branch, 779 // we can infer the value of the branch condition given that we took this 780 // path. We need the single predecessor to ensure there's not another path 781 // which reaches this block where the condition might hold a different 782 // value. Since we're adding this to the scoped hash table (like any other 783 // def), it will have been popped if we encounter a future merge block. 784 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 785 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 786 if (BI && BI->isConditional()) { 787 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 788 if (CondInst && SimpleValue::canHandle(CondInst)) 789 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 790 } 791 } 792 793 /// LastStore - Keep track of the last non-volatile store that we saw... for 794 /// as long as there in no instruction that reads memory. If we see a store 795 /// to the same location, we delete the dead store. This zaps trivial dead 796 /// stores which can occur in bitfield code among other things. 797 Instruction *LastStore = nullptr; 798 799 // See if any instructions in the block can be eliminated. If so, do it. If 800 // not, add them to AvailableValues. 801 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 802 Instruction *Inst = &*I++; 803 804 // Dead instructions should just be removed. 805 if (isInstructionTriviallyDead(Inst, &TLI)) { 806 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 807 if (!DebugCounter::shouldExecute(CSECounter)) { 808 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 809 continue; 810 } 811 salvageDebugInfo(*Inst); 812 removeMSSA(Inst); 813 Inst->eraseFromParent(); 814 Changed = true; 815 ++NumSimplify; 816 continue; 817 } 818 819 // Skip assume intrinsics, they don't really have side effects (although 820 // they're marked as such to ensure preservation of control dependencies), 821 // and this pass will not bother with its removal. However, we should mark 822 // its condition as true for all dominated blocks. 823 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 824 auto *CondI = 825 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0)); 826 if (CondI && SimpleValue::canHandle(CondI)) { 827 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst 828 << '\n'); 829 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 830 } else 831 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 832 continue; 833 } 834 835 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 836 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 837 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n'); 838 continue; 839 } 840 841 // We can skip all invariant.start intrinsics since they only read memory, 842 // and we can forward values across it. For invariant starts without 843 // invariant ends, we can use the fact that the invariantness never ends to 844 // start a scope in the current generaton which is true for all future 845 // generations. Also, we dont need to consume the last store since the 846 // semantics of invariant.start allow us to perform DSE of the last 847 // store, if there was a store following invariant.start. Consider: 848 // 849 // store 30, i8* p 850 // invariant.start(p) 851 // store 40, i8* p 852 // We can DSE the store to 30, since the store 40 to invariant location p 853 // causes undefined behaviour. 854 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 855 // If there are any uses, the scope might end. 856 if (!Inst->use_empty()) 857 continue; 858 auto *CI = cast<CallInst>(Inst); 859 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI); 860 // Don't start a scope if we already have a better one pushed 861 if (!AvailableInvariants.count(MemLoc)) 862 AvailableInvariants.insert(MemLoc, CurrentGeneration); 863 continue; 864 } 865 866 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 867 if (auto *CondI = 868 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 869 if (SimpleValue::canHandle(CondI)) { 870 // Do we already know the actual value of this condition? 871 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 872 // Is the condition known to be true? 873 if (isa<ConstantInt>(KnownCond) && 874 cast<ConstantInt>(KnownCond)->isOne()) { 875 LLVM_DEBUG(dbgs() 876 << "EarlyCSE removing guard: " << *Inst << '\n'); 877 removeMSSA(Inst); 878 Inst->eraseFromParent(); 879 Changed = true; 880 continue; 881 } else 882 // Use the known value if it wasn't true. 883 cast<CallInst>(Inst)->setArgOperand(0, KnownCond); 884 } 885 // The condition we're on guarding here is true for all dominated 886 // locations. 887 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 888 } 889 } 890 891 // Guard intrinsics read all memory, but don't write any memory. 892 // Accordingly, don't update the generation but consume the last store (to 893 // avoid an incorrect DSE). 894 LastStore = nullptr; 895 continue; 896 } 897 898 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 899 // its simpler value. 900 if (Value *V = SimplifyInstruction(Inst, SQ)) { 901 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V 902 << '\n'); 903 if (!DebugCounter::shouldExecute(CSECounter)) { 904 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 905 } else { 906 bool Killed = false; 907 if (!Inst->use_empty()) { 908 Inst->replaceAllUsesWith(V); 909 Changed = true; 910 } 911 if (isInstructionTriviallyDead(Inst, &TLI)) { 912 removeMSSA(Inst); 913 Inst->eraseFromParent(); 914 Changed = true; 915 Killed = true; 916 } 917 if (Changed) 918 ++NumSimplify; 919 if (Killed) 920 continue; 921 } 922 } 923 924 // If this is a simple instruction that we can value number, process it. 925 if (SimpleValue::canHandle(Inst)) { 926 // See if the instruction has an available value. If so, use it. 927 if (Value *V = AvailableValues.lookup(Inst)) { 928 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V 929 << '\n'); 930 if (!DebugCounter::shouldExecute(CSECounter)) { 931 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 932 continue; 933 } 934 if (auto *I = dyn_cast<Instruction>(V)) 935 I->andIRFlags(Inst); 936 Inst->replaceAllUsesWith(V); 937 removeMSSA(Inst); 938 Inst->eraseFromParent(); 939 Changed = true; 940 ++NumCSE; 941 continue; 942 } 943 944 // Otherwise, just remember that this value is available. 945 AvailableValues.insert(Inst, Inst); 946 continue; 947 } 948 949 ParseMemoryInst MemInst(Inst, TTI); 950 // If this is a non-volatile load, process it. 951 if (MemInst.isValid() && MemInst.isLoad()) { 952 // (conservatively) we can't peak past the ordering implied by this 953 // operation, but we can add this load to our set of available values 954 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 955 LastStore = nullptr; 956 ++CurrentGeneration; 957 } 958 959 if (MemInst.isInvariantLoad()) { 960 // If we pass an invariant load, we know that memory location is 961 // indefinitely constant from the moment of first dereferenceability. 962 // We conservatively treat the invariant_load as that moment. If we 963 // pass a invariant load after already establishing a scope, don't 964 // restart it since we want to preserve the earliest point seen. 965 auto MemLoc = MemoryLocation::get(Inst); 966 if (!AvailableInvariants.count(MemLoc)) 967 AvailableInvariants.insert(MemLoc, CurrentGeneration); 968 } 969 970 // If we have an available version of this load, and if it is the right 971 // generation or the load is known to be from an invariant location, 972 // replace this instruction. 973 // 974 // If either the dominating load or the current load are invariant, then 975 // we can assume the current load loads the same value as the dominating 976 // load. 977 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 978 if (InVal.DefInst != nullptr && 979 InVal.MatchingId == MemInst.getMatchingId() && 980 // We don't yet handle removing loads with ordering of any kind. 981 !MemInst.isVolatile() && MemInst.isUnordered() && 982 // We can't replace an atomic load with one which isn't also atomic. 983 InVal.IsAtomic >= MemInst.isAtomic() && 984 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 985 isSameMemGeneration(InVal.Generation, CurrentGeneration, 986 InVal.DefInst, Inst))) { 987 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 988 if (Op != nullptr) { 989 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 990 << " to: " << *InVal.DefInst << '\n'); 991 if (!DebugCounter::shouldExecute(CSECounter)) { 992 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 993 continue; 994 } 995 if (!Inst->use_empty()) 996 Inst->replaceAllUsesWith(Op); 997 removeMSSA(Inst); 998 Inst->eraseFromParent(); 999 Changed = true; 1000 ++NumCSELoad; 1001 continue; 1002 } 1003 } 1004 1005 // Otherwise, remember that we have this instruction. 1006 AvailableLoads.insert( 1007 MemInst.getPointerOperand(), 1008 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1009 MemInst.isAtomic())); 1010 LastStore = nullptr; 1011 continue; 1012 } 1013 1014 // If this instruction may read from memory or throw (and potentially read 1015 // from memory in the exception handler), forget LastStore. Load/store 1016 // intrinsics will indicate both a read and a write to memory. The target 1017 // may override this (e.g. so that a store intrinsic does not read from 1018 // memory, and thus will be treated the same as a regular store for 1019 // commoning purposes). 1020 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 1021 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1022 LastStore = nullptr; 1023 1024 // If this is a read-only call, process it. 1025 if (CallValue::canHandle(Inst)) { 1026 // If we have an available version of this call, and if it is the right 1027 // generation, replace this instruction. 1028 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 1029 if (InVal.first != nullptr && 1030 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1031 Inst)) { 1032 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 1033 << " to: " << *InVal.first << '\n'); 1034 if (!DebugCounter::shouldExecute(CSECounter)) { 1035 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1036 continue; 1037 } 1038 if (!Inst->use_empty()) 1039 Inst->replaceAllUsesWith(InVal.first); 1040 removeMSSA(Inst); 1041 Inst->eraseFromParent(); 1042 Changed = true; 1043 ++NumCSECall; 1044 continue; 1045 } 1046 1047 // Otherwise, remember that we have this instruction. 1048 AvailableCalls.insert( 1049 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 1050 continue; 1051 } 1052 1053 // A release fence requires that all stores complete before it, but does 1054 // not prevent the reordering of following loads 'before' the fence. As a 1055 // result, we don't need to consider it as writing to memory and don't need 1056 // to advance the generation. We do need to prevent DSE across the fence, 1057 // but that's handled above. 1058 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 1059 if (FI->getOrdering() == AtomicOrdering::Release) { 1060 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 1061 continue; 1062 } 1063 1064 // write back DSE - If we write back the same value we just loaded from 1065 // the same location and haven't passed any intervening writes or ordering 1066 // operations, we can remove the write. The primary benefit is in allowing 1067 // the available load table to remain valid and value forward past where 1068 // the store originally was. 1069 if (MemInst.isValid() && MemInst.isStore()) { 1070 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1071 if (InVal.DefInst && 1072 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 1073 InVal.MatchingId == MemInst.getMatchingId() && 1074 // We don't yet handle removing stores with ordering of any kind. 1075 !MemInst.isVolatile() && MemInst.isUnordered() && 1076 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) || 1077 isSameMemGeneration(InVal.Generation, CurrentGeneration, 1078 InVal.DefInst, Inst))) { 1079 // It is okay to have a LastStore to a different pointer here if MemorySSA 1080 // tells us that the load and store are from the same memory generation. 1081 // In that case, LastStore should keep its present value since we're 1082 // removing the current store. 1083 assert((!LastStore || 1084 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1085 MemInst.getPointerOperand() || 1086 MSSA) && 1087 "can't have an intervening store if not using MemorySSA!"); 1088 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 1089 if (!DebugCounter::shouldExecute(CSECounter)) { 1090 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1091 continue; 1092 } 1093 removeMSSA(Inst); 1094 Inst->eraseFromParent(); 1095 Changed = true; 1096 ++NumDSE; 1097 // We can avoid incrementing the generation count since we were able 1098 // to eliminate this store. 1099 continue; 1100 } 1101 } 1102 1103 // Okay, this isn't something we can CSE at all. Check to see if it is 1104 // something that could modify memory. If so, our available memory values 1105 // cannot be used so bump the generation count. 1106 if (Inst->mayWriteToMemory()) { 1107 ++CurrentGeneration; 1108 1109 if (MemInst.isValid() && MemInst.isStore()) { 1110 // We do a trivial form of DSE if there are two stores to the same 1111 // location with no intervening loads. Delete the earlier store. 1112 // At the moment, we don't remove ordered stores, but do remove 1113 // unordered atomic stores. There's no special requirement (for 1114 // unordered atomics) about removing atomic stores only in favor of 1115 // other atomic stores since we we're going to execute the non-atomic 1116 // one anyway and the atomic one might never have become visible. 1117 if (LastStore) { 1118 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 1119 assert(LastStoreMemInst.isUnordered() && 1120 !LastStoreMemInst.isVolatile() && 1121 "Violated invariant"); 1122 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 1123 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1124 << " due to: " << *Inst << '\n'); 1125 if (!DebugCounter::shouldExecute(CSECounter)) { 1126 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1127 } else { 1128 removeMSSA(LastStore); 1129 LastStore->eraseFromParent(); 1130 Changed = true; 1131 ++NumDSE; 1132 LastStore = nullptr; 1133 } 1134 } 1135 // fallthrough - we can exploit information about this store 1136 } 1137 1138 // Okay, we just invalidated anything we knew about loaded values. Try 1139 // to salvage *something* by remembering that the stored value is a live 1140 // version of the pointer. It is safe to forward from volatile stores 1141 // to non-volatile loads, so we don't have to check for volatility of 1142 // the store. 1143 AvailableLoads.insert( 1144 MemInst.getPointerOperand(), 1145 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 1146 MemInst.isAtomic())); 1147 1148 // Remember that this was the last unordered store we saw for DSE. We 1149 // don't yet handle DSE on ordered or volatile stores since we don't 1150 // have a good way to model the ordering requirement for following 1151 // passes once the store is removed. We could insert a fence, but 1152 // since fences are slightly stronger than stores in their ordering, 1153 // it's not clear this is a profitable transform. Another option would 1154 // be to merge the ordering with that of the post dominating store. 1155 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1156 LastStore = Inst; 1157 else 1158 LastStore = nullptr; 1159 } 1160 } 1161 } 1162 1163 return Changed; 1164 } 1165 1166 bool EarlyCSE::run() { 1167 // Note, deque is being used here because there is significant performance 1168 // gains over vector when the container becomes very large due to the 1169 // specific access patterns. For more information see the mailing list 1170 // discussion on this: 1171 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1172 std::deque<StackNode *> nodesToProcess; 1173 1174 bool Changed = false; 1175 1176 // Process the root node. 1177 nodesToProcess.push_back(new StackNode( 1178 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1179 CurrentGeneration, DT.getRootNode(), 1180 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1181 1182 // Save the current generation. 1183 unsigned LiveOutGeneration = CurrentGeneration; 1184 1185 // Process the stack. 1186 while (!nodesToProcess.empty()) { 1187 // Grab the first item off the stack. Set the current generation, remove 1188 // the node from the stack, and process it. 1189 StackNode *NodeToProcess = nodesToProcess.back(); 1190 1191 // Initialize class members. 1192 CurrentGeneration = NodeToProcess->currentGeneration(); 1193 1194 // Check if the node needs to be processed. 1195 if (!NodeToProcess->isProcessed()) { 1196 // Process the node. 1197 Changed |= processNode(NodeToProcess->node()); 1198 NodeToProcess->childGeneration(CurrentGeneration); 1199 NodeToProcess->process(); 1200 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1201 // Push the next child onto the stack. 1202 DomTreeNode *child = NodeToProcess->nextChild(); 1203 nodesToProcess.push_back( 1204 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1205 AvailableCalls, NodeToProcess->childGeneration(), 1206 child, child->begin(), child->end())); 1207 } else { 1208 // It has been processed, and there are no more children to process, 1209 // so delete it and pop it off the stack. 1210 delete NodeToProcess; 1211 nodesToProcess.pop_back(); 1212 } 1213 } // while (!nodes...) 1214 1215 // Reset the current generation. 1216 CurrentGeneration = LiveOutGeneration; 1217 1218 return Changed; 1219 } 1220 1221 PreservedAnalyses EarlyCSEPass::run(Function &F, 1222 FunctionAnalysisManager &AM) { 1223 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1224 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1225 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1226 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1227 auto *MSSA = 1228 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1229 1230 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1231 1232 if (!CSE.run()) 1233 return PreservedAnalyses::all(); 1234 1235 PreservedAnalyses PA; 1236 PA.preserveSet<CFGAnalyses>(); 1237 PA.preserve<GlobalsAA>(); 1238 if (UseMemorySSA) 1239 PA.preserve<MemorySSAAnalysis>(); 1240 return PA; 1241 } 1242 1243 namespace { 1244 1245 /// A simple and fast domtree-based CSE pass. 1246 /// 1247 /// This pass does a simple depth-first walk over the dominator tree, 1248 /// eliminating trivially redundant instructions and using instsimplify to 1249 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1250 /// cases so that instcombine and other passes are more effective. It is 1251 /// expected that a later pass of GVN will catch the interesting/hard cases. 1252 template<bool UseMemorySSA> 1253 class EarlyCSELegacyCommonPass : public FunctionPass { 1254 public: 1255 static char ID; 1256 1257 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1258 if (UseMemorySSA) 1259 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1260 else 1261 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1262 } 1263 1264 bool runOnFunction(Function &F) override { 1265 if (skipFunction(F)) 1266 return false; 1267 1268 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1269 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1270 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1271 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1272 auto *MSSA = 1273 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1274 1275 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1276 1277 return CSE.run(); 1278 } 1279 1280 void getAnalysisUsage(AnalysisUsage &AU) const override { 1281 AU.addRequired<AssumptionCacheTracker>(); 1282 AU.addRequired<DominatorTreeWrapperPass>(); 1283 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1284 AU.addRequired<TargetTransformInfoWrapperPass>(); 1285 if (UseMemorySSA) { 1286 AU.addRequired<MemorySSAWrapperPass>(); 1287 AU.addPreserved<MemorySSAWrapperPass>(); 1288 } 1289 AU.addPreserved<GlobalsAAWrapperPass>(); 1290 AU.setPreservesCFG(); 1291 } 1292 }; 1293 1294 } // end anonymous namespace 1295 1296 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1297 1298 template<> 1299 char EarlyCSELegacyPass::ID = 0; 1300 1301 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1302 false) 1303 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1304 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1305 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1306 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1307 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1308 1309 using EarlyCSEMemSSALegacyPass = 1310 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1311 1312 template<> 1313 char EarlyCSEMemSSALegacyPass::ID = 0; 1314 1315 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1316 if (UseMemorySSA) 1317 return new EarlyCSEMemSSALegacyPass(); 1318 else 1319 return new EarlyCSELegacyPass(); 1320 } 1321 1322 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1323 "Early CSE w/ MemorySSA", false, false) 1324 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1325 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1326 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1327 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1328 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1329 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1330 "Early CSE w/ MemorySSA", false, false) 1331