xref: /llvm-project/llvm/lib/Transforms/Scalar/EarlyCSE.cpp (revision 1a4bc110f52100fad5b5909cf76c234604c18306)
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/GlobalsModRef.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/Pass.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/RecyclingAllocator.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include <deque>
36 using namespace llvm;
37 using namespace llvm::PatternMatch;
38 
39 #define DEBUG_TYPE "early-cse"
40 
41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
42 STATISTIC(NumCSE,      "Number of instructions CSE'd");
43 STATISTIC(NumCSECVP,   "Number of compare instructions CVP'd");
44 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
45 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
46 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
47 
48 //===----------------------------------------------------------------------===//
49 // SimpleValue
50 //===----------------------------------------------------------------------===//
51 
52 namespace {
53 /// \brief Struct representing the available values in the scoped hash table.
54 struct SimpleValue {
55   Instruction *Inst;
56 
57   SimpleValue(Instruction *I) : Inst(I) {
58     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
59   }
60 
61   bool isSentinel() const {
62     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
63            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
64   }
65 
66   static bool canHandle(Instruction *Inst) {
67     // This can only handle non-void readnone functions.
68     if (CallInst *CI = dyn_cast<CallInst>(Inst))
69       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
70     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
71            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
72            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
73            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
74            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
75   }
76 };
77 }
78 
79 namespace llvm {
80 template <> struct DenseMapInfo<SimpleValue> {
81   static inline SimpleValue getEmptyKey() {
82     return DenseMapInfo<Instruction *>::getEmptyKey();
83   }
84   static inline SimpleValue getTombstoneKey() {
85     return DenseMapInfo<Instruction *>::getTombstoneKey();
86   }
87   static unsigned getHashValue(SimpleValue Val);
88   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
89 };
90 }
91 
92 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
93   Instruction *Inst = Val.Inst;
94   // Hash in all of the operands as pointers.
95   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
96     Value *LHS = BinOp->getOperand(0);
97     Value *RHS = BinOp->getOperand(1);
98     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
99       std::swap(LHS, RHS);
100 
101     return hash_combine(BinOp->getOpcode(), LHS, RHS);
102   }
103 
104   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
105     Value *LHS = CI->getOperand(0);
106     Value *RHS = CI->getOperand(1);
107     CmpInst::Predicate Pred = CI->getPredicate();
108     if (Inst->getOperand(0) > Inst->getOperand(1)) {
109       std::swap(LHS, RHS);
110       Pred = CI->getSwappedPredicate();
111     }
112     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
113   }
114 
115   if (CastInst *CI = dyn_cast<CastInst>(Inst))
116     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
117 
118   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
119     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
120                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
121 
122   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
123     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
124                         IVI->getOperand(1),
125                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
126 
127   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
128           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
129           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
130           isa<ShuffleVectorInst>(Inst)) &&
131          "Invalid/unknown instruction");
132 
133   // Mix in the opcode.
134   return hash_combine(
135       Inst->getOpcode(),
136       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
137 }
138 
139 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
140   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
141 
142   if (LHS.isSentinel() || RHS.isSentinel())
143     return LHSI == RHSI;
144 
145   if (LHSI->getOpcode() != RHSI->getOpcode())
146     return false;
147   if (LHSI->isIdenticalToWhenDefined(RHSI))
148     return true;
149 
150   // If we're not strictly identical, we still might be a commutable instruction
151   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
152     if (!LHSBinOp->isCommutative())
153       return false;
154 
155     assert(isa<BinaryOperator>(RHSI) &&
156            "same opcode, but different instruction type?");
157     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
158 
159     // Commuted equality
160     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
161            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
162   }
163   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
164     assert(isa<CmpInst>(RHSI) &&
165            "same opcode, but different instruction type?");
166     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
167     // Commuted equality
168     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
169            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
170            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
171   }
172 
173   return false;
174 }
175 
176 //===----------------------------------------------------------------------===//
177 // CallValue
178 //===----------------------------------------------------------------------===//
179 
180 namespace {
181 /// \brief Struct representing the available call values in the scoped hash
182 /// table.
183 struct CallValue {
184   Instruction *Inst;
185 
186   CallValue(Instruction *I) : Inst(I) {
187     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
188   }
189 
190   bool isSentinel() const {
191     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
192            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
193   }
194 
195   static bool canHandle(Instruction *Inst) {
196     // Don't value number anything that returns void.
197     if (Inst->getType()->isVoidTy())
198       return false;
199 
200     CallInst *CI = dyn_cast<CallInst>(Inst);
201     if (!CI || !CI->onlyReadsMemory())
202       return false;
203     return true;
204   }
205 };
206 }
207 
208 namespace llvm {
209 template <> struct DenseMapInfo<CallValue> {
210   static inline CallValue getEmptyKey() {
211     return DenseMapInfo<Instruction *>::getEmptyKey();
212   }
213   static inline CallValue getTombstoneKey() {
214     return DenseMapInfo<Instruction *>::getTombstoneKey();
215   }
216   static unsigned getHashValue(CallValue Val);
217   static bool isEqual(CallValue LHS, CallValue RHS);
218 };
219 }
220 
221 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
222   Instruction *Inst = Val.Inst;
223   // Hash all of the operands as pointers and mix in the opcode.
224   return hash_combine(
225       Inst->getOpcode(),
226       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
227 }
228 
229 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
230   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
231   if (LHS.isSentinel() || RHS.isSentinel())
232     return LHSI == RHSI;
233   return LHSI->isIdenticalTo(RHSI);
234 }
235 
236 //===----------------------------------------------------------------------===//
237 // EarlyCSE implementation
238 //===----------------------------------------------------------------------===//
239 
240 namespace {
241 /// \brief A simple and fast domtree-based CSE pass.
242 ///
243 /// This pass does a simple depth-first walk over the dominator tree,
244 /// eliminating trivially redundant instructions and using instsimplify to
245 /// canonicalize things as it goes. It is intended to be fast and catch obvious
246 /// cases so that instcombine and other passes are more effective. It is
247 /// expected that a later pass of GVN will catch the interesting/hard cases.
248 class EarlyCSE {
249 public:
250   const TargetLibraryInfo &TLI;
251   const TargetTransformInfo &TTI;
252   DominatorTree &DT;
253   AssumptionCache &AC;
254   typedef RecyclingAllocator<
255       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
256   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
257                           AllocatorTy> ScopedHTType;
258 
259   /// \brief A scoped hash table of the current values of all of our simple
260   /// scalar expressions.
261   ///
262   /// As we walk down the domtree, we look to see if instructions are in this:
263   /// if so, we replace them with what we find, otherwise we insert them so
264   /// that dominated values can succeed in their lookup.
265   ScopedHTType AvailableValues;
266 
267   /// A scoped hash table of the current values of previously encounted memory
268   /// locations.
269   ///
270   /// This allows us to get efficient access to dominating loads or stores when
271   /// we have a fully redundant load.  In addition to the most recent load, we
272   /// keep track of a generation count of the read, which is compared against
273   /// the current generation count.  The current generation count is incremented
274   /// after every possibly writing memory operation, which ensures that we only
275   /// CSE loads with other loads that have no intervening store.  Ordering
276   /// events (such as fences or atomic instructions) increment the generation
277   /// count as well; essentially, we model these as writes to all possible
278   /// locations.  Note that atomic and/or volatile loads and stores can be
279   /// present the table; it is the responsibility of the consumer to inspect
280   /// the atomicity/volatility if needed.
281   struct LoadValue {
282     Value *Data;
283     unsigned Generation;
284     int MatchingId;
285     bool IsAtomic;
286     LoadValue()
287       : Data(nullptr), Generation(0), MatchingId(-1), IsAtomic(false) {}
288     LoadValue(Value *Data, unsigned Generation, unsigned MatchingId,
289               bool IsAtomic)
290       : Data(Data), Generation(Generation), MatchingId(MatchingId),
291         IsAtomic(IsAtomic) {}
292   };
293   typedef RecyclingAllocator<BumpPtrAllocator,
294                              ScopedHashTableVal<Value *, LoadValue>>
295       LoadMapAllocator;
296   typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
297                           LoadMapAllocator> LoadHTType;
298   LoadHTType AvailableLoads;
299 
300   /// \brief A scoped hash table of the current values of read-only call
301   /// values.
302   ///
303   /// It uses the same generation count as loads.
304   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
305   CallHTType AvailableCalls;
306 
307   /// \brief This is the current generation of the memory value.
308   unsigned CurrentGeneration;
309 
310   /// \brief Set up the EarlyCSE runner for a particular function.
311   EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI,
312            DominatorTree &DT, AssumptionCache &AC)
313       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
314 
315   bool run();
316 
317 private:
318   // Almost a POD, but needs to call the constructors for the scoped hash
319   // tables so that a new scope gets pushed on. These are RAII so that the
320   // scope gets popped when the NodeScope is destroyed.
321   class NodeScope {
322   public:
323     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
324               CallHTType &AvailableCalls)
325         : Scope(AvailableValues), LoadScope(AvailableLoads),
326           CallScope(AvailableCalls) {}
327 
328   private:
329     NodeScope(const NodeScope &) = delete;
330     void operator=(const NodeScope &) = delete;
331 
332     ScopedHTType::ScopeTy Scope;
333     LoadHTType::ScopeTy LoadScope;
334     CallHTType::ScopeTy CallScope;
335   };
336 
337   // Contains all the needed information to create a stack for doing a depth
338   // first tranversal of the tree. This includes scopes for values, loads, and
339   // calls as well as the generation. There is a child iterator so that the
340   // children do not need to be store spearately.
341   class StackNode {
342   public:
343     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
344               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
345               DomTreeNode::iterator child, DomTreeNode::iterator end)
346         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
347           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
348           Processed(false) {}
349 
350     // Accessors.
351     unsigned currentGeneration() { return CurrentGeneration; }
352     unsigned childGeneration() { return ChildGeneration; }
353     void childGeneration(unsigned generation) { ChildGeneration = generation; }
354     DomTreeNode *node() { return Node; }
355     DomTreeNode::iterator childIter() { return ChildIter; }
356     DomTreeNode *nextChild() {
357       DomTreeNode *child = *ChildIter;
358       ++ChildIter;
359       return child;
360     }
361     DomTreeNode::iterator end() { return EndIter; }
362     bool isProcessed() { return Processed; }
363     void process() { Processed = true; }
364 
365   private:
366     StackNode(const StackNode &) = delete;
367     void operator=(const StackNode &) = delete;
368 
369     // Members.
370     unsigned CurrentGeneration;
371     unsigned ChildGeneration;
372     DomTreeNode *Node;
373     DomTreeNode::iterator ChildIter;
374     DomTreeNode::iterator EndIter;
375     NodeScope Scopes;
376     bool Processed;
377   };
378 
379   /// \brief Wrapper class to handle memory instructions, including loads,
380   /// stores and intrinsic loads and stores defined by the target.
381   class ParseMemoryInst {
382   public:
383     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
384       : IsTargetMemInst(false), Inst(Inst) {
385       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
386         if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1)
387           IsTargetMemInst = true;
388     }
389     bool isLoad() const {
390       if (IsTargetMemInst) return Info.ReadMem;
391       return isa<LoadInst>(Inst);
392     }
393     bool isStore() const {
394       if (IsTargetMemInst) return Info.WriteMem;
395       return isa<StoreInst>(Inst);
396     }
397     bool isAtomic() const {
398       if (IsTargetMemInst) {
399         assert(Info.IsSimple && "need to refine IsSimple in TTI");
400         return false;
401       }
402       return Inst->isAtomic();
403     }
404     bool isUnordered() const {
405       if (IsTargetMemInst) {
406         assert(Info.IsSimple && "need to refine IsSimple in TTI");
407         return true;
408       }
409       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
410         return LI->isUnordered();
411       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
412         return SI->isUnordered();
413       }
414       // Conservative answer
415       return !Inst->isAtomic();
416     }
417 
418     bool isVolatile() const {
419       if (IsTargetMemInst) {
420         assert(Info.IsSimple && "need to refine IsSimple in TTI");
421         return false;
422       }
423       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
424         return LI->isVolatile();
425       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
426         return SI->isVolatile();
427       }
428       // Conservative answer
429       return true;
430     }
431 
432 
433     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
434       return (getPointerOperand() == Inst.getPointerOperand() &&
435               getMatchingId() == Inst.getMatchingId());
436     }
437     bool isValid() const { return getPointerOperand() != nullptr; }
438 
439     // For regular (non-intrinsic) loads/stores, this is set to -1. For
440     // intrinsic loads/stores, the id is retrieved from the corresponding
441     // field in the MemIntrinsicInfo structure.  That field contains
442     // non-negative values only.
443     int getMatchingId() const {
444       if (IsTargetMemInst) return Info.MatchingId;
445       return -1;
446     }
447     Value *getPointerOperand() const {
448       if (IsTargetMemInst) return Info.PtrVal;
449       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
450         return LI->getPointerOperand();
451       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
452         return SI->getPointerOperand();
453       }
454       return nullptr;
455     }
456     bool mayReadFromMemory() const {
457       if (IsTargetMemInst) return Info.ReadMem;
458       return Inst->mayReadFromMemory();
459     }
460     bool mayWriteToMemory() const {
461       if (IsTargetMemInst) return Info.WriteMem;
462       return Inst->mayWriteToMemory();
463     }
464 
465   private:
466     bool IsTargetMemInst;
467     MemIntrinsicInfo Info;
468     Instruction *Inst;
469   };
470 
471   bool processNode(DomTreeNode *Node);
472 
473   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
474     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
475       return LI;
476     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
477       return SI->getValueOperand();
478     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
479     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
480                                                  ExpectedType);
481   }
482 };
483 }
484 
485 bool EarlyCSE::processNode(DomTreeNode *Node) {
486   bool Changed = false;
487   BasicBlock *BB = Node->getBlock();
488 
489   // If this block has a single predecessor, then the predecessor is the parent
490   // of the domtree node and all of the live out memory values are still current
491   // in this block.  If this block has multiple predecessors, then they could
492   // have invalidated the live-out memory values of our parent value.  For now,
493   // just be conservative and invalidate memory if this block has multiple
494   // predecessors.
495   if (!BB->getSinglePredecessor())
496     ++CurrentGeneration;
497 
498   // If this node has a single predecessor which ends in a conditional branch,
499   // we can infer the value of the branch condition given that we took this
500   // path.  We need the single predecessor to ensure there's not another path
501   // which reaches this block where the condition might hold a different
502   // value.  Since we're adding this to the scoped hash table (like any other
503   // def), it will have been popped if we encounter a future merge block.
504   if (BasicBlock *Pred = BB->getSinglePredecessor())
505     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
506       if (BI->isConditional())
507         if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
508           if (SimpleValue::canHandle(CondInst)) {
509             assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
510             auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
511               ConstantInt::getTrue(BB->getContext()) :
512               ConstantInt::getFalse(BB->getContext());
513             AvailableValues.insert(CondInst, ConditionalConstant);
514             DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
515                   << CondInst->getName() << "' as " << *ConditionalConstant
516                   << " in " << BB->getName() << "\n");
517             // Replace all dominated uses with the known value.
518             if (unsigned Count =
519                     replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
520                                              BasicBlockEdge(Pred, BB))) {
521               Changed = true;
522               NumCSECVP = NumCSECVP + Count;
523             }
524           }
525 
526   /// LastStore - Keep track of the last non-volatile store that we saw... for
527   /// as long as there in no instruction that reads memory.  If we see a store
528   /// to the same location, we delete the dead store.  This zaps trivial dead
529   /// stores which can occur in bitfield code among other things.
530   Instruction *LastStore = nullptr;
531 
532   const DataLayout &DL = BB->getModule()->getDataLayout();
533 
534   // See if any instructions in the block can be eliminated.  If so, do it.  If
535   // not, add them to AvailableValues.
536   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
537     Instruction *Inst = &*I++;
538 
539     // Dead instructions should just be removed.
540     if (isInstructionTriviallyDead(Inst, &TLI)) {
541       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
542       Inst->eraseFromParent();
543       Changed = true;
544       ++NumSimplify;
545       continue;
546     }
547 
548     // Skip assume intrinsics, they don't really have side effects (although
549     // they're marked as such to ensure preservation of control dependencies),
550     // and this pass will not disturb any of the assumption's control
551     // dependencies.
552     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
553       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
554       continue;
555     }
556 
557     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
558     // its simpler value.
559     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
560       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
561       Inst->replaceAllUsesWith(V);
562       Inst->eraseFromParent();
563       Changed = true;
564       ++NumSimplify;
565       continue;
566     }
567 
568     // If this is a simple instruction that we can value number, process it.
569     if (SimpleValue::canHandle(Inst)) {
570       // See if the instruction has an available value.  If so, use it.
571       if (Value *V = AvailableValues.lookup(Inst)) {
572         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
573         if (auto *I = dyn_cast<Instruction>(V))
574           I->andIRFlags(Inst);
575         Inst->replaceAllUsesWith(V);
576         Inst->eraseFromParent();
577         Changed = true;
578         ++NumCSE;
579         continue;
580       }
581 
582       // Otherwise, just remember that this value is available.
583       AvailableValues.insert(Inst, Inst);
584       continue;
585     }
586 
587     ParseMemoryInst MemInst(Inst, TTI);
588     // If this is a non-volatile load, process it.
589     if (MemInst.isValid() && MemInst.isLoad()) {
590       // (conservatively) we can't peak past the ordering implied by this
591       // operation, but we can add this load to our set of available values
592       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
593         LastStore = nullptr;
594         ++CurrentGeneration;
595       }
596 
597       // If we have an available version of this load, and if it is the right
598       // generation, replace this instruction.
599       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
600       if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration &&
601           InVal.MatchingId == MemInst.getMatchingId() &&
602           // We don't yet handle removing loads with ordering of any kind.
603           !MemInst.isVolatile() && MemInst.isUnordered() &&
604           // We can't replace an atomic load with one which isn't also atomic.
605           InVal.IsAtomic >= MemInst.isAtomic()) {
606         Value *Op = getOrCreateResult(InVal.Data, Inst->getType());
607         if (Op != nullptr) {
608           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
609                        << "  to: " << *InVal.Data << '\n');
610           if (!Inst->use_empty())
611             Inst->replaceAllUsesWith(Op);
612           Inst->eraseFromParent();
613           Changed = true;
614           ++NumCSELoad;
615           continue;
616         }
617       }
618 
619       // Otherwise, remember that we have this instruction.
620       AvailableLoads.insert(
621           MemInst.getPointerOperand(),
622           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
623                     MemInst.isAtomic()));
624       LastStore = nullptr;
625       continue;
626     }
627 
628     // If this instruction may read from memory, forget LastStore.
629     // Load/store intrinsics will indicate both a read and a write to
630     // memory.  The target may override this (e.g. so that a store intrinsic
631     // does not read  from memory, and thus will be treated the same as a
632     // regular store for commoning purposes).
633     if (Inst->mayReadFromMemory() &&
634         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
635       LastStore = nullptr;
636 
637     // If this is a read-only call, process it.
638     if (CallValue::canHandle(Inst)) {
639       // If we have an available version of this call, and if it is the right
640       // generation, replace this instruction.
641       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
642       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
643         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
644                      << "  to: " << *InVal.first << '\n');
645         if (!Inst->use_empty())
646           Inst->replaceAllUsesWith(InVal.first);
647         Inst->eraseFromParent();
648         Changed = true;
649         ++NumCSECall;
650         continue;
651       }
652 
653       // Otherwise, remember that we have this instruction.
654       AvailableCalls.insert(
655           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
656       continue;
657     }
658 
659     // A release fence requires that all stores complete before it, but does
660     // not prevent the reordering of following loads 'before' the fence.  As a
661     // result, we don't need to consider it as writing to memory and don't need
662     // to advance the generation.  We do need to prevent DSE across the fence,
663     // but that's handled above.
664     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
665       if (FI->getOrdering() == AtomicOrdering::Release) {
666         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
667         continue;
668       }
669 
670     // write back DSE - If we write back the same value we just loaded from
671     // the same location and haven't passed any intervening writes or ordering
672     // operations, we can remove the write.  The primary benefit is in allowing
673     // the available load table to remain valid and value forward past where
674     // the store originally was.
675     if (MemInst.isValid() && MemInst.isStore()) {
676       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
677       if (InVal.Data &&
678           InVal.Data == getOrCreateResult(Inst, InVal.Data->getType()) &&
679           InVal.Generation == CurrentGeneration &&
680           InVal.MatchingId == MemInst.getMatchingId() &&
681           // We don't yet handle removing stores with ordering of any kind.
682           !MemInst.isVolatile() && MemInst.isUnordered()) {
683         assert((!LastStore ||
684                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
685                 MemInst.getPointerOperand()) &&
686                "can't have an intervening store!");
687         DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
688         Inst->eraseFromParent();
689         Changed = true;
690         ++NumDSE;
691         // We can avoid incrementing the generation count since we were able
692         // to eliminate this store.
693         continue;
694       }
695     }
696 
697     // Okay, this isn't something we can CSE at all.  Check to see if it is
698     // something that could modify memory.  If so, our available memory values
699     // cannot be used so bump the generation count.
700     if (Inst->mayWriteToMemory()) {
701       ++CurrentGeneration;
702 
703       if (MemInst.isValid() && MemInst.isStore()) {
704         // We do a trivial form of DSE if there are two stores to the same
705         // location with no intervening loads.  Delete the earlier store.
706         // At the moment, we don't remove ordered stores, but do remove
707         // unordered atomic stores.  There's no special requirement (for
708         // unordered atomics) about removing atomic stores only in favor of
709         // other atomic stores since we we're going to execute the non-atomic
710         // one anyway and the atomic one might never have become visible.
711         if (LastStore) {
712           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
713           assert(LastStoreMemInst.isUnordered() &&
714                  !LastStoreMemInst.isVolatile() &&
715                  "Violated invariant");
716           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
717             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
718                          << "  due to: " << *Inst << '\n');
719             LastStore->eraseFromParent();
720             Changed = true;
721             ++NumDSE;
722             LastStore = nullptr;
723           }
724           // fallthrough - we can exploit information about this store
725         }
726 
727         // Okay, we just invalidated anything we knew about loaded values.  Try
728         // to salvage *something* by remembering that the stored value is a live
729         // version of the pointer.  It is safe to forward from volatile stores
730         // to non-volatile loads, so we don't have to check for volatility of
731         // the store.
732         AvailableLoads.insert(
733             MemInst.getPointerOperand(),
734             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
735                       MemInst.isAtomic()));
736 
737         // Remember that this was the last unordered store we saw for DSE. We
738         // don't yet handle DSE on ordered or volatile stores since we don't
739         // have a good way to model the ordering requirement for following
740         // passes  once the store is removed.  We could insert a fence, but
741         // since fences are slightly stronger than stores in their ordering,
742         // it's not clear this is a profitable transform. Another option would
743         // be to merge the ordering with that of the post dominating store.
744         if (MemInst.isUnordered() && !MemInst.isVolatile())
745           LastStore = Inst;
746         else
747           LastStore = nullptr;
748       }
749     }
750   }
751 
752   return Changed;
753 }
754 
755 bool EarlyCSE::run() {
756   // Note, deque is being used here because there is significant performance
757   // gains over vector when the container becomes very large due to the
758   // specific access patterns. For more information see the mailing list
759   // discussion on this:
760   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
761   std::deque<StackNode *> nodesToProcess;
762 
763   bool Changed = false;
764 
765   // Process the root node.
766   nodesToProcess.push_back(new StackNode(
767       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
768       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
769 
770   // Save the current generation.
771   unsigned LiveOutGeneration = CurrentGeneration;
772 
773   // Process the stack.
774   while (!nodesToProcess.empty()) {
775     // Grab the first item off the stack. Set the current generation, remove
776     // the node from the stack, and process it.
777     StackNode *NodeToProcess = nodesToProcess.back();
778 
779     // Initialize class members.
780     CurrentGeneration = NodeToProcess->currentGeneration();
781 
782     // Check if the node needs to be processed.
783     if (!NodeToProcess->isProcessed()) {
784       // Process the node.
785       Changed |= processNode(NodeToProcess->node());
786       NodeToProcess->childGeneration(CurrentGeneration);
787       NodeToProcess->process();
788     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
789       // Push the next child onto the stack.
790       DomTreeNode *child = NodeToProcess->nextChild();
791       nodesToProcess.push_back(
792           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
793                         NodeToProcess->childGeneration(), child, child->begin(),
794                         child->end()));
795     } else {
796       // It has been processed, and there are no more children to process,
797       // so delete it and pop it off the stack.
798       delete NodeToProcess;
799       nodesToProcess.pop_back();
800     }
801   } // while (!nodes...)
802 
803   // Reset the current generation.
804   CurrentGeneration = LiveOutGeneration;
805 
806   return Changed;
807 }
808 
809 PreservedAnalyses EarlyCSEPass::run(Function &F,
810                                     AnalysisManager<Function> &AM) {
811   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
812   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
813   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
814   auto &AC = AM.getResult<AssumptionAnalysis>(F);
815 
816   EarlyCSE CSE(TLI, TTI, DT, AC);
817 
818   if (!CSE.run())
819     return PreservedAnalyses::all();
820 
821   // CSE preserves the dominator tree because it doesn't mutate the CFG.
822   // FIXME: Bundle this with other CFG-preservation.
823   PreservedAnalyses PA;
824   PA.preserve<DominatorTreeAnalysis>();
825   return PA;
826 }
827 
828 namespace {
829 /// \brief A simple and fast domtree-based CSE pass.
830 ///
831 /// This pass does a simple depth-first walk over the dominator tree,
832 /// eliminating trivially redundant instructions and using instsimplify to
833 /// canonicalize things as it goes. It is intended to be fast and catch obvious
834 /// cases so that instcombine and other passes are more effective. It is
835 /// expected that a later pass of GVN will catch the interesting/hard cases.
836 class EarlyCSELegacyPass : public FunctionPass {
837 public:
838   static char ID;
839 
840   EarlyCSELegacyPass() : FunctionPass(ID) {
841     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
842   }
843 
844   bool runOnFunction(Function &F) override {
845     if (skipOptnoneFunction(F))
846       return false;
847 
848     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
849     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
850     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
851     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
852 
853     EarlyCSE CSE(TLI, TTI, DT, AC);
854 
855     return CSE.run();
856   }
857 
858   void getAnalysisUsage(AnalysisUsage &AU) const override {
859     AU.addRequired<AssumptionCacheTracker>();
860     AU.addRequired<DominatorTreeWrapperPass>();
861     AU.addRequired<TargetLibraryInfoWrapperPass>();
862     AU.addRequired<TargetTransformInfoWrapperPass>();
863     AU.addPreserved<GlobalsAAWrapperPass>();
864     AU.setPreservesCFG();
865   }
866 };
867 }
868 
869 char EarlyCSELegacyPass::ID = 0;
870 
871 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
872 
873 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
874                       false)
875 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
876 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
877 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
878 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
879 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
880