1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/RecyclingAllocator.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Utils/MemorySSA.h" 36 #include "llvm/Transforms/Utils/MemorySSAUpdater.h" 37 #include <deque> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "early-cse" 42 43 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 44 STATISTIC(NumCSE, "Number of instructions CSE'd"); 45 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 46 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 47 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 48 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 49 50 //===----------------------------------------------------------------------===// 51 // SimpleValue 52 //===----------------------------------------------------------------------===// 53 54 namespace { 55 /// \brief Struct representing the available values in the scoped hash table. 56 struct SimpleValue { 57 Instruction *Inst; 58 59 SimpleValue(Instruction *I) : Inst(I) { 60 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 61 } 62 63 bool isSentinel() const { 64 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 65 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 66 } 67 68 static bool canHandle(Instruction *Inst) { 69 // This can only handle non-void readnone functions. 70 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 71 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 72 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 73 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 74 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 75 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 76 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 77 } 78 }; 79 } 80 81 namespace llvm { 82 template <> struct DenseMapInfo<SimpleValue> { 83 static inline SimpleValue getEmptyKey() { 84 return DenseMapInfo<Instruction *>::getEmptyKey(); 85 } 86 static inline SimpleValue getTombstoneKey() { 87 return DenseMapInfo<Instruction *>::getTombstoneKey(); 88 } 89 static unsigned getHashValue(SimpleValue Val); 90 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 91 }; 92 } 93 94 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 95 Instruction *Inst = Val.Inst; 96 // Hash in all of the operands as pointers. 97 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 98 Value *LHS = BinOp->getOperand(0); 99 Value *RHS = BinOp->getOperand(1); 100 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 101 std::swap(LHS, RHS); 102 103 return hash_combine(BinOp->getOpcode(), LHS, RHS); 104 } 105 106 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 107 Value *LHS = CI->getOperand(0); 108 Value *RHS = CI->getOperand(1); 109 CmpInst::Predicate Pred = CI->getPredicate(); 110 if (Inst->getOperand(0) > Inst->getOperand(1)) { 111 std::swap(LHS, RHS); 112 Pred = CI->getSwappedPredicate(); 113 } 114 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 115 } 116 117 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 118 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 119 120 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 121 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 122 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 123 124 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 125 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 126 IVI->getOperand(1), 127 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 128 129 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 130 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 131 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 132 isa<ShuffleVectorInst>(Inst)) && 133 "Invalid/unknown instruction"); 134 135 // Mix in the opcode. 136 return hash_combine( 137 Inst->getOpcode(), 138 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 139 } 140 141 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 142 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 143 144 if (LHS.isSentinel() || RHS.isSentinel()) 145 return LHSI == RHSI; 146 147 if (LHSI->getOpcode() != RHSI->getOpcode()) 148 return false; 149 if (LHSI->isIdenticalToWhenDefined(RHSI)) 150 return true; 151 152 // If we're not strictly identical, we still might be a commutable instruction 153 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 154 if (!LHSBinOp->isCommutative()) 155 return false; 156 157 assert(isa<BinaryOperator>(RHSI) && 158 "same opcode, but different instruction type?"); 159 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 160 161 // Commuted equality 162 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 163 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 164 } 165 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 166 assert(isa<CmpInst>(RHSI) && 167 "same opcode, but different instruction type?"); 168 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 169 // Commuted equality 170 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 171 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 172 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 173 } 174 175 return false; 176 } 177 178 //===----------------------------------------------------------------------===// 179 // CallValue 180 //===----------------------------------------------------------------------===// 181 182 namespace { 183 /// \brief Struct representing the available call values in the scoped hash 184 /// table. 185 struct CallValue { 186 Instruction *Inst; 187 188 CallValue(Instruction *I) : Inst(I) { 189 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 190 } 191 192 bool isSentinel() const { 193 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 194 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 195 } 196 197 static bool canHandle(Instruction *Inst) { 198 // Don't value number anything that returns void. 199 if (Inst->getType()->isVoidTy()) 200 return false; 201 202 CallInst *CI = dyn_cast<CallInst>(Inst); 203 if (!CI || !CI->onlyReadsMemory()) 204 return false; 205 return true; 206 } 207 }; 208 } 209 210 namespace llvm { 211 template <> struct DenseMapInfo<CallValue> { 212 static inline CallValue getEmptyKey() { 213 return DenseMapInfo<Instruction *>::getEmptyKey(); 214 } 215 static inline CallValue getTombstoneKey() { 216 return DenseMapInfo<Instruction *>::getTombstoneKey(); 217 } 218 static unsigned getHashValue(CallValue Val); 219 static bool isEqual(CallValue LHS, CallValue RHS); 220 }; 221 } 222 223 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 224 Instruction *Inst = Val.Inst; 225 // Hash all of the operands as pointers and mix in the opcode. 226 return hash_combine( 227 Inst->getOpcode(), 228 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 229 } 230 231 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 232 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 233 if (LHS.isSentinel() || RHS.isSentinel()) 234 return LHSI == RHSI; 235 return LHSI->isIdenticalTo(RHSI); 236 } 237 238 //===----------------------------------------------------------------------===// 239 // EarlyCSE implementation 240 //===----------------------------------------------------------------------===// 241 242 namespace { 243 /// \brief A simple and fast domtree-based CSE pass. 244 /// 245 /// This pass does a simple depth-first walk over the dominator tree, 246 /// eliminating trivially redundant instructions and using instsimplify to 247 /// canonicalize things as it goes. It is intended to be fast and catch obvious 248 /// cases so that instcombine and other passes are more effective. It is 249 /// expected that a later pass of GVN will catch the interesting/hard cases. 250 class EarlyCSE { 251 public: 252 const TargetLibraryInfo &TLI; 253 const TargetTransformInfo &TTI; 254 DominatorTree &DT; 255 AssumptionCache &AC; 256 MemorySSA *MSSA; 257 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 258 typedef RecyclingAllocator< 259 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 260 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 261 AllocatorTy> ScopedHTType; 262 263 /// \brief A scoped hash table of the current values of all of our simple 264 /// scalar expressions. 265 /// 266 /// As we walk down the domtree, we look to see if instructions are in this: 267 /// if so, we replace them with what we find, otherwise we insert them so 268 /// that dominated values can succeed in their lookup. 269 ScopedHTType AvailableValues; 270 271 /// A scoped hash table of the current values of previously encounted memory 272 /// locations. 273 /// 274 /// This allows us to get efficient access to dominating loads or stores when 275 /// we have a fully redundant load. In addition to the most recent load, we 276 /// keep track of a generation count of the read, which is compared against 277 /// the current generation count. The current generation count is incremented 278 /// after every possibly writing memory operation, which ensures that we only 279 /// CSE loads with other loads that have no intervening store. Ordering 280 /// events (such as fences or atomic instructions) increment the generation 281 /// count as well; essentially, we model these as writes to all possible 282 /// locations. Note that atomic and/or volatile loads and stores can be 283 /// present the table; it is the responsibility of the consumer to inspect 284 /// the atomicity/volatility if needed. 285 struct LoadValue { 286 Instruction *DefInst; 287 unsigned Generation; 288 int MatchingId; 289 bool IsAtomic; 290 bool IsInvariant; 291 LoadValue() 292 : DefInst(nullptr), Generation(0), MatchingId(-1), IsAtomic(false), 293 IsInvariant(false) {} 294 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 295 bool IsAtomic, bool IsInvariant) 296 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 297 IsAtomic(IsAtomic), IsInvariant(IsInvariant) {} 298 }; 299 typedef RecyclingAllocator<BumpPtrAllocator, 300 ScopedHashTableVal<Value *, LoadValue>> 301 LoadMapAllocator; 302 typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 303 LoadMapAllocator> LoadHTType; 304 LoadHTType AvailableLoads; 305 306 /// \brief A scoped hash table of the current values of read-only call 307 /// values. 308 /// 309 /// It uses the same generation count as loads. 310 typedef ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>> 311 CallHTType; 312 CallHTType AvailableCalls; 313 314 /// \brief This is the current generation of the memory value. 315 unsigned CurrentGeneration; 316 317 /// \brief Set up the EarlyCSE runner for a particular function. 318 EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI, 319 DominatorTree &DT, AssumptionCache &AC, MemorySSA *MSSA) 320 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), MSSA(MSSA), 321 MSSAUpdater(make_unique<MemorySSAUpdater>(MSSA)), CurrentGeneration(0) { 322 } 323 324 bool run(); 325 326 private: 327 // Almost a POD, but needs to call the constructors for the scoped hash 328 // tables so that a new scope gets pushed on. These are RAII so that the 329 // scope gets popped when the NodeScope is destroyed. 330 class NodeScope { 331 public: 332 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 333 CallHTType &AvailableCalls) 334 : Scope(AvailableValues), LoadScope(AvailableLoads), 335 CallScope(AvailableCalls) {} 336 337 private: 338 NodeScope(const NodeScope &) = delete; 339 void operator=(const NodeScope &) = delete; 340 341 ScopedHTType::ScopeTy Scope; 342 LoadHTType::ScopeTy LoadScope; 343 CallHTType::ScopeTy CallScope; 344 }; 345 346 // Contains all the needed information to create a stack for doing a depth 347 // first traversal of the tree. This includes scopes for values, loads, and 348 // calls as well as the generation. There is a child iterator so that the 349 // children do not need to be store separately. 350 class StackNode { 351 public: 352 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 353 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 354 DomTreeNode::iterator child, DomTreeNode::iterator end) 355 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 356 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 357 Processed(false) {} 358 359 // Accessors. 360 unsigned currentGeneration() { return CurrentGeneration; } 361 unsigned childGeneration() { return ChildGeneration; } 362 void childGeneration(unsigned generation) { ChildGeneration = generation; } 363 DomTreeNode *node() { return Node; } 364 DomTreeNode::iterator childIter() { return ChildIter; } 365 DomTreeNode *nextChild() { 366 DomTreeNode *child = *ChildIter; 367 ++ChildIter; 368 return child; 369 } 370 DomTreeNode::iterator end() { return EndIter; } 371 bool isProcessed() { return Processed; } 372 void process() { Processed = true; } 373 374 private: 375 StackNode(const StackNode &) = delete; 376 void operator=(const StackNode &) = delete; 377 378 // Members. 379 unsigned CurrentGeneration; 380 unsigned ChildGeneration; 381 DomTreeNode *Node; 382 DomTreeNode::iterator ChildIter; 383 DomTreeNode::iterator EndIter; 384 NodeScope Scopes; 385 bool Processed; 386 }; 387 388 /// \brief Wrapper class to handle memory instructions, including loads, 389 /// stores and intrinsic loads and stores defined by the target. 390 class ParseMemoryInst { 391 public: 392 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 393 : IsTargetMemInst(false), Inst(Inst) { 394 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 395 if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1) 396 IsTargetMemInst = true; 397 } 398 bool isLoad() const { 399 if (IsTargetMemInst) return Info.ReadMem; 400 return isa<LoadInst>(Inst); 401 } 402 bool isStore() const { 403 if (IsTargetMemInst) return Info.WriteMem; 404 return isa<StoreInst>(Inst); 405 } 406 bool isAtomic() const { 407 if (IsTargetMemInst) { 408 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 409 return false; 410 } 411 return Inst->isAtomic(); 412 } 413 bool isUnordered() const { 414 if (IsTargetMemInst) { 415 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 416 return true; 417 } 418 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 419 return LI->isUnordered(); 420 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 421 return SI->isUnordered(); 422 } 423 // Conservative answer 424 return !Inst->isAtomic(); 425 } 426 427 bool isVolatile() const { 428 if (IsTargetMemInst) { 429 assert(Info.IsSimple && "need to refine IsSimple in TTI"); 430 return false; 431 } 432 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 433 return LI->isVolatile(); 434 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 435 return SI->isVolatile(); 436 } 437 // Conservative answer 438 return true; 439 } 440 441 bool isInvariantLoad() const { 442 if (auto *LI = dyn_cast<LoadInst>(Inst)) 443 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr; 444 return false; 445 } 446 447 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const { 448 return (getPointerOperand() == Inst.getPointerOperand() && 449 getMatchingId() == Inst.getMatchingId()); 450 } 451 bool isValid() const { return getPointerOperand() != nullptr; } 452 453 // For regular (non-intrinsic) loads/stores, this is set to -1. For 454 // intrinsic loads/stores, the id is retrieved from the corresponding 455 // field in the MemIntrinsicInfo structure. That field contains 456 // non-negative values only. 457 int getMatchingId() const { 458 if (IsTargetMemInst) return Info.MatchingId; 459 return -1; 460 } 461 Value *getPointerOperand() const { 462 if (IsTargetMemInst) return Info.PtrVal; 463 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 464 return LI->getPointerOperand(); 465 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 466 return SI->getPointerOperand(); 467 } 468 return nullptr; 469 } 470 bool mayReadFromMemory() const { 471 if (IsTargetMemInst) return Info.ReadMem; 472 return Inst->mayReadFromMemory(); 473 } 474 bool mayWriteToMemory() const { 475 if (IsTargetMemInst) return Info.WriteMem; 476 return Inst->mayWriteToMemory(); 477 } 478 479 private: 480 bool IsTargetMemInst; 481 MemIntrinsicInfo Info; 482 Instruction *Inst; 483 }; 484 485 bool processNode(DomTreeNode *Node); 486 487 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 488 if (auto *LI = dyn_cast<LoadInst>(Inst)) 489 return LI; 490 if (auto *SI = dyn_cast<StoreInst>(Inst)) 491 return SI->getValueOperand(); 492 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 493 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 494 ExpectedType); 495 } 496 497 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 498 Instruction *EarlierInst, Instruction *LaterInst); 499 500 void removeMSSA(Instruction *Inst) { 501 if (!MSSA) 502 return; 503 // Removing a store here can leave MemorySSA in an unoptimized state by 504 // creating MemoryPhis that have identical arguments and by creating 505 // MemoryUses whose defining access is not an actual clobber. We handle the 506 // phi case eagerly here. The non-optimized MemoryUse case is lazily 507 // updated by MemorySSA getClobberingMemoryAccess. 508 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) { 509 // Optimize MemoryPhi nodes that may become redundant by having all the 510 // same input values once MA is removed. 511 SmallVector<MemoryPhi *, 4> PhisToCheck; 512 SmallVector<MemoryAccess *, 8> WorkQueue; 513 WorkQueue.push_back(MA); 514 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since 515 // we shouldn't be processing that many phis and this will avoid an 516 // allocation in almost all cases. 517 for (unsigned I = 0; I < WorkQueue.size(); ++I) { 518 MemoryAccess *WI = WorkQueue[I]; 519 520 for (auto *U : WI->users()) 521 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U)) 522 PhisToCheck.push_back(MP); 523 524 MSSAUpdater->removeMemoryAccess(WI); 525 526 for (MemoryPhi *MP : PhisToCheck) { 527 MemoryAccess *FirstIn = MP->getIncomingValue(0); 528 if (all_of(MP->incoming_values(), 529 [=](Use &In) { return In == FirstIn; })) 530 WorkQueue.push_back(MP); 531 } 532 PhisToCheck.clear(); 533 } 534 } 535 } 536 }; 537 } 538 539 /// Determine if the memory referenced by LaterInst is from the same heap 540 /// version as EarlierInst. 541 /// This is currently called in two scenarios: 542 /// 543 /// load p 544 /// ... 545 /// load p 546 /// 547 /// and 548 /// 549 /// x = load p 550 /// ... 551 /// store x, p 552 /// 553 /// in both cases we want to verify that there are no possible writes to the 554 /// memory referenced by p between the earlier and later instruction. 555 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 556 unsigned LaterGeneration, 557 Instruction *EarlierInst, 558 Instruction *LaterInst) { 559 // Check the simple memory generation tracking first. 560 if (EarlierGeneration == LaterGeneration) 561 return true; 562 563 if (!MSSA) 564 return false; 565 566 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 567 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 568 // EarlierInst and LaterInst and neither can any other write that potentially 569 // clobbers LaterInst. 570 MemoryAccess *LaterDef = 571 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 572 return MSSA->dominates(LaterDef, MSSA->getMemoryAccess(EarlierInst)); 573 } 574 575 bool EarlyCSE::processNode(DomTreeNode *Node) { 576 bool Changed = false; 577 BasicBlock *BB = Node->getBlock(); 578 579 // If this block has a single predecessor, then the predecessor is the parent 580 // of the domtree node and all of the live out memory values are still current 581 // in this block. If this block has multiple predecessors, then they could 582 // have invalidated the live-out memory values of our parent value. For now, 583 // just be conservative and invalidate memory if this block has multiple 584 // predecessors. 585 if (!BB->getSinglePredecessor()) 586 ++CurrentGeneration; 587 588 // If this node has a single predecessor which ends in a conditional branch, 589 // we can infer the value of the branch condition given that we took this 590 // path. We need the single predecessor to ensure there's not another path 591 // which reaches this block where the condition might hold a different 592 // value. Since we're adding this to the scoped hash table (like any other 593 // def), it will have been popped if we encounter a future merge block. 594 if (BasicBlock *Pred = BB->getSinglePredecessor()) 595 if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator())) 596 if (BI->isConditional()) 597 if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition())) 598 if (SimpleValue::canHandle(CondInst)) { 599 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 600 auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ? 601 ConstantInt::getTrue(BB->getContext()) : 602 ConstantInt::getFalse(BB->getContext()); 603 AvailableValues.insert(CondInst, ConditionalConstant); 604 DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 605 << CondInst->getName() << "' as " << *ConditionalConstant 606 << " in " << BB->getName() << "\n"); 607 // Replace all dominated uses with the known value. 608 if (unsigned Count = 609 replaceDominatedUsesWith(CondInst, ConditionalConstant, DT, 610 BasicBlockEdge(Pred, BB))) { 611 Changed = true; 612 NumCSECVP = NumCSECVP + Count; 613 } 614 } 615 616 /// LastStore - Keep track of the last non-volatile store that we saw... for 617 /// as long as there in no instruction that reads memory. If we see a store 618 /// to the same location, we delete the dead store. This zaps trivial dead 619 /// stores which can occur in bitfield code among other things. 620 Instruction *LastStore = nullptr; 621 622 const DataLayout &DL = BB->getModule()->getDataLayout(); 623 624 // See if any instructions in the block can be eliminated. If so, do it. If 625 // not, add them to AvailableValues. 626 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 627 Instruction *Inst = &*I++; 628 629 // Dead instructions should just be removed. 630 if (isInstructionTriviallyDead(Inst, &TLI)) { 631 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 632 removeMSSA(Inst); 633 Inst->eraseFromParent(); 634 Changed = true; 635 ++NumSimplify; 636 continue; 637 } 638 639 // Skip assume intrinsics, they don't really have side effects (although 640 // they're marked as such to ensure preservation of control dependencies), 641 // and this pass will not disturb any of the assumption's control 642 // dependencies. 643 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 644 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 645 continue; 646 } 647 648 // Skip invariant.start intrinsics since they only read memory, and we can 649 // forward values across it. Also, we dont need to consume the last store 650 // since the semantics of invariant.start allow us to perform DSE of the 651 // last store, if there was a store following invariant.start. Consider: 652 // 653 // store 30, i8* p 654 // invariant.start(p) 655 // store 40, i8* p 656 // We can DSE the store to 30, since the store 40 to invariant location p 657 // causes undefined behaviour. 658 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) 659 continue; 660 661 if (match(Inst, m_Intrinsic<Intrinsic::experimental_guard>())) { 662 if (auto *CondI = 663 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) { 664 // The condition we're on guarding here is true for all dominated 665 // locations. 666 if (SimpleValue::canHandle(CondI)) 667 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 668 } 669 670 // Guard intrinsics read all memory, but don't write any memory. 671 // Accordingly, don't update the generation but consume the last store (to 672 // avoid an incorrect DSE). 673 LastStore = nullptr; 674 continue; 675 } 676 677 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 678 // its simpler value. 679 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 680 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 681 bool Killed = false; 682 if (!Inst->use_empty()) { 683 Inst->replaceAllUsesWith(V); 684 Changed = true; 685 } 686 if (isInstructionTriviallyDead(Inst, &TLI)) { 687 removeMSSA(Inst); 688 Inst->eraseFromParent(); 689 Changed = true; 690 Killed = true; 691 } 692 if (Changed) 693 ++NumSimplify; 694 if (Killed) 695 continue; 696 } 697 698 // If this is a simple instruction that we can value number, process it. 699 if (SimpleValue::canHandle(Inst)) { 700 // See if the instruction has an available value. If so, use it. 701 if (Value *V = AvailableValues.lookup(Inst)) { 702 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 703 if (auto *I = dyn_cast<Instruction>(V)) 704 I->andIRFlags(Inst); 705 Inst->replaceAllUsesWith(V); 706 removeMSSA(Inst); 707 Inst->eraseFromParent(); 708 Changed = true; 709 ++NumCSE; 710 continue; 711 } 712 713 // Otherwise, just remember that this value is available. 714 AvailableValues.insert(Inst, Inst); 715 continue; 716 } 717 718 ParseMemoryInst MemInst(Inst, TTI); 719 // If this is a non-volatile load, process it. 720 if (MemInst.isValid() && MemInst.isLoad()) { 721 // (conservatively) we can't peak past the ordering implied by this 722 // operation, but we can add this load to our set of available values 723 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 724 LastStore = nullptr; 725 ++CurrentGeneration; 726 } 727 728 // If we have an available version of this load, and if it is the right 729 // generation or the load is known to be from an invariant location, 730 // replace this instruction. 731 // 732 // If either the dominating load or the current load are invariant, then 733 // we can assume the current load loads the same value as the dominating 734 // load. 735 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 736 if (InVal.DefInst != nullptr && 737 InVal.MatchingId == MemInst.getMatchingId() && 738 // We don't yet handle removing loads with ordering of any kind. 739 !MemInst.isVolatile() && MemInst.isUnordered() && 740 // We can't replace an atomic load with one which isn't also atomic. 741 InVal.IsAtomic >= MemInst.isAtomic() && 742 (InVal.IsInvariant || MemInst.isInvariantLoad() || 743 isSameMemGeneration(InVal.Generation, CurrentGeneration, 744 InVal.DefInst, Inst))) { 745 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType()); 746 if (Op != nullptr) { 747 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 748 << " to: " << *InVal.DefInst << '\n'); 749 if (!Inst->use_empty()) 750 Inst->replaceAllUsesWith(Op); 751 removeMSSA(Inst); 752 Inst->eraseFromParent(); 753 Changed = true; 754 ++NumCSELoad; 755 continue; 756 } 757 } 758 759 // Otherwise, remember that we have this instruction. 760 AvailableLoads.insert( 761 MemInst.getPointerOperand(), 762 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 763 MemInst.isAtomic(), MemInst.isInvariantLoad())); 764 LastStore = nullptr; 765 continue; 766 } 767 768 // If this instruction may read from memory or throw (and potentially read 769 // from memory in the exception handler), forget LastStore. Load/store 770 // intrinsics will indicate both a read and a write to memory. The target 771 // may override this (e.g. so that a store intrinsic does not read from 772 // memory, and thus will be treated the same as a regular store for 773 // commoning purposes). 774 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) && 775 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 776 LastStore = nullptr; 777 778 // If this is a read-only call, process it. 779 if (CallValue::canHandle(Inst)) { 780 // If we have an available version of this call, and if it is the right 781 // generation, replace this instruction. 782 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst); 783 if (InVal.first != nullptr && 784 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 785 Inst)) { 786 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 787 << " to: " << *InVal.first << '\n'); 788 if (!Inst->use_empty()) 789 Inst->replaceAllUsesWith(InVal.first); 790 removeMSSA(Inst); 791 Inst->eraseFromParent(); 792 Changed = true; 793 ++NumCSECall; 794 continue; 795 } 796 797 // Otherwise, remember that we have this instruction. 798 AvailableCalls.insert( 799 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration)); 800 continue; 801 } 802 803 // A release fence requires that all stores complete before it, but does 804 // not prevent the reordering of following loads 'before' the fence. As a 805 // result, we don't need to consider it as writing to memory and don't need 806 // to advance the generation. We do need to prevent DSE across the fence, 807 // but that's handled above. 808 if (FenceInst *FI = dyn_cast<FenceInst>(Inst)) 809 if (FI->getOrdering() == AtomicOrdering::Release) { 810 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above"); 811 continue; 812 } 813 814 // write back DSE - If we write back the same value we just loaded from 815 // the same location and haven't passed any intervening writes or ordering 816 // operations, we can remove the write. The primary benefit is in allowing 817 // the available load table to remain valid and value forward past where 818 // the store originally was. 819 if (MemInst.isValid() && MemInst.isStore()) { 820 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 821 if (InVal.DefInst && 822 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) && 823 InVal.MatchingId == MemInst.getMatchingId() && 824 // We don't yet handle removing stores with ordering of any kind. 825 !MemInst.isVolatile() && MemInst.isUnordered() && 826 isSameMemGeneration(InVal.Generation, CurrentGeneration, 827 InVal.DefInst, Inst)) { 828 // It is okay to have a LastStore to a different pointer here if MemorySSA 829 // tells us that the load and store are from the same memory generation. 830 // In that case, LastStore should keep its present value since we're 831 // removing the current store. 832 assert((!LastStore || 833 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 834 MemInst.getPointerOperand() || 835 MSSA) && 836 "can't have an intervening store if not using MemorySSA!"); 837 DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n'); 838 removeMSSA(Inst); 839 Inst->eraseFromParent(); 840 Changed = true; 841 ++NumDSE; 842 // We can avoid incrementing the generation count since we were able 843 // to eliminate this store. 844 continue; 845 } 846 } 847 848 // Okay, this isn't something we can CSE at all. Check to see if it is 849 // something that could modify memory. If so, our available memory values 850 // cannot be used so bump the generation count. 851 if (Inst->mayWriteToMemory()) { 852 ++CurrentGeneration; 853 854 if (MemInst.isValid() && MemInst.isStore()) { 855 // We do a trivial form of DSE if there are two stores to the same 856 // location with no intervening loads. Delete the earlier store. 857 // At the moment, we don't remove ordered stores, but do remove 858 // unordered atomic stores. There's no special requirement (for 859 // unordered atomics) about removing atomic stores only in favor of 860 // other atomic stores since we we're going to execute the non-atomic 861 // one anyway and the atomic one might never have become visible. 862 if (LastStore) { 863 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 864 assert(LastStoreMemInst.isUnordered() && 865 !LastStoreMemInst.isVolatile() && 866 "Violated invariant"); 867 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 868 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 869 << " due to: " << *Inst << '\n'); 870 removeMSSA(LastStore); 871 LastStore->eraseFromParent(); 872 Changed = true; 873 ++NumDSE; 874 LastStore = nullptr; 875 } 876 // fallthrough - we can exploit information about this store 877 } 878 879 // Okay, we just invalidated anything we knew about loaded values. Try 880 // to salvage *something* by remembering that the stored value is a live 881 // version of the pointer. It is safe to forward from volatile stores 882 // to non-volatile loads, so we don't have to check for volatility of 883 // the store. 884 AvailableLoads.insert( 885 MemInst.getPointerOperand(), 886 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(), 887 MemInst.isAtomic(), /*IsInvariant=*/false)); 888 889 // Remember that this was the last unordered store we saw for DSE. We 890 // don't yet handle DSE on ordered or volatile stores since we don't 891 // have a good way to model the ordering requirement for following 892 // passes once the store is removed. We could insert a fence, but 893 // since fences are slightly stronger than stores in their ordering, 894 // it's not clear this is a profitable transform. Another option would 895 // be to merge the ordering with that of the post dominating store. 896 if (MemInst.isUnordered() && !MemInst.isVolatile()) 897 LastStore = Inst; 898 else 899 LastStore = nullptr; 900 } 901 } 902 } 903 904 return Changed; 905 } 906 907 bool EarlyCSE::run() { 908 // Note, deque is being used here because there is significant performance 909 // gains over vector when the container becomes very large due to the 910 // specific access patterns. For more information see the mailing list 911 // discussion on this: 912 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 913 std::deque<StackNode *> nodesToProcess; 914 915 bool Changed = false; 916 917 // Process the root node. 918 nodesToProcess.push_back(new StackNode( 919 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 920 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 921 922 // Save the current generation. 923 unsigned LiveOutGeneration = CurrentGeneration; 924 925 // Process the stack. 926 while (!nodesToProcess.empty()) { 927 // Grab the first item off the stack. Set the current generation, remove 928 // the node from the stack, and process it. 929 StackNode *NodeToProcess = nodesToProcess.back(); 930 931 // Initialize class members. 932 CurrentGeneration = NodeToProcess->currentGeneration(); 933 934 // Check if the node needs to be processed. 935 if (!NodeToProcess->isProcessed()) { 936 // Process the node. 937 Changed |= processNode(NodeToProcess->node()); 938 NodeToProcess->childGeneration(CurrentGeneration); 939 NodeToProcess->process(); 940 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 941 // Push the next child onto the stack. 942 DomTreeNode *child = NodeToProcess->nextChild(); 943 nodesToProcess.push_back( 944 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 945 NodeToProcess->childGeneration(), child, child->begin(), 946 child->end())); 947 } else { 948 // It has been processed, and there are no more children to process, 949 // so delete it and pop it off the stack. 950 delete NodeToProcess; 951 nodesToProcess.pop_back(); 952 } 953 } // while (!nodes...) 954 955 // Reset the current generation. 956 CurrentGeneration = LiveOutGeneration; 957 958 return Changed; 959 } 960 961 PreservedAnalyses EarlyCSEPass::run(Function &F, 962 FunctionAnalysisManager &AM) { 963 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 964 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 965 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 966 auto &AC = AM.getResult<AssumptionAnalysis>(F); 967 auto *MSSA = 968 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 969 970 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 971 972 if (!CSE.run()) 973 return PreservedAnalyses::all(); 974 975 PreservedAnalyses PA; 976 PA.preserveSet<CFGAnalyses>(); 977 PA.preserve<GlobalsAA>(); 978 if (UseMemorySSA) 979 PA.preserve<MemorySSAAnalysis>(); 980 return PA; 981 } 982 983 namespace { 984 /// \brief A simple and fast domtree-based CSE pass. 985 /// 986 /// This pass does a simple depth-first walk over the dominator tree, 987 /// eliminating trivially redundant instructions and using instsimplify to 988 /// canonicalize things as it goes. It is intended to be fast and catch obvious 989 /// cases so that instcombine and other passes are more effective. It is 990 /// expected that a later pass of GVN will catch the interesting/hard cases. 991 template<bool UseMemorySSA> 992 class EarlyCSELegacyCommonPass : public FunctionPass { 993 public: 994 static char ID; 995 996 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 997 if (UseMemorySSA) 998 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 999 else 1000 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1001 } 1002 1003 bool runOnFunction(Function &F) override { 1004 if (skipFunction(F)) 1005 return false; 1006 1007 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1008 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1009 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1010 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1011 auto *MSSA = 1012 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1013 1014 EarlyCSE CSE(TLI, TTI, DT, AC, MSSA); 1015 1016 return CSE.run(); 1017 } 1018 1019 void getAnalysisUsage(AnalysisUsage &AU) const override { 1020 AU.addRequired<AssumptionCacheTracker>(); 1021 AU.addRequired<DominatorTreeWrapperPass>(); 1022 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1023 AU.addRequired<TargetTransformInfoWrapperPass>(); 1024 if (UseMemorySSA) { 1025 AU.addRequired<MemorySSAWrapperPass>(); 1026 AU.addPreserved<MemorySSAWrapperPass>(); 1027 } 1028 AU.addPreserved<GlobalsAAWrapperPass>(); 1029 AU.setPreservesCFG(); 1030 } 1031 }; 1032 } 1033 1034 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1035 1036 template<> 1037 char EarlyCSELegacyPass::ID = 0; 1038 1039 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1040 false) 1041 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1042 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1043 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1044 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1045 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1046 1047 using EarlyCSEMemSSALegacyPass = 1048 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1049 1050 template<> 1051 char EarlyCSEMemSSALegacyPass::ID = 0; 1052 1053 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1054 if (UseMemorySSA) 1055 return new EarlyCSEMemSSALegacyPass(); 1056 else 1057 return new EarlyCSELegacyPass(); 1058 } 1059 1060 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1061 "Early CSE w/ MemorySSA", false, false) 1062 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1063 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1064 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1065 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1066 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1067 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1068 "Early CSE w/ MemorySSA", false, false) 1069