xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision 2bcc4db761768f1b7431237920f26360549ca268)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs a simple dominator tree walk that eliminates trivially
10 // redundant instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/EarlyCSE.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/GuardUtils.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/PatternMatch.h"
44 #include "llvm/IR/Statepoint.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
59 #include "llvm/Transforms/Utils/GuardUtils.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <deque>
63 #include <memory>
64 #include <utility>
65 
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
68 
69 #define DEBUG_TYPE "early-cse"
70 
71 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
72 STATISTIC(NumCSE,      "Number of instructions CSE'd");
73 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
74 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
75 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
76 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
77 
78 DEBUG_COUNTER(CSECounter, "early-cse",
79               "Controls which instructions are removed");
80 
81 static cl::opt<unsigned> EarlyCSEMssaOptCap(
82     "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden,
83     cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange "
84              "for faster compile. Caps the MemorySSA clobbering calls."));
85 
86 static cl::opt<bool> EarlyCSEDebugHash(
87     "earlycse-debug-hash", cl::init(false), cl::Hidden,
88     cl::desc("Perform extra assertion checking to verify that SimpleValue's hash "
89              "function is well-behaved w.r.t. its isEqual predicate"));
90 
91 //===----------------------------------------------------------------------===//
92 // SimpleValue
93 //===----------------------------------------------------------------------===//
94 
95 namespace {
96 
97 /// Struct representing the available values in the scoped hash table.
98 struct SimpleValue {
99   Instruction *Inst;
100 
101   SimpleValue(Instruction *I) : Inst(I) {
102     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
103   }
104 
105   bool isSentinel() const {
106     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
107            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
108   }
109 
110   static bool canHandle(Instruction *Inst) {
111     // This can only handle non-void readnone functions.
112     if (CallInst *CI = dyn_cast<CallInst>(Inst))
113       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
114     return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) ||
115            isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
116            isa<CmpInst>(Inst) || isa<SelectInst>(Inst) ||
117            isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
118            isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) ||
119            isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst);
120   }
121 };
122 
123 } // end anonymous namespace
124 
125 namespace llvm {
126 
127 template <> struct DenseMapInfo<SimpleValue> {
128   static inline SimpleValue getEmptyKey() {
129     return DenseMapInfo<Instruction *>::getEmptyKey();
130   }
131 
132   static inline SimpleValue getTombstoneKey() {
133     return DenseMapInfo<Instruction *>::getTombstoneKey();
134   }
135 
136   static unsigned getHashValue(SimpleValue Val);
137   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
138 };
139 
140 } // end namespace llvm
141 
142 /// Match a 'select' including an optional 'not's of the condition.
143 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A,
144                                            Value *&B,
145                                            SelectPatternFlavor &Flavor) {
146   // Return false if V is not even a select.
147   if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))))
148     return false;
149 
150   // Look through a 'not' of the condition operand by swapping A/B.
151   Value *CondNot;
152   if (match(Cond, m_Not(m_Value(CondNot)))) {
153     Cond = CondNot;
154     std::swap(A, B);
155   }
156 
157   // Match canonical forms of abs/nabs/min/max. We are not using ValueTracking's
158   // more powerful matchSelectPattern() because it may rely on instruction flags
159   // such as "nsw". That would be incompatible with the current hashing
160   // mechanism that may remove flags to increase the likelihood of CSE.
161 
162   // These are the canonical forms of abs(X) and nabs(X) created by instcombine:
163   // %N = sub i32 0, %X
164   // %C = icmp slt i32 %X, 0
165   // %ABS = select i1 %C, i32 %N, i32 %X
166   //
167   // %N = sub i32 0, %X
168   // %C = icmp slt i32 %X, 0
169   // %NABS = select i1 %C, i32 %X, i32 %N
170   Flavor = SPF_UNKNOWN;
171   CmpInst::Predicate Pred;
172   if (match(Cond, m_ICmp(Pred, m_Specific(B), m_ZeroInt())) &&
173       Pred == ICmpInst::ICMP_SLT && match(A, m_Neg(m_Specific(B)))) {
174     // ABS: B < 0 ? -B : B
175     Flavor = SPF_ABS;
176     return true;
177   }
178   if (match(Cond, m_ICmp(Pred, m_Specific(A), m_ZeroInt())) &&
179       Pred == ICmpInst::ICMP_SLT && match(B, m_Neg(m_Specific(A)))) {
180     // NABS: A < 0 ? A : -A
181     Flavor = SPF_NABS;
182     return true;
183   }
184 
185   if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) {
186     // Check for commuted variants of min/max by swapping predicate.
187     // If we do not match the standard or commuted patterns, this is not a
188     // recognized form of min/max, but it is still a select, so return true.
189     if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A))))
190       return true;
191     Pred = ICmpInst::getSwappedPredicate(Pred);
192   }
193 
194   switch (Pred) {
195   case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break;
196   case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break;
197   case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break;
198   case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break;
199   default: break;
200   }
201 
202   return true;
203 }
204 
205 static unsigned getHashValueImpl(SimpleValue Val) {
206   Instruction *Inst = Val.Inst;
207   // Hash in all of the operands as pointers.
208   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
209     Value *LHS = BinOp->getOperand(0);
210     Value *RHS = BinOp->getOperand(1);
211     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
212       std::swap(LHS, RHS);
213 
214     return hash_combine(BinOp->getOpcode(), LHS, RHS);
215   }
216 
217   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
218     // Compares can be commuted by swapping the comparands and
219     // updating the predicate.  Choose the form that has the
220     // comparands in sorted order, or in the case of a tie, the
221     // one with the lower predicate.
222     Value *LHS = CI->getOperand(0);
223     Value *RHS = CI->getOperand(1);
224     CmpInst::Predicate Pred = CI->getPredicate();
225     CmpInst::Predicate SwappedPred = CI->getSwappedPredicate();
226     if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) {
227       std::swap(LHS, RHS);
228       Pred = SwappedPred;
229     }
230     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
231   }
232 
233   // Hash general selects to allow matching commuted true/false operands.
234   SelectPatternFlavor SPF;
235   Value *Cond, *A, *B;
236   if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) {
237     // Hash min/max/abs (cmp + select) to allow for commuted operands.
238     // Min/max may also have non-canonical compare predicate (eg, the compare for
239     // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
240     // compare.
241     // TODO: We should also detect FP min/max.
242     if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
243         SPF == SPF_UMIN || SPF == SPF_UMAX) {
244       if (A > B)
245         std::swap(A, B);
246       return hash_combine(Inst->getOpcode(), SPF, A, B);
247     }
248     if (SPF == SPF_ABS || SPF == SPF_NABS) {
249       // ABS/NABS always puts the input in A and its negation in B.
250       return hash_combine(Inst->getOpcode(), SPF, A, B);
251     }
252 
253     // Hash general selects to allow matching commuted true/false operands.
254 
255     // If we do not have a compare as the condition, just hash in the condition.
256     CmpInst::Predicate Pred;
257     Value *X, *Y;
258     if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y))))
259       return hash_combine(Inst->getOpcode(), Cond, A, B);
260 
261     // Similar to cmp normalization (above) - canonicalize the predicate value:
262     // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A
263     if (CmpInst::getInversePredicate(Pred) < Pred) {
264       Pred = CmpInst::getInversePredicate(Pred);
265       std::swap(A, B);
266     }
267     return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B);
268   }
269 
270   if (CastInst *CI = dyn_cast<CastInst>(Inst))
271     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
272 
273   if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst))
274     return hash_combine(FI->getOpcode(), FI->getOperand(0));
275 
276   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
277     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
278                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
279 
280   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
281     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
282                         IVI->getOperand(1),
283                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
284 
285   assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) ||
286           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
287           isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) ||
288           isa<FreezeInst>(Inst)) &&
289          "Invalid/unknown instruction");
290 
291   // Handle intrinsics with commutative operands.
292   // TODO: Extend this to handle intrinsics with >2 operands where the 1st
293   //       2 operands are commutative.
294   auto *II = dyn_cast<IntrinsicInst>(Inst);
295   if (II && II->isCommutative() && II->getNumArgOperands() == 2) {
296     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
297     if (LHS > RHS)
298       std::swap(LHS, RHS);
299     return hash_combine(II->getOpcode(), LHS, RHS);
300   }
301 
302   // Mix in the opcode.
303   return hash_combine(
304       Inst->getOpcode(),
305       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
306 }
307 
308 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
309 #ifndef NDEBUG
310   // If -earlycse-debug-hash was specified, return a constant -- this
311   // will force all hashing to collide, so we'll exhaustively search
312   // the table for a match, and the assertion in isEqual will fire if
313   // there's a bug causing equal keys to hash differently.
314   if (EarlyCSEDebugHash)
315     return 0;
316 #endif
317   return getHashValueImpl(Val);
318 }
319 
320 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) {
321   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
322 
323   if (LHS.isSentinel() || RHS.isSentinel())
324     return LHSI == RHSI;
325 
326   if (LHSI->getOpcode() != RHSI->getOpcode())
327     return false;
328   if (LHSI->isIdenticalToWhenDefined(RHSI))
329     return true;
330 
331   // If we're not strictly identical, we still might be a commutable instruction
332   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
333     if (!LHSBinOp->isCommutative())
334       return false;
335 
336     assert(isa<BinaryOperator>(RHSI) &&
337            "same opcode, but different instruction type?");
338     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
339 
340     // Commuted equality
341     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
342            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
343   }
344   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
345     assert(isa<CmpInst>(RHSI) &&
346            "same opcode, but different instruction type?");
347     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
348     // Commuted equality
349     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
350            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
351            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
352   }
353 
354   // TODO: Extend this for >2 args by matching the trailing N-2 args.
355   auto *LII = dyn_cast<IntrinsicInst>(LHSI);
356   auto *RII = dyn_cast<IntrinsicInst>(RHSI);
357   if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() &&
358       LII->isCommutative() && LII->getNumArgOperands() == 2) {
359     return LII->getArgOperand(0) == RII->getArgOperand(1) &&
360            LII->getArgOperand(1) == RII->getArgOperand(0);
361   }
362 
363   // Min/max/abs can occur with commuted operands, non-canonical predicates,
364   // and/or non-canonical operands.
365   // Selects can be non-trivially equivalent via inverted conditions and swaps.
366   SelectPatternFlavor LSPF, RSPF;
367   Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB;
368   if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) &&
369       matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) {
370     if (LSPF == RSPF) {
371       // TODO: We should also detect FP min/max.
372       if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
373           LSPF == SPF_UMIN || LSPF == SPF_UMAX)
374         return ((LHSA == RHSA && LHSB == RHSB) ||
375                 (LHSA == RHSB && LHSB == RHSA));
376 
377       if (LSPF == SPF_ABS || LSPF == SPF_NABS) {
378         // Abs results are placed in a defined order by matchSelectPattern.
379         return LHSA == RHSA && LHSB == RHSB;
380       }
381 
382       // select Cond, A, B <--> select not(Cond), B, A
383       if (CondL == CondR && LHSA == RHSA && LHSB == RHSB)
384         return true;
385     }
386 
387     // If the true/false operands are swapped and the conditions are compares
388     // with inverted predicates, the selects are equal:
389     // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A
390     //
391     // This also handles patterns with a double-negation in the sense of not +
392     // inverse, because we looked through a 'not' in the matching function and
393     // swapped A/B:
394     // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A
395     //
396     // This intentionally does NOT handle patterns with a double-negation in
397     // the sense of not + not, because doing so could result in values
398     // comparing
399     // as equal that hash differently in the min/max/abs cases like:
400     // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y
401     //   ^ hashes as min                  ^ would not hash as min
402     // In the context of the EarlyCSE pass, however, such cases never reach
403     // this code, as we simplify the double-negation before hashing the second
404     // select (and so still succeed at CSEing them).
405     if (LHSA == RHSB && LHSB == RHSA) {
406       CmpInst::Predicate PredL, PredR;
407       Value *X, *Y;
408       if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) &&
409           match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) &&
410           CmpInst::getInversePredicate(PredL) == PredR)
411         return true;
412     }
413   }
414 
415   return false;
416 }
417 
418 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
419   // These comparisons are nontrivial, so assert that equality implies
420   // hash equality (DenseMap demands this as an invariant).
421   bool Result = isEqualImpl(LHS, RHS);
422   assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) ||
423          getHashValueImpl(LHS) == getHashValueImpl(RHS));
424   return Result;
425 }
426 
427 //===----------------------------------------------------------------------===//
428 // CallValue
429 //===----------------------------------------------------------------------===//
430 
431 namespace {
432 
433 /// Struct representing the available call values in the scoped hash
434 /// table.
435 struct CallValue {
436   Instruction *Inst;
437 
438   CallValue(Instruction *I) : Inst(I) {
439     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
440   }
441 
442   bool isSentinel() const {
443     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
444            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
445   }
446 
447   static bool canHandle(Instruction *Inst) {
448     // Don't value number anything that returns void.
449     if (Inst->getType()->isVoidTy())
450       return false;
451 
452     CallInst *CI = dyn_cast<CallInst>(Inst);
453     if (!CI || !CI->onlyReadsMemory())
454       return false;
455     return true;
456   }
457 };
458 
459 } // end anonymous namespace
460 
461 namespace llvm {
462 
463 template <> struct DenseMapInfo<CallValue> {
464   static inline CallValue getEmptyKey() {
465     return DenseMapInfo<Instruction *>::getEmptyKey();
466   }
467 
468   static inline CallValue getTombstoneKey() {
469     return DenseMapInfo<Instruction *>::getTombstoneKey();
470   }
471 
472   static unsigned getHashValue(CallValue Val);
473   static bool isEqual(CallValue LHS, CallValue RHS);
474 };
475 
476 } // end namespace llvm
477 
478 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
479   Instruction *Inst = Val.Inst;
480 
481   // gc.relocate is 'special' call: its second and third operands are
482   // not real values, but indices into statepoint's argument list.
483   // Get values they point to.
484   if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst))
485     return hash_combine(GCR->getOpcode(), GCR->getOperand(0),
486                         GCR->getBasePtr(), GCR->getDerivedPtr());
487 
488   // Hash all of the operands as pointers and mix in the opcode.
489   return hash_combine(
490       Inst->getOpcode(),
491       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
492 }
493 
494 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
495   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
496   if (LHS.isSentinel() || RHS.isSentinel())
497     return LHSI == RHSI;
498 
499   // See comment above in `getHashValue()`.
500   if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI))
501     if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI))
502       return GCR1->getOperand(0) == GCR2->getOperand(0) &&
503              GCR1->getBasePtr() == GCR2->getBasePtr() &&
504              GCR1->getDerivedPtr() == GCR2->getDerivedPtr();
505 
506   return LHSI->isIdenticalTo(RHSI);
507 }
508 
509 //===----------------------------------------------------------------------===//
510 // EarlyCSE implementation
511 //===----------------------------------------------------------------------===//
512 
513 namespace {
514 
515 /// A simple and fast domtree-based CSE pass.
516 ///
517 /// This pass does a simple depth-first walk over the dominator tree,
518 /// eliminating trivially redundant instructions and using instsimplify to
519 /// canonicalize things as it goes. It is intended to be fast and catch obvious
520 /// cases so that instcombine and other passes are more effective. It is
521 /// expected that a later pass of GVN will catch the interesting/hard cases.
522 class EarlyCSE {
523 public:
524   const TargetLibraryInfo &TLI;
525   const TargetTransformInfo &TTI;
526   DominatorTree &DT;
527   AssumptionCache &AC;
528   const SimplifyQuery SQ;
529   MemorySSA *MSSA;
530   std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
531 
532   using AllocatorTy =
533       RecyclingAllocator<BumpPtrAllocator,
534                          ScopedHashTableVal<SimpleValue, Value *>>;
535   using ScopedHTType =
536       ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
537                       AllocatorTy>;
538 
539   /// A scoped hash table of the current values of all of our simple
540   /// scalar expressions.
541   ///
542   /// As we walk down the domtree, we look to see if instructions are in this:
543   /// if so, we replace them with what we find, otherwise we insert them so
544   /// that dominated values can succeed in their lookup.
545   ScopedHTType AvailableValues;
546 
547   /// A scoped hash table of the current values of previously encountered
548   /// memory locations.
549   ///
550   /// This allows us to get efficient access to dominating loads or stores when
551   /// we have a fully redundant load.  In addition to the most recent load, we
552   /// keep track of a generation count of the read, which is compared against
553   /// the current generation count.  The current generation count is incremented
554   /// after every possibly writing memory operation, which ensures that we only
555   /// CSE loads with other loads that have no intervening store.  Ordering
556   /// events (such as fences or atomic instructions) increment the generation
557   /// count as well; essentially, we model these as writes to all possible
558   /// locations.  Note that atomic and/or volatile loads and stores can be
559   /// present the table; it is the responsibility of the consumer to inspect
560   /// the atomicity/volatility if needed.
561   struct LoadValue {
562     Instruction *DefInst = nullptr;
563     unsigned Generation = 0;
564     int MatchingId = -1;
565     bool IsAtomic = false;
566 
567     LoadValue() = default;
568     LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
569               bool IsAtomic)
570         : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
571           IsAtomic(IsAtomic) {}
572   };
573 
574   using LoadMapAllocator =
575       RecyclingAllocator<BumpPtrAllocator,
576                          ScopedHashTableVal<Value *, LoadValue>>;
577   using LoadHTType =
578       ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
579                       LoadMapAllocator>;
580 
581   LoadHTType AvailableLoads;
582 
583   // A scoped hash table mapping memory locations (represented as typed
584   // addresses) to generation numbers at which that memory location became
585   // (henceforth indefinitely) invariant.
586   using InvariantMapAllocator =
587       RecyclingAllocator<BumpPtrAllocator,
588                          ScopedHashTableVal<MemoryLocation, unsigned>>;
589   using InvariantHTType =
590       ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
591                       InvariantMapAllocator>;
592   InvariantHTType AvailableInvariants;
593 
594   /// A scoped hash table of the current values of read-only call
595   /// values.
596   ///
597   /// It uses the same generation count as loads.
598   using CallHTType =
599       ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
600   CallHTType AvailableCalls;
601 
602   /// This is the current generation of the memory value.
603   unsigned CurrentGeneration = 0;
604 
605   /// Set up the EarlyCSE runner for a particular function.
606   EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
607            const TargetTransformInfo &TTI, DominatorTree &DT,
608            AssumptionCache &AC, MemorySSA *MSSA)
609       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
610         MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {}
611 
612   bool run();
613 
614 private:
615   unsigned ClobberCounter = 0;
616   // Almost a POD, but needs to call the constructors for the scoped hash
617   // tables so that a new scope gets pushed on. These are RAII so that the
618   // scope gets popped when the NodeScope is destroyed.
619   class NodeScope {
620   public:
621     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
622               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
623       : Scope(AvailableValues), LoadScope(AvailableLoads),
624         InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
625     NodeScope(const NodeScope &) = delete;
626     NodeScope &operator=(const NodeScope &) = delete;
627 
628   private:
629     ScopedHTType::ScopeTy Scope;
630     LoadHTType::ScopeTy LoadScope;
631     InvariantHTType::ScopeTy InvariantScope;
632     CallHTType::ScopeTy CallScope;
633   };
634 
635   // Contains all the needed information to create a stack for doing a depth
636   // first traversal of the tree. This includes scopes for values, loads, and
637   // calls as well as the generation. There is a child iterator so that the
638   // children do not need to be store separately.
639   class StackNode {
640   public:
641     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
642               InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
643               unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child,
644               DomTreeNode::const_iterator end)
645         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
646           EndIter(end),
647           Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
648                  AvailableCalls)
649           {}
650     StackNode(const StackNode &) = delete;
651     StackNode &operator=(const StackNode &) = delete;
652 
653     // Accessors.
654     unsigned currentGeneration() { return CurrentGeneration; }
655     unsigned childGeneration() { return ChildGeneration; }
656     void childGeneration(unsigned generation) { ChildGeneration = generation; }
657     DomTreeNode *node() { return Node; }
658     DomTreeNode::const_iterator childIter() { return ChildIter; }
659 
660     DomTreeNode *nextChild() {
661       DomTreeNode *child = *ChildIter;
662       ++ChildIter;
663       return child;
664     }
665 
666     DomTreeNode::const_iterator end() { return EndIter; }
667     bool isProcessed() { return Processed; }
668     void process() { Processed = true; }
669 
670   private:
671     unsigned CurrentGeneration;
672     unsigned ChildGeneration;
673     DomTreeNode *Node;
674     DomTreeNode::const_iterator ChildIter;
675     DomTreeNode::const_iterator EndIter;
676     NodeScope Scopes;
677     bool Processed = false;
678   };
679 
680   /// Wrapper class to handle memory instructions, including loads,
681   /// stores and intrinsic loads and stores defined by the target.
682   class ParseMemoryInst {
683   public:
684     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
685       : Inst(Inst) {
686       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
687         if (TTI.getTgtMemIntrinsic(II, Info))
688           IsTargetMemInst = true;
689     }
690 
691     bool isLoad() const {
692       if (IsTargetMemInst) return Info.ReadMem;
693       return isa<LoadInst>(Inst);
694     }
695 
696     bool isStore() const {
697       if (IsTargetMemInst) return Info.WriteMem;
698       return isa<StoreInst>(Inst);
699     }
700 
701     bool isAtomic() const {
702       if (IsTargetMemInst)
703         return Info.Ordering != AtomicOrdering::NotAtomic;
704       return Inst->isAtomic();
705     }
706 
707     bool isUnordered() const {
708       if (IsTargetMemInst)
709         return Info.isUnordered();
710 
711       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
712         return LI->isUnordered();
713       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
714         return SI->isUnordered();
715       }
716       // Conservative answer
717       return !Inst->isAtomic();
718     }
719 
720     bool isVolatile() const {
721       if (IsTargetMemInst)
722         return Info.IsVolatile;
723 
724       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
725         return LI->isVolatile();
726       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
727         return SI->isVolatile();
728       }
729       // Conservative answer
730       return true;
731     }
732 
733     bool isInvariantLoad() const {
734       if (auto *LI = dyn_cast<LoadInst>(Inst))
735         return LI->hasMetadata(LLVMContext::MD_invariant_load);
736       return false;
737     }
738 
739     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
740       return (getPointerOperand() == Inst.getPointerOperand() &&
741               getMatchingId() == Inst.getMatchingId());
742     }
743 
744     bool isValid() const { return getPointerOperand() != nullptr; }
745 
746     // For regular (non-intrinsic) loads/stores, this is set to -1. For
747     // intrinsic loads/stores, the id is retrieved from the corresponding
748     // field in the MemIntrinsicInfo structure.  That field contains
749     // non-negative values only.
750     int getMatchingId() const {
751       if (IsTargetMemInst) return Info.MatchingId;
752       return -1;
753     }
754 
755     Value *getPointerOperand() const {
756       if (IsTargetMemInst) return Info.PtrVal;
757       return getLoadStorePointerOperand(Inst);
758     }
759 
760     bool mayReadFromMemory() const {
761       if (IsTargetMemInst) return Info.ReadMem;
762       return Inst->mayReadFromMemory();
763     }
764 
765     bool mayWriteToMemory() const {
766       if (IsTargetMemInst) return Info.WriteMem;
767       return Inst->mayWriteToMemory();
768     }
769 
770   private:
771     bool IsTargetMemInst = false;
772     MemIntrinsicInfo Info;
773     Instruction *Inst;
774   };
775 
776   bool processNode(DomTreeNode *Node);
777 
778   bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
779                              const BasicBlock *BB, const BasicBlock *Pred);
780 
781   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
782     if (auto *LI = dyn_cast<LoadInst>(Inst))
783       return LI;
784     if (auto *SI = dyn_cast<StoreInst>(Inst))
785       return SI->getValueOperand();
786     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
787     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
788                                                  ExpectedType);
789   }
790 
791   /// Return true if the instruction is known to only operate on memory
792   /// provably invariant in the given "generation".
793   bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
794 
795   bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
796                            Instruction *EarlierInst, Instruction *LaterInst);
797 
798   void removeMSSA(Instruction &Inst) {
799     if (!MSSA)
800       return;
801     if (VerifyMemorySSA)
802       MSSA->verifyMemorySSA();
803     // Removing a store here can leave MemorySSA in an unoptimized state by
804     // creating MemoryPhis that have identical arguments and by creating
805     // MemoryUses whose defining access is not an actual clobber. The phi case
806     // is handled by MemorySSA when passing OptimizePhis = true to
807     // removeMemoryAccess.  The non-optimized MemoryUse case is lazily updated
808     // by MemorySSA's getClobberingMemoryAccess.
809     MSSAUpdater->removeMemoryAccess(&Inst, true);
810   }
811 };
812 
813 } // end anonymous namespace
814 
815 /// Determine if the memory referenced by LaterInst is from the same heap
816 /// version as EarlierInst.
817 /// This is currently called in two scenarios:
818 ///
819 ///   load p
820 ///   ...
821 ///   load p
822 ///
823 /// and
824 ///
825 ///   x = load p
826 ///   ...
827 ///   store x, p
828 ///
829 /// in both cases we want to verify that there are no possible writes to the
830 /// memory referenced by p between the earlier and later instruction.
831 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
832                                    unsigned LaterGeneration,
833                                    Instruction *EarlierInst,
834                                    Instruction *LaterInst) {
835   // Check the simple memory generation tracking first.
836   if (EarlierGeneration == LaterGeneration)
837     return true;
838 
839   if (!MSSA)
840     return false;
841 
842   // If MemorySSA has determined that one of EarlierInst or LaterInst does not
843   // read/write memory, then we can safely return true here.
844   // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
845   // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
846   // by also checking the MemorySSA MemoryAccess on the instruction.  Initial
847   // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
848   // with the default optimization pipeline.
849   auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
850   if (!EarlierMA)
851     return true;
852   auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
853   if (!LaterMA)
854     return true;
855 
856   // Since we know LaterDef dominates LaterInst and EarlierInst dominates
857   // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
858   // EarlierInst and LaterInst and neither can any other write that potentially
859   // clobbers LaterInst.
860   MemoryAccess *LaterDef;
861   if (ClobberCounter < EarlyCSEMssaOptCap) {
862     LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
863     ClobberCounter++;
864   } else
865     LaterDef = LaterMA->getDefiningAccess();
866 
867   return MSSA->dominates(LaterDef, EarlierMA);
868 }
869 
870 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
871   // A location loaded from with an invariant_load is assumed to *never* change
872   // within the visible scope of the compilation.
873   if (auto *LI = dyn_cast<LoadInst>(I))
874     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
875       return true;
876 
877   auto MemLocOpt = MemoryLocation::getOrNone(I);
878   if (!MemLocOpt)
879     // "target" intrinsic forms of loads aren't currently known to
880     // MemoryLocation::get.  TODO
881     return false;
882   MemoryLocation MemLoc = *MemLocOpt;
883   if (!AvailableInvariants.count(MemLoc))
884     return false;
885 
886   // Is the generation at which this became invariant older than the
887   // current one?
888   return AvailableInvariants.lookup(MemLoc) <= GenAt;
889 }
890 
891 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
892                                      const BranchInst *BI, const BasicBlock *BB,
893                                      const BasicBlock *Pred) {
894   assert(BI->isConditional() && "Should be a conditional branch!");
895   assert(BI->getCondition() == CondInst && "Wrong condition?");
896   assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
897   auto *TorF = (BI->getSuccessor(0) == BB)
898                    ? ConstantInt::getTrue(BB->getContext())
899                    : ConstantInt::getFalse(BB->getContext());
900   auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
901     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
902       return BOp->getOpcode() == Opcode;
903     return false;
904   };
905   // If the condition is AND operation, we can propagate its operands into the
906   // true branch. If it is OR operation, we can propagate them into the false
907   // branch.
908   unsigned PropagateOpcode =
909       (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
910 
911   bool MadeChanges = false;
912   SmallVector<Instruction *, 4> WorkList;
913   SmallPtrSet<Instruction *, 4> Visited;
914   WorkList.push_back(CondInst);
915   while (!WorkList.empty()) {
916     Instruction *Curr = WorkList.pop_back_val();
917 
918     AvailableValues.insert(Curr, TorF);
919     LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
920                       << Curr->getName() << "' as " << *TorF << " in "
921                       << BB->getName() << "\n");
922     if (!DebugCounter::shouldExecute(CSECounter)) {
923       LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
924     } else {
925       // Replace all dominated uses with the known value.
926       if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
927                                                     BasicBlockEdge(Pred, BB))) {
928         NumCSECVP += Count;
929         MadeChanges = true;
930       }
931     }
932 
933     if (MatchBinOp(Curr, PropagateOpcode))
934       for (auto &Op : cast<BinaryOperator>(Curr)->operands())
935         if (Instruction *OPI = dyn_cast<Instruction>(Op))
936           if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
937             WorkList.push_back(OPI);
938   }
939 
940   return MadeChanges;
941 }
942 
943 bool EarlyCSE::processNode(DomTreeNode *Node) {
944   bool Changed = false;
945   BasicBlock *BB = Node->getBlock();
946 
947   // If this block has a single predecessor, then the predecessor is the parent
948   // of the domtree node and all of the live out memory values are still current
949   // in this block.  If this block has multiple predecessors, then they could
950   // have invalidated the live-out memory values of our parent value.  For now,
951   // just be conservative and invalidate memory if this block has multiple
952   // predecessors.
953   if (!BB->getSinglePredecessor())
954     ++CurrentGeneration;
955 
956   // If this node has a single predecessor which ends in a conditional branch,
957   // we can infer the value of the branch condition given that we took this
958   // path.  We need the single predecessor to ensure there's not another path
959   // which reaches this block where the condition might hold a different
960   // value.  Since we're adding this to the scoped hash table (like any other
961   // def), it will have been popped if we encounter a future merge block.
962   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
963     auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
964     if (BI && BI->isConditional()) {
965       auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
966       if (CondInst && SimpleValue::canHandle(CondInst))
967         Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
968     }
969   }
970 
971   /// LastStore - Keep track of the last non-volatile store that we saw... for
972   /// as long as there in no instruction that reads memory.  If we see a store
973   /// to the same location, we delete the dead store.  This zaps trivial dead
974   /// stores which can occur in bitfield code among other things.
975   Instruction *LastStore = nullptr;
976 
977   // See if any instructions in the block can be eliminated.  If so, do it.  If
978   // not, add them to AvailableValues.
979   for (Instruction &Inst : make_early_inc_range(BB->getInstList())) {
980     // Dead instructions should just be removed.
981     if (isInstructionTriviallyDead(&Inst, &TLI)) {
982       LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n');
983       if (!DebugCounter::shouldExecute(CSECounter)) {
984         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
985         continue;
986       }
987 
988       salvageKnowledge(&Inst, &AC);
989       salvageDebugInfo(Inst);
990       removeMSSA(Inst);
991       Inst.eraseFromParent();
992       Changed = true;
993       ++NumSimplify;
994       continue;
995     }
996 
997     // Skip assume intrinsics, they don't really have side effects (although
998     // they're marked as such to ensure preservation of control dependencies),
999     // and this pass will not bother with its removal. However, we should mark
1000     // its condition as true for all dominated blocks.
1001     if (match(&Inst, m_Intrinsic<Intrinsic::assume>())) {
1002       auto *CondI =
1003           dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0));
1004       if (CondI && SimpleValue::canHandle(CondI)) {
1005         LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst
1006                           << '\n');
1007         AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1008       } else
1009         LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n');
1010       continue;
1011     }
1012 
1013     // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
1014     if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
1015       LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n');
1016       continue;
1017     }
1018 
1019     // We can skip all invariant.start intrinsics since they only read memory,
1020     // and we can forward values across it. For invariant starts without
1021     // invariant ends, we can use the fact that the invariantness never ends to
1022     // start a scope in the current generaton which is true for all future
1023     // generations.  Also, we dont need to consume the last store since the
1024     // semantics of invariant.start allow us to perform   DSE of the last
1025     // store, if there was a store following invariant.start. Consider:
1026     //
1027     // store 30, i8* p
1028     // invariant.start(p)
1029     // store 40, i8* p
1030     // We can DSE the store to 30, since the store 40 to invariant location p
1031     // causes undefined behaviour.
1032     if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
1033       // If there are any uses, the scope might end.
1034       if (!Inst.use_empty())
1035         continue;
1036       MemoryLocation MemLoc =
1037           MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI);
1038       // Don't start a scope if we already have a better one pushed
1039       if (!AvailableInvariants.count(MemLoc))
1040         AvailableInvariants.insert(MemLoc, CurrentGeneration);
1041       continue;
1042     }
1043 
1044     if (isGuard(&Inst)) {
1045       if (auto *CondI =
1046               dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) {
1047         if (SimpleValue::canHandle(CondI)) {
1048           // Do we already know the actual value of this condition?
1049           if (auto *KnownCond = AvailableValues.lookup(CondI)) {
1050             // Is the condition known to be true?
1051             if (isa<ConstantInt>(KnownCond) &&
1052                 cast<ConstantInt>(KnownCond)->isOne()) {
1053               LLVM_DEBUG(dbgs()
1054                          << "EarlyCSE removing guard: " << Inst << '\n');
1055               salvageKnowledge(&Inst, &AC);
1056               removeMSSA(Inst);
1057               Inst.eraseFromParent();
1058               Changed = true;
1059               continue;
1060             } else
1061               // Use the known value if it wasn't true.
1062               cast<CallInst>(Inst).setArgOperand(0, KnownCond);
1063           }
1064           // The condition we're on guarding here is true for all dominated
1065           // locations.
1066           AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
1067         }
1068       }
1069 
1070       // Guard intrinsics read all memory, but don't write any memory.
1071       // Accordingly, don't update the generation but consume the last store (to
1072       // avoid an incorrect DSE).
1073       LastStore = nullptr;
1074       continue;
1075     }
1076 
1077     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
1078     // its simpler value.
1079     if (Value *V = SimplifyInstruction(&Inst, SQ)) {
1080       LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << "  to: " << *V
1081                         << '\n');
1082       if (!DebugCounter::shouldExecute(CSECounter)) {
1083         LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1084       } else {
1085         bool Killed = false;
1086         if (!Inst.use_empty()) {
1087           Inst.replaceAllUsesWith(V);
1088           Changed = true;
1089         }
1090         if (isInstructionTriviallyDead(&Inst, &TLI)) {
1091           salvageKnowledge(&Inst, &AC);
1092           removeMSSA(Inst);
1093           Inst.eraseFromParent();
1094           Changed = true;
1095           Killed = true;
1096         }
1097         if (Changed)
1098           ++NumSimplify;
1099         if (Killed)
1100           continue;
1101       }
1102     }
1103 
1104     // If this is a simple instruction that we can value number, process it.
1105     if (SimpleValue::canHandle(&Inst)) {
1106       // See if the instruction has an available value.  If so, use it.
1107       if (Value *V = AvailableValues.lookup(&Inst)) {
1108         LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << "  to: " << *V
1109                           << '\n');
1110         if (!DebugCounter::shouldExecute(CSECounter)) {
1111           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1112           continue;
1113         }
1114         if (auto *I = dyn_cast<Instruction>(V))
1115           I->andIRFlags(&Inst);
1116         Inst.replaceAllUsesWith(V);
1117         salvageKnowledge(&Inst, &AC);
1118         removeMSSA(Inst);
1119         Inst.eraseFromParent();
1120         Changed = true;
1121         ++NumCSE;
1122         continue;
1123       }
1124 
1125       // Otherwise, just remember that this value is available.
1126       AvailableValues.insert(&Inst, &Inst);
1127       continue;
1128     }
1129 
1130     ParseMemoryInst MemInst(&Inst, TTI);
1131     // If this is a non-volatile load, process it.
1132     if (MemInst.isValid() && MemInst.isLoad()) {
1133       // (conservatively) we can't peak past the ordering implied by this
1134       // operation, but we can add this load to our set of available values
1135       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
1136         LastStore = nullptr;
1137         ++CurrentGeneration;
1138       }
1139 
1140       if (MemInst.isInvariantLoad()) {
1141         // If we pass an invariant load, we know that memory location is
1142         // indefinitely constant from the moment of first dereferenceability.
1143         // We conservatively treat the invariant_load as that moment.  If we
1144         // pass a invariant load after already establishing a scope, don't
1145         // restart it since we want to preserve the earliest point seen.
1146         auto MemLoc = MemoryLocation::get(&Inst);
1147         if (!AvailableInvariants.count(MemLoc))
1148           AvailableInvariants.insert(MemLoc, CurrentGeneration);
1149       }
1150 
1151       // If we have an available version of this load, and if it is the right
1152       // generation or the load is known to be from an invariant location,
1153       // replace this instruction.
1154       //
1155       // If either the dominating load or the current load are invariant, then
1156       // we can assume the current load loads the same value as the dominating
1157       // load.
1158       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1159       if (InVal.DefInst != nullptr &&
1160           InVal.MatchingId == MemInst.getMatchingId() &&
1161           // We don't yet handle removing loads with ordering of any kind.
1162           !MemInst.isVolatile() && MemInst.isUnordered() &&
1163           // We can't replace an atomic load with one which isn't also atomic.
1164           InVal.IsAtomic >= MemInst.isAtomic() &&
1165           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1166            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1167                                InVal.DefInst, &Inst))) {
1168         Value *Op = getOrCreateResult(InVal.DefInst, Inst.getType());
1169         if (Op != nullptr) {
1170           LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst
1171                             << "  to: " << *InVal.DefInst << '\n');
1172           if (!DebugCounter::shouldExecute(CSECounter)) {
1173             LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1174             continue;
1175           }
1176           if (!Inst.use_empty())
1177             Inst.replaceAllUsesWith(Op);
1178           salvageKnowledge(&Inst, &AC);
1179           removeMSSA(Inst);
1180           Inst.eraseFromParent();
1181           Changed = true;
1182           ++NumCSELoad;
1183           continue;
1184         }
1185       }
1186 
1187       // Otherwise, remember that we have this instruction.
1188       AvailableLoads.insert(MemInst.getPointerOperand(),
1189                             LoadValue(&Inst, CurrentGeneration,
1190                                       MemInst.getMatchingId(),
1191                                       MemInst.isAtomic()));
1192       LastStore = nullptr;
1193       continue;
1194     }
1195 
1196     // If this instruction may read from memory or throw (and potentially read
1197     // from memory in the exception handler), forget LastStore.  Load/store
1198     // intrinsics will indicate both a read and a write to memory.  The target
1199     // may override this (e.g. so that a store intrinsic does not read from
1200     // memory, and thus will be treated the same as a regular store for
1201     // commoning purposes).
1202     if ((Inst.mayReadFromMemory() || Inst.mayThrow()) &&
1203         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1204       LastStore = nullptr;
1205 
1206     // If this is a read-only call, process it.
1207     if (CallValue::canHandle(&Inst)) {
1208       // If we have an available version of this call, and if it is the right
1209       // generation, replace this instruction.
1210       std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst);
1211       if (InVal.first != nullptr &&
1212           isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1213                               &Inst)) {
1214         LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst
1215                           << "  to: " << *InVal.first << '\n');
1216         if (!DebugCounter::shouldExecute(CSECounter)) {
1217           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1218           continue;
1219         }
1220         if (!Inst.use_empty())
1221           Inst.replaceAllUsesWith(InVal.first);
1222         salvageKnowledge(&Inst, &AC);
1223         removeMSSA(Inst);
1224         Inst.eraseFromParent();
1225         Changed = true;
1226         ++NumCSECall;
1227         continue;
1228       }
1229 
1230       // Otherwise, remember that we have this instruction.
1231       AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration));
1232       continue;
1233     }
1234 
1235     // A release fence requires that all stores complete before it, but does
1236     // not prevent the reordering of following loads 'before' the fence.  As a
1237     // result, we don't need to consider it as writing to memory and don't need
1238     // to advance the generation.  We do need to prevent DSE across the fence,
1239     // but that's handled above.
1240     if (auto *FI = dyn_cast<FenceInst>(&Inst))
1241       if (FI->getOrdering() == AtomicOrdering::Release) {
1242         assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above");
1243         continue;
1244       }
1245 
1246     // write back DSE - If we write back the same value we just loaded from
1247     // the same location and haven't passed any intervening writes or ordering
1248     // operations, we can remove the write.  The primary benefit is in allowing
1249     // the available load table to remain valid and value forward past where
1250     // the store originally was.
1251     if (MemInst.isValid() && MemInst.isStore()) {
1252       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1253       if (InVal.DefInst &&
1254           InVal.DefInst == getOrCreateResult(&Inst, InVal.DefInst->getType()) &&
1255           InVal.MatchingId == MemInst.getMatchingId() &&
1256           // We don't yet handle removing stores with ordering of any kind.
1257           !MemInst.isVolatile() && MemInst.isUnordered() &&
1258           (isOperatingOnInvariantMemAt(&Inst, InVal.Generation) ||
1259            isSameMemGeneration(InVal.Generation, CurrentGeneration,
1260                                InVal.DefInst, &Inst))) {
1261         // It is okay to have a LastStore to a different pointer here if MemorySSA
1262         // tells us that the load and store are from the same memory generation.
1263         // In that case, LastStore should keep its present value since we're
1264         // removing the current store.
1265         assert((!LastStore ||
1266                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1267                     MemInst.getPointerOperand() ||
1268                 MSSA) &&
1269                "can't have an intervening store if not using MemorySSA!");
1270         LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n');
1271         if (!DebugCounter::shouldExecute(CSECounter)) {
1272           LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1273           continue;
1274         }
1275         salvageKnowledge(&Inst, &AC);
1276         removeMSSA(Inst);
1277         Inst.eraseFromParent();
1278         Changed = true;
1279         ++NumDSE;
1280         // We can avoid incrementing the generation count since we were able
1281         // to eliminate this store.
1282         continue;
1283       }
1284     }
1285 
1286     // Okay, this isn't something we can CSE at all.  Check to see if it is
1287     // something that could modify memory.  If so, our available memory values
1288     // cannot be used so bump the generation count.
1289     if (Inst.mayWriteToMemory()) {
1290       ++CurrentGeneration;
1291 
1292       if (MemInst.isValid() && MemInst.isStore()) {
1293         // We do a trivial form of DSE if there are two stores to the same
1294         // location with no intervening loads.  Delete the earlier store.
1295         // At the moment, we don't remove ordered stores, but do remove
1296         // unordered atomic stores.  There's no special requirement (for
1297         // unordered atomics) about removing atomic stores only in favor of
1298         // other atomic stores since we were going to execute the non-atomic
1299         // one anyway and the atomic one might never have become visible.
1300         if (LastStore) {
1301           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1302           assert(LastStoreMemInst.isUnordered() &&
1303                  !LastStoreMemInst.isVolatile() &&
1304                  "Violated invariant");
1305           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1306             LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1307                               << "  due to: " << Inst << '\n');
1308             if (!DebugCounter::shouldExecute(CSECounter)) {
1309               LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1310             } else {
1311               salvageKnowledge(&Inst, &AC);
1312               removeMSSA(*LastStore);
1313               LastStore->eraseFromParent();
1314               Changed = true;
1315               ++NumDSE;
1316               LastStore = nullptr;
1317             }
1318           }
1319           // fallthrough - we can exploit information about this store
1320         }
1321 
1322         // Okay, we just invalidated anything we knew about loaded values.  Try
1323         // to salvage *something* by remembering that the stored value is a live
1324         // version of the pointer.  It is safe to forward from volatile stores
1325         // to non-volatile loads, so we don't have to check for volatility of
1326         // the store.
1327         AvailableLoads.insert(MemInst.getPointerOperand(),
1328                               LoadValue(&Inst, CurrentGeneration,
1329                                         MemInst.getMatchingId(),
1330                                         MemInst.isAtomic()));
1331 
1332         // Remember that this was the last unordered store we saw for DSE. We
1333         // don't yet handle DSE on ordered or volatile stores since we don't
1334         // have a good way to model the ordering requirement for following
1335         // passes  once the store is removed.  We could insert a fence, but
1336         // since fences are slightly stronger than stores in their ordering,
1337         // it's not clear this is a profitable transform. Another option would
1338         // be to merge the ordering with that of the post dominating store.
1339         if (MemInst.isUnordered() && !MemInst.isVolatile())
1340           LastStore = &Inst;
1341         else
1342           LastStore = nullptr;
1343       }
1344     }
1345   }
1346 
1347   return Changed;
1348 }
1349 
1350 bool EarlyCSE::run() {
1351   // Note, deque is being used here because there is significant performance
1352   // gains over vector when the container becomes very large due to the
1353   // specific access patterns. For more information see the mailing list
1354   // discussion on this:
1355   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1356   std::deque<StackNode *> nodesToProcess;
1357 
1358   bool Changed = false;
1359 
1360   // Process the root node.
1361   nodesToProcess.push_back(new StackNode(
1362       AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1363       CurrentGeneration, DT.getRootNode(),
1364       DT.getRootNode()->begin(), DT.getRootNode()->end()));
1365 
1366   assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it.");
1367 
1368   // Process the stack.
1369   while (!nodesToProcess.empty()) {
1370     // Grab the first item off the stack. Set the current generation, remove
1371     // the node from the stack, and process it.
1372     StackNode *NodeToProcess = nodesToProcess.back();
1373 
1374     // Initialize class members.
1375     CurrentGeneration = NodeToProcess->currentGeneration();
1376 
1377     // Check if the node needs to be processed.
1378     if (!NodeToProcess->isProcessed()) {
1379       // Process the node.
1380       Changed |= processNode(NodeToProcess->node());
1381       NodeToProcess->childGeneration(CurrentGeneration);
1382       NodeToProcess->process();
1383     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1384       // Push the next child onto the stack.
1385       DomTreeNode *child = NodeToProcess->nextChild();
1386       nodesToProcess.push_back(
1387           new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1388                         AvailableCalls, NodeToProcess->childGeneration(),
1389                         child, child->begin(), child->end()));
1390     } else {
1391       // It has been processed, and there are no more children to process,
1392       // so delete it and pop it off the stack.
1393       delete NodeToProcess;
1394       nodesToProcess.pop_back();
1395     }
1396   } // while (!nodes...)
1397 
1398   return Changed;
1399 }
1400 
1401 PreservedAnalyses EarlyCSEPass::run(Function &F,
1402                                     FunctionAnalysisManager &AM) {
1403   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1404   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1405   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1406   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1407   auto *MSSA =
1408       UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1409 
1410   EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1411 
1412   if (!CSE.run())
1413     return PreservedAnalyses::all();
1414 
1415   PreservedAnalyses PA;
1416   PA.preserveSet<CFGAnalyses>();
1417   PA.preserve<GlobalsAA>();
1418   if (UseMemorySSA)
1419     PA.preserve<MemorySSAAnalysis>();
1420   return PA;
1421 }
1422 
1423 namespace {
1424 
1425 /// A simple and fast domtree-based CSE pass.
1426 ///
1427 /// This pass does a simple depth-first walk over the dominator tree,
1428 /// eliminating trivially redundant instructions and using instsimplify to
1429 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1430 /// cases so that instcombine and other passes are more effective. It is
1431 /// expected that a later pass of GVN will catch the interesting/hard cases.
1432 template<bool UseMemorySSA>
1433 class EarlyCSELegacyCommonPass : public FunctionPass {
1434 public:
1435   static char ID;
1436 
1437   EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1438     if (UseMemorySSA)
1439       initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1440     else
1441       initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1442   }
1443 
1444   bool runOnFunction(Function &F) override {
1445     if (skipFunction(F))
1446       return false;
1447 
1448     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1449     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1450     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1451     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1452     auto *MSSA =
1453         UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1454 
1455     EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1456 
1457     return CSE.run();
1458   }
1459 
1460   void getAnalysisUsage(AnalysisUsage &AU) const override {
1461     AU.addRequired<AssumptionCacheTracker>();
1462     AU.addRequired<DominatorTreeWrapperPass>();
1463     AU.addRequired<TargetLibraryInfoWrapperPass>();
1464     AU.addRequired<TargetTransformInfoWrapperPass>();
1465     if (UseMemorySSA) {
1466       AU.addRequired<AAResultsWrapperPass>();
1467       AU.addRequired<MemorySSAWrapperPass>();
1468       AU.addPreserved<MemorySSAWrapperPass>();
1469     }
1470     AU.addPreserved<GlobalsAAWrapperPass>();
1471     AU.addPreserved<AAResultsWrapperPass>();
1472     AU.setPreservesCFG();
1473   }
1474 };
1475 
1476 } // end anonymous namespace
1477 
1478 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1479 
1480 template<>
1481 char EarlyCSELegacyPass::ID = 0;
1482 
1483 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1484                       false)
1485 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1486 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1487 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1488 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1489 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1490 
1491 using EarlyCSEMemSSALegacyPass =
1492     EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1493 
1494 template<>
1495 char EarlyCSEMemSSALegacyPass::ID = 0;
1496 
1497 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1498   if (UseMemorySSA)
1499     return new EarlyCSEMemSSALegacyPass();
1500   else
1501     return new EarlyCSELegacyPass();
1502 }
1503 
1504 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1505                       "Early CSE w/ MemorySSA", false, false)
1506 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1507 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1508 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1509 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1510 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1511 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1512 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1513                     "Early CSE w/ MemorySSA", false, false)
1514