1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs a simple dominator tree walk that eliminates trivially 10 // redundant instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/EarlyCSE.h" 15 #include "llvm/ADT/DenseMapInfo.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/ScopedHashTable.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AssumptionCache.h" 22 #include "llvm/Analysis/GlobalsModRef.h" 23 #include "llvm/Analysis/GuardUtils.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/MemorySSA.h" 26 #include "llvm/Analysis/MemorySSAUpdater.h" 27 #include "llvm/Analysis/TargetLibraryInfo.h" 28 #include "llvm/Analysis/TargetTransformInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/PassManager.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Allocator.h" 46 #include "llvm/Support/AtomicOrdering.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/DebugCounter.h" 50 #include "llvm/Support/RecyclingAllocator.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include <cassert> 56 #include <deque> 57 #include <memory> 58 #include <utility> 59 60 using namespace llvm; 61 using namespace llvm::PatternMatch; 62 63 #define DEBUG_TYPE "early-cse" 64 65 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 66 STATISTIC(NumCSE, "Number of instructions CSE'd"); 67 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd"); 68 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 69 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 70 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 71 72 DEBUG_COUNTER(CSECounter, "early-cse", 73 "Controls which instructions are removed"); 74 75 static cl::opt<unsigned> EarlyCSEMssaOptCap( 76 "earlycse-mssa-optimization-cap", cl::init(500), cl::Hidden, 77 cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " 78 "for faster compile. Caps the MemorySSA clobbering calls.")); 79 80 static cl::opt<bool> EarlyCSEDebugHash( 81 "earlycse-debug-hash", cl::init(false), cl::Hidden, 82 cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " 83 "function is well-behaved w.r.t. its isEqual predicate")); 84 85 //===----------------------------------------------------------------------===// 86 // SimpleValue 87 //===----------------------------------------------------------------------===// 88 89 namespace { 90 91 /// Struct representing the available values in the scoped hash table. 92 struct SimpleValue { 93 Instruction *Inst; 94 95 SimpleValue(Instruction *I) : Inst(I) { 96 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 97 } 98 99 bool isSentinel() const { 100 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 101 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 102 } 103 104 static bool canHandle(Instruction *Inst) { 105 // This can only handle non-void readnone functions. 106 // Also handled are constrained intrinsic that look like the types 107 // of instruction handled below (UnaryOperator, etc.). 108 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 109 if (Function *F = CI->getCalledFunction()) { 110 switch ((Intrinsic::ID)F->getIntrinsicID()) { 111 case Intrinsic::experimental_constrained_fadd: 112 case Intrinsic::experimental_constrained_fsub: 113 case Intrinsic::experimental_constrained_fmul: 114 case Intrinsic::experimental_constrained_fdiv: 115 case Intrinsic::experimental_constrained_frem: 116 case Intrinsic::experimental_constrained_fptosi: 117 case Intrinsic::experimental_constrained_sitofp: 118 case Intrinsic::experimental_constrained_fptoui: 119 case Intrinsic::experimental_constrained_uitofp: 120 case Intrinsic::experimental_constrained_fcmp: 121 case Intrinsic::experimental_constrained_fcmps: { 122 auto *CFP = cast<ConstrainedFPIntrinsic>(CI); 123 if (CFP->getExceptionBehavior() && 124 CFP->getExceptionBehavior() == fp::ebStrict) 125 return false; 126 // Since we CSE across function calls we must not allow 127 // the rounding mode to change. 128 if (CFP->getRoundingMode() && 129 CFP->getRoundingMode() == RoundingMode::Dynamic) 130 return false; 131 return true; 132 } 133 } 134 } 135 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && 136 // FIXME: Currently the calls which may access the thread id may 137 // be considered as not accessing the memory. But this is 138 // problematic for coroutines, since coroutines may resume in a 139 // different thread. So we disable the optimization here for the 140 // correctness. However, it may block many other correct 141 // optimizations. Revert this one when we detect the memory 142 // accessing kind more precisely. 143 !CI->getFunction()->isPresplitCoroutine(); 144 } 145 return isa<CastInst>(Inst) || isa<UnaryOperator>(Inst) || 146 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) || 147 isa<CmpInst>(Inst) || isa<SelectInst>(Inst) || 148 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 149 isa<ShuffleVectorInst>(Inst) || isa<ExtractValueInst>(Inst) || 150 isa<InsertValueInst>(Inst) || isa<FreezeInst>(Inst); 151 } 152 }; 153 154 } // end anonymous namespace 155 156 namespace llvm { 157 158 template <> struct DenseMapInfo<SimpleValue> { 159 static inline SimpleValue getEmptyKey() { 160 return DenseMapInfo<Instruction *>::getEmptyKey(); 161 } 162 163 static inline SimpleValue getTombstoneKey() { 164 return DenseMapInfo<Instruction *>::getTombstoneKey(); 165 } 166 167 static unsigned getHashValue(SimpleValue Val); 168 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 169 }; 170 171 } // end namespace llvm 172 173 /// Match a 'select' including an optional 'not's of the condition. 174 static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, 175 Value *&B, 176 SelectPatternFlavor &Flavor) { 177 // Return false if V is not even a select. 178 if (!match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B)))) 179 return false; 180 181 // Look through a 'not' of the condition operand by swapping A/B. 182 Value *CondNot; 183 if (match(Cond, m_Not(m_Value(CondNot)))) { 184 Cond = CondNot; 185 std::swap(A, B); 186 } 187 188 // Match canonical forms of min/max. We are not using ValueTracking's 189 // more powerful matchSelectPattern() because it may rely on instruction flags 190 // such as "nsw". That would be incompatible with the current hashing 191 // mechanism that may remove flags to increase the likelihood of CSE. 192 193 Flavor = SPF_UNKNOWN; 194 CmpInst::Predicate Pred; 195 196 if (!match(Cond, m_ICmp(Pred, m_Specific(A), m_Specific(B)))) { 197 // Check for commuted variants of min/max by swapping predicate. 198 // If we do not match the standard or commuted patterns, this is not a 199 // recognized form of min/max, but it is still a select, so return true. 200 if (!match(Cond, m_ICmp(Pred, m_Specific(B), m_Specific(A)))) 201 return true; 202 Pred = ICmpInst::getSwappedPredicate(Pred); 203 } 204 205 switch (Pred) { 206 case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; 207 case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; 208 case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; 209 case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; 210 // Non-strict inequalities. 211 case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; 212 case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; 213 case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; 214 case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; 215 default: break; 216 } 217 218 return true; 219 } 220 221 static unsigned getHashValueImpl(SimpleValue Val) { 222 Instruction *Inst = Val.Inst; 223 // Hash in all of the operands as pointers. 224 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 225 Value *LHS = BinOp->getOperand(0); 226 Value *RHS = BinOp->getOperand(1); 227 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 228 std::swap(LHS, RHS); 229 230 return hash_combine(BinOp->getOpcode(), LHS, RHS); 231 } 232 233 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 234 // Compares can be commuted by swapping the comparands and 235 // updating the predicate. Choose the form that has the 236 // comparands in sorted order, or in the case of a tie, the 237 // one with the lower predicate. 238 Value *LHS = CI->getOperand(0); 239 Value *RHS = CI->getOperand(1); 240 CmpInst::Predicate Pred = CI->getPredicate(); 241 CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); 242 if (std::tie(LHS, Pred) > std::tie(RHS, SwappedPred)) { 243 std::swap(LHS, RHS); 244 Pred = SwappedPred; 245 } 246 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 247 } 248 249 // Hash general selects to allow matching commuted true/false operands. 250 SelectPatternFlavor SPF; 251 Value *Cond, *A, *B; 252 if (matchSelectWithOptionalNotCond(Inst, Cond, A, B, SPF)) { 253 // Hash min/max (cmp + select) to allow for commuted operands. 254 // Min/max may also have non-canonical compare predicate (eg, the compare for 255 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the 256 // compare. 257 // TODO: We should also detect FP min/max. 258 if (SPF == SPF_SMIN || SPF == SPF_SMAX || 259 SPF == SPF_UMIN || SPF == SPF_UMAX) { 260 if (A > B) 261 std::swap(A, B); 262 return hash_combine(Inst->getOpcode(), SPF, A, B); 263 } 264 265 // Hash general selects to allow matching commuted true/false operands. 266 267 // If we do not have a compare as the condition, just hash in the condition. 268 CmpInst::Predicate Pred; 269 Value *X, *Y; 270 if (!match(Cond, m_Cmp(Pred, m_Value(X), m_Value(Y)))) 271 return hash_combine(Inst->getOpcode(), Cond, A, B); 272 273 // Similar to cmp normalization (above) - canonicalize the predicate value: 274 // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A 275 if (CmpInst::getInversePredicate(Pred) < Pred) { 276 Pred = CmpInst::getInversePredicate(Pred); 277 std::swap(A, B); 278 } 279 return hash_combine(Inst->getOpcode(), Pred, X, Y, A, B); 280 } 281 282 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 283 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 284 285 if (FreezeInst *FI = dyn_cast<FreezeInst>(Inst)) 286 return hash_combine(FI->getOpcode(), FI->getOperand(0)); 287 288 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 289 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 290 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 291 292 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 293 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 294 IVI->getOperand(1), 295 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 296 297 assert((isa<CallInst>(Inst) || isa<GetElementPtrInst>(Inst) || 298 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 299 isa<ShuffleVectorInst>(Inst) || isa<UnaryOperator>(Inst) || 300 isa<FreezeInst>(Inst)) && 301 "Invalid/unknown instruction"); 302 303 // Handle intrinsics with commutative operands. 304 // TODO: Extend this to handle intrinsics with >2 operands where the 1st 305 // 2 operands are commutative. 306 auto *II = dyn_cast<IntrinsicInst>(Inst); 307 if (II && II->isCommutative() && II->arg_size() == 2) { 308 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); 309 if (LHS > RHS) 310 std::swap(LHS, RHS); 311 return hash_combine(II->getOpcode(), LHS, RHS); 312 } 313 314 // gc.relocate is 'special' call: its second and third operands are 315 // not real values, but indices into statepoint's argument list. 316 // Get values they point to. 317 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Inst)) 318 return hash_combine(GCR->getOpcode(), GCR->getOperand(0), 319 GCR->getBasePtr(), GCR->getDerivedPtr()); 320 321 // Don't CSE convergent calls in different basic blocks, because they 322 // implicitly depend on the set of threads that is currently executing. 323 if (CallInst *CI = dyn_cast<CallInst>(Inst); CI && CI->isConvergent()) { 324 return hash_combine( 325 Inst->getOpcode(), Inst->getParent(), 326 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 327 } 328 329 // Mix in the opcode. 330 return hash_combine( 331 Inst->getOpcode(), 332 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 333 } 334 335 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 336 #ifndef NDEBUG 337 // If -earlycse-debug-hash was specified, return a constant -- this 338 // will force all hashing to collide, so we'll exhaustively search 339 // the table for a match, and the assertion in isEqual will fire if 340 // there's a bug causing equal keys to hash differently. 341 if (EarlyCSEDebugHash) 342 return 0; 343 #endif 344 return getHashValueImpl(Val); 345 } 346 347 static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { 348 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 349 350 if (LHS.isSentinel() || RHS.isSentinel()) 351 return LHSI == RHSI; 352 353 if (LHSI->getOpcode() != RHSI->getOpcode()) 354 return false; 355 if (LHSI->isIdenticalToWhenDefined(RHSI)) { 356 // Convergent calls implicitly depend on the set of threads that is 357 // currently executing, so conservatively return false if they are in 358 // different basic blocks. 359 if (CallInst *CI = dyn_cast<CallInst>(LHSI); 360 CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) 361 return false; 362 363 return true; 364 } 365 366 // If we're not strictly identical, we still might be a commutable instruction 367 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 368 if (!LHSBinOp->isCommutative()) 369 return false; 370 371 assert(isa<BinaryOperator>(RHSI) && 372 "same opcode, but different instruction type?"); 373 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 374 375 // Commuted equality 376 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 377 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 378 } 379 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 380 assert(isa<CmpInst>(RHSI) && 381 "same opcode, but different instruction type?"); 382 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 383 // Commuted equality 384 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 385 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 386 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 387 } 388 389 // TODO: Extend this for >2 args by matching the trailing N-2 args. 390 auto *LII = dyn_cast<IntrinsicInst>(LHSI); 391 auto *RII = dyn_cast<IntrinsicInst>(RHSI); 392 if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && 393 LII->isCommutative() && LII->arg_size() == 2) { 394 return LII->getArgOperand(0) == RII->getArgOperand(1) && 395 LII->getArgOperand(1) == RII->getArgOperand(0); 396 } 397 398 // See comment above in `getHashValue()`. 399 if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(LHSI)) 400 if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(RHSI)) 401 return GCR1->getOperand(0) == GCR2->getOperand(0) && 402 GCR1->getBasePtr() == GCR2->getBasePtr() && 403 GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); 404 405 // Min/max can occur with commuted operands, non-canonical predicates, 406 // and/or non-canonical operands. 407 // Selects can be non-trivially equivalent via inverted conditions and swaps. 408 SelectPatternFlavor LSPF, RSPF; 409 Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; 410 if (matchSelectWithOptionalNotCond(LHSI, CondL, LHSA, LHSB, LSPF) && 411 matchSelectWithOptionalNotCond(RHSI, CondR, RHSA, RHSB, RSPF)) { 412 if (LSPF == RSPF) { 413 // TODO: We should also detect FP min/max. 414 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || 415 LSPF == SPF_UMIN || LSPF == SPF_UMAX) 416 return ((LHSA == RHSA && LHSB == RHSB) || 417 (LHSA == RHSB && LHSB == RHSA)); 418 419 // select Cond, A, B <--> select not(Cond), B, A 420 if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) 421 return true; 422 } 423 424 // If the true/false operands are swapped and the conditions are compares 425 // with inverted predicates, the selects are equal: 426 // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A 427 // 428 // This also handles patterns with a double-negation in the sense of not + 429 // inverse, because we looked through a 'not' in the matching function and 430 // swapped A/B: 431 // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A 432 // 433 // This intentionally does NOT handle patterns with a double-negation in 434 // the sense of not + not, because doing so could result in values 435 // comparing 436 // as equal that hash differently in the min/max cases like: 437 // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y 438 // ^ hashes as min ^ would not hash as min 439 // In the context of the EarlyCSE pass, however, such cases never reach 440 // this code, as we simplify the double-negation before hashing the second 441 // select (and so still succeed at CSEing them). 442 if (LHSA == RHSB && LHSB == RHSA) { 443 CmpInst::Predicate PredL, PredR; 444 Value *X, *Y; 445 if (match(CondL, m_Cmp(PredL, m_Value(X), m_Value(Y))) && 446 match(CondR, m_Cmp(PredR, m_Specific(X), m_Specific(Y))) && 447 CmpInst::getInversePredicate(PredL) == PredR) 448 return true; 449 } 450 } 451 452 return false; 453 } 454 455 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 456 // These comparisons are nontrivial, so assert that equality implies 457 // hash equality (DenseMap demands this as an invariant). 458 bool Result = isEqualImpl(LHS, RHS); 459 assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || 460 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 461 return Result; 462 } 463 464 //===----------------------------------------------------------------------===// 465 // CallValue 466 //===----------------------------------------------------------------------===// 467 468 namespace { 469 470 /// Struct representing the available call values in the scoped hash 471 /// table. 472 struct CallValue { 473 Instruction *Inst; 474 475 CallValue(Instruction *I) : Inst(I) { 476 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 477 } 478 479 bool isSentinel() const { 480 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 481 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 482 } 483 484 static bool canHandle(Instruction *Inst) { 485 // Don't value number anything that returns void. 486 if (Inst->getType()->isVoidTy()) 487 return false; 488 489 CallInst *CI = dyn_cast<CallInst>(Inst); 490 if (!CI || !CI->onlyReadsMemory() || 491 // FIXME: Currently the calls which may access the thread id may 492 // be considered as not accessing the memory. But this is 493 // problematic for coroutines, since coroutines may resume in a 494 // different thread. So we disable the optimization here for the 495 // correctness. However, it may block many other correct 496 // optimizations. Revert this one when we detect the memory 497 // accessing kind more precisely. 498 CI->getFunction()->isPresplitCoroutine()) 499 return false; 500 return true; 501 } 502 }; 503 504 } // end anonymous namespace 505 506 namespace llvm { 507 508 template <> struct DenseMapInfo<CallValue> { 509 static inline CallValue getEmptyKey() { 510 return DenseMapInfo<Instruction *>::getEmptyKey(); 511 } 512 513 static inline CallValue getTombstoneKey() { 514 return DenseMapInfo<Instruction *>::getTombstoneKey(); 515 } 516 517 static unsigned getHashValue(CallValue Val); 518 static bool isEqual(CallValue LHS, CallValue RHS); 519 }; 520 521 } // end namespace llvm 522 523 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 524 Instruction *Inst = Val.Inst; 525 526 // Hash all of the operands as pointers and mix in the opcode. 527 return hash_combine( 528 Inst->getOpcode(), 529 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 530 } 531 532 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 533 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 534 if (LHS.isSentinel() || RHS.isSentinel()) 535 return LHSI == RHSI; 536 537 return LHSI->isIdenticalTo(RHSI); 538 } 539 540 //===----------------------------------------------------------------------===// 541 // EarlyCSE implementation 542 //===----------------------------------------------------------------------===// 543 544 namespace { 545 546 /// A simple and fast domtree-based CSE pass. 547 /// 548 /// This pass does a simple depth-first walk over the dominator tree, 549 /// eliminating trivially redundant instructions and using instsimplify to 550 /// canonicalize things as it goes. It is intended to be fast and catch obvious 551 /// cases so that instcombine and other passes are more effective. It is 552 /// expected that a later pass of GVN will catch the interesting/hard cases. 553 class EarlyCSE { 554 public: 555 const TargetLibraryInfo &TLI; 556 const TargetTransformInfo &TTI; 557 DominatorTree &DT; 558 AssumptionCache &AC; 559 const SimplifyQuery SQ; 560 MemorySSA *MSSA; 561 std::unique_ptr<MemorySSAUpdater> MSSAUpdater; 562 563 using AllocatorTy = 564 RecyclingAllocator<BumpPtrAllocator, 565 ScopedHashTableVal<SimpleValue, Value *>>; 566 using ScopedHTType = 567 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 568 AllocatorTy>; 569 570 /// A scoped hash table of the current values of all of our simple 571 /// scalar expressions. 572 /// 573 /// As we walk down the domtree, we look to see if instructions are in this: 574 /// if so, we replace them with what we find, otherwise we insert them so 575 /// that dominated values can succeed in their lookup. 576 ScopedHTType AvailableValues; 577 578 /// A scoped hash table of the current values of previously encountered 579 /// memory locations. 580 /// 581 /// This allows us to get efficient access to dominating loads or stores when 582 /// we have a fully redundant load. In addition to the most recent load, we 583 /// keep track of a generation count of the read, which is compared against 584 /// the current generation count. The current generation count is incremented 585 /// after every possibly writing memory operation, which ensures that we only 586 /// CSE loads with other loads that have no intervening store. Ordering 587 /// events (such as fences or atomic instructions) increment the generation 588 /// count as well; essentially, we model these as writes to all possible 589 /// locations. Note that atomic and/or volatile loads and stores can be 590 /// present the table; it is the responsibility of the consumer to inspect 591 /// the atomicity/volatility if needed. 592 struct LoadValue { 593 Instruction *DefInst = nullptr; 594 unsigned Generation = 0; 595 int MatchingId = -1; 596 bool IsAtomic = false; 597 bool IsLoad = false; 598 599 LoadValue() = default; 600 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, 601 bool IsAtomic, bool IsLoad) 602 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), 603 IsAtomic(IsAtomic), IsLoad(IsLoad) {} 604 }; 605 606 using LoadMapAllocator = 607 RecyclingAllocator<BumpPtrAllocator, 608 ScopedHashTableVal<Value *, LoadValue>>; 609 using LoadHTType = 610 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, 611 LoadMapAllocator>; 612 613 LoadHTType AvailableLoads; 614 615 // A scoped hash table mapping memory locations (represented as typed 616 // addresses) to generation numbers at which that memory location became 617 // (henceforth indefinitely) invariant. 618 using InvariantMapAllocator = 619 RecyclingAllocator<BumpPtrAllocator, 620 ScopedHashTableVal<MemoryLocation, unsigned>>; 621 using InvariantHTType = 622 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, 623 InvariantMapAllocator>; 624 InvariantHTType AvailableInvariants; 625 626 /// A scoped hash table of the current values of read-only call 627 /// values. 628 /// 629 /// It uses the same generation count as loads. 630 using CallHTType = 631 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; 632 CallHTType AvailableCalls; 633 634 /// This is the current generation of the memory value. 635 unsigned CurrentGeneration = 0; 636 637 /// Set up the EarlyCSE runner for a particular function. 638 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, 639 const TargetTransformInfo &TTI, DominatorTree &DT, 640 AssumptionCache &AC, MemorySSA *MSSA) 641 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), 642 MSSAUpdater(std::make_unique<MemorySSAUpdater>(MSSA)) {} 643 644 bool run(); 645 646 private: 647 unsigned ClobberCounter = 0; 648 // Almost a POD, but needs to call the constructors for the scoped hash 649 // tables so that a new scope gets pushed on. These are RAII so that the 650 // scope gets popped when the NodeScope is destroyed. 651 class NodeScope { 652 public: 653 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 654 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls) 655 : Scope(AvailableValues), LoadScope(AvailableLoads), 656 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {} 657 NodeScope(const NodeScope &) = delete; 658 NodeScope &operator=(const NodeScope &) = delete; 659 660 private: 661 ScopedHTType::ScopeTy Scope; 662 LoadHTType::ScopeTy LoadScope; 663 InvariantHTType::ScopeTy InvariantScope; 664 CallHTType::ScopeTy CallScope; 665 }; 666 667 // Contains all the needed information to create a stack for doing a depth 668 // first traversal of the tree. This includes scopes for values, loads, and 669 // calls as well as the generation. There is a child iterator so that the 670 // children do not need to be store separately. 671 class StackNode { 672 public: 673 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 674 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, 675 unsigned cg, DomTreeNode *n, DomTreeNode::const_iterator child, 676 DomTreeNode::const_iterator end) 677 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 678 EndIter(end), 679 Scopes(AvailableValues, AvailableLoads, AvailableInvariants, 680 AvailableCalls) 681 {} 682 StackNode(const StackNode &) = delete; 683 StackNode &operator=(const StackNode &) = delete; 684 685 // Accessors. 686 unsigned currentGeneration() const { return CurrentGeneration; } 687 unsigned childGeneration() const { return ChildGeneration; } 688 void childGeneration(unsigned generation) { ChildGeneration = generation; } 689 DomTreeNode *node() { return Node; } 690 DomTreeNode::const_iterator childIter() const { return ChildIter; } 691 692 DomTreeNode *nextChild() { 693 DomTreeNode *child = *ChildIter; 694 ++ChildIter; 695 return child; 696 } 697 698 DomTreeNode::const_iterator end() const { return EndIter; } 699 bool isProcessed() const { return Processed; } 700 void process() { Processed = true; } 701 702 private: 703 unsigned CurrentGeneration; 704 unsigned ChildGeneration; 705 DomTreeNode *Node; 706 DomTreeNode::const_iterator ChildIter; 707 DomTreeNode::const_iterator EndIter; 708 NodeScope Scopes; 709 bool Processed = false; 710 }; 711 712 /// Wrapper class to handle memory instructions, including loads, 713 /// stores and intrinsic loads and stores defined by the target. 714 class ParseMemoryInst { 715 public: 716 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 717 : Inst(Inst) { 718 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 719 IntrID = II->getIntrinsicID(); 720 if (TTI.getTgtMemIntrinsic(II, Info)) 721 return; 722 if (isHandledNonTargetIntrinsic(IntrID)) { 723 switch (IntrID) { 724 case Intrinsic::masked_load: 725 Info.PtrVal = Inst->getOperand(0); 726 Info.MatchingId = Intrinsic::masked_load; 727 Info.ReadMem = true; 728 Info.WriteMem = false; 729 Info.IsVolatile = false; 730 break; 731 case Intrinsic::masked_store: 732 Info.PtrVal = Inst->getOperand(1); 733 // Use the ID of masked load as the "matching id". This will 734 // prevent matching non-masked loads/stores with masked ones 735 // (which could be done), but at the moment, the code here 736 // does not support matching intrinsics with non-intrinsics, 737 // so keep the MatchingIds specific to masked instructions 738 // for now (TODO). 739 Info.MatchingId = Intrinsic::masked_load; 740 Info.ReadMem = false; 741 Info.WriteMem = true; 742 Info.IsVolatile = false; 743 break; 744 } 745 } 746 } 747 } 748 749 Instruction *get() { return Inst; } 750 const Instruction *get() const { return Inst; } 751 752 bool isLoad() const { 753 if (IntrID != 0) 754 return Info.ReadMem; 755 return isa<LoadInst>(Inst); 756 } 757 758 bool isStore() const { 759 if (IntrID != 0) 760 return Info.WriteMem; 761 return isa<StoreInst>(Inst); 762 } 763 764 bool isAtomic() const { 765 if (IntrID != 0) 766 return Info.Ordering != AtomicOrdering::NotAtomic; 767 return Inst->isAtomic(); 768 } 769 770 bool isUnordered() const { 771 if (IntrID != 0) 772 return Info.isUnordered(); 773 774 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 775 return LI->isUnordered(); 776 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 777 return SI->isUnordered(); 778 } 779 // Conservative answer 780 return !Inst->isAtomic(); 781 } 782 783 bool isVolatile() const { 784 if (IntrID != 0) 785 return Info.IsVolatile; 786 787 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 788 return LI->isVolatile(); 789 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 790 return SI->isVolatile(); 791 } 792 // Conservative answer 793 return true; 794 } 795 796 bool isInvariantLoad() const { 797 if (auto *LI = dyn_cast<LoadInst>(Inst)) 798 return LI->hasMetadata(LLVMContext::MD_invariant_load); 799 return false; 800 } 801 802 bool isValid() const { return getPointerOperand() != nullptr; } 803 804 // For regular (non-intrinsic) loads/stores, this is set to -1. For 805 // intrinsic loads/stores, the id is retrieved from the corresponding 806 // field in the MemIntrinsicInfo structure. That field contains 807 // non-negative values only. 808 int getMatchingId() const { 809 if (IntrID != 0) 810 return Info.MatchingId; 811 return -1; 812 } 813 814 Value *getPointerOperand() const { 815 if (IntrID != 0) 816 return Info.PtrVal; 817 return getLoadStorePointerOperand(Inst); 818 } 819 820 Type *getValueType() const { 821 // TODO: handle target-specific intrinsics. 822 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 823 switch (II->getIntrinsicID()) { 824 case Intrinsic::masked_load: 825 return II->getType(); 826 case Intrinsic::masked_store: 827 return II->getArgOperand(0)->getType(); 828 default: 829 return nullptr; 830 } 831 } 832 return getLoadStoreType(Inst); 833 } 834 835 bool mayReadFromMemory() const { 836 if (IntrID != 0) 837 return Info.ReadMem; 838 return Inst->mayReadFromMemory(); 839 } 840 841 bool mayWriteToMemory() const { 842 if (IntrID != 0) 843 return Info.WriteMem; 844 return Inst->mayWriteToMemory(); 845 } 846 847 private: 848 Intrinsic::ID IntrID = 0; 849 MemIntrinsicInfo Info; 850 Instruction *Inst; 851 }; 852 853 // This function is to prevent accidentally passing a non-target 854 // intrinsic ID to TargetTransformInfo. 855 static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { 856 switch (ID) { 857 case Intrinsic::masked_load: 858 case Intrinsic::masked_store: 859 return true; 860 } 861 return false; 862 } 863 static bool isHandledNonTargetIntrinsic(const Value *V) { 864 if (auto *II = dyn_cast<IntrinsicInst>(V)) 865 return isHandledNonTargetIntrinsic(II->getIntrinsicID()); 866 return false; 867 } 868 869 bool processNode(DomTreeNode *Node); 870 871 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, 872 const BasicBlock *BB, const BasicBlock *Pred); 873 874 Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 875 unsigned CurrentGeneration); 876 877 bool overridingStores(const ParseMemoryInst &Earlier, 878 const ParseMemoryInst &Later); 879 880 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 881 // TODO: We could insert relevant casts on type mismatch here. 882 if (auto *LI = dyn_cast<LoadInst>(Inst)) 883 return LI->getType() == ExpectedType ? LI : nullptr; 884 if (auto *SI = dyn_cast<StoreInst>(Inst)) { 885 Value *V = SI->getValueOperand(); 886 return V->getType() == ExpectedType ? V : nullptr; 887 } 888 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 889 auto *II = cast<IntrinsicInst>(Inst); 890 if (isHandledNonTargetIntrinsic(II->getIntrinsicID())) 891 return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); 892 return TTI.getOrCreateResultFromMemIntrinsic(II, ExpectedType); 893 } 894 895 Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, 896 Type *ExpectedType) const { 897 // TODO: We could insert relevant casts on type mismatch here. 898 switch (II->getIntrinsicID()) { 899 case Intrinsic::masked_load: 900 return II->getType() == ExpectedType ? II : nullptr; 901 case Intrinsic::masked_store: { 902 Value *V = II->getOperand(0); 903 return V->getType() == ExpectedType ? V : nullptr; 904 } 905 } 906 return nullptr; 907 } 908 909 /// Return true if the instruction is known to only operate on memory 910 /// provably invariant in the given "generation". 911 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); 912 913 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, 914 Instruction *EarlierInst, Instruction *LaterInst); 915 916 bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, 917 const IntrinsicInst *Later) { 918 auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { 919 // Is Mask0 a submask of Mask1? 920 if (Mask0 == Mask1) 921 return true; 922 if (isa<UndefValue>(Mask0) || isa<UndefValue>(Mask1)) 923 return false; 924 auto *Vec0 = dyn_cast<ConstantVector>(Mask0); 925 auto *Vec1 = dyn_cast<ConstantVector>(Mask1); 926 if (!Vec0 || !Vec1) 927 return false; 928 if (Vec0->getType() != Vec1->getType()) 929 return false; 930 for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { 931 Constant *Elem0 = Vec0->getOperand(i); 932 Constant *Elem1 = Vec1->getOperand(i); 933 auto *Int0 = dyn_cast<ConstantInt>(Elem0); 934 if (Int0 && Int0->isZero()) 935 continue; 936 auto *Int1 = dyn_cast<ConstantInt>(Elem1); 937 if (Int1 && !Int1->isZero()) 938 continue; 939 if (isa<UndefValue>(Elem0) || isa<UndefValue>(Elem1)) 940 return false; 941 if (Elem0 == Elem1) 942 continue; 943 return false; 944 } 945 return true; 946 }; 947 auto PtrOp = [](const IntrinsicInst *II) { 948 if (II->getIntrinsicID() == Intrinsic::masked_load) 949 return II->getOperand(0); 950 if (II->getIntrinsicID() == Intrinsic::masked_store) 951 return II->getOperand(1); 952 llvm_unreachable("Unexpected IntrinsicInst"); 953 }; 954 auto MaskOp = [](const IntrinsicInst *II) { 955 if (II->getIntrinsicID() == Intrinsic::masked_load) 956 return II->getOperand(2); 957 if (II->getIntrinsicID() == Intrinsic::masked_store) 958 return II->getOperand(3); 959 llvm_unreachable("Unexpected IntrinsicInst"); 960 }; 961 auto ThruOp = [](const IntrinsicInst *II) { 962 if (II->getIntrinsicID() == Intrinsic::masked_load) 963 return II->getOperand(3); 964 llvm_unreachable("Unexpected IntrinsicInst"); 965 }; 966 967 if (PtrOp(Earlier) != PtrOp(Later)) 968 return false; 969 970 Intrinsic::ID IDE = Earlier->getIntrinsicID(); 971 Intrinsic::ID IDL = Later->getIntrinsicID(); 972 // We could really use specific intrinsic classes for masked loads 973 // and stores in IntrinsicInst.h. 974 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { 975 // Trying to replace later masked load with the earlier one. 976 // Check that the pointers are the same, and 977 // - masks and pass-throughs are the same, or 978 // - replacee's pass-through is "undef" and replacer's mask is a 979 // super-set of the replacee's mask. 980 if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) 981 return true; 982 if (!isa<UndefValue>(ThruOp(Later))) 983 return false; 984 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 985 } 986 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { 987 // Trying to replace a load of a stored value with the store's value. 988 // Check that the pointers are the same, and 989 // - load's mask is a subset of store's mask, and 990 // - load's pass-through is "undef". 991 if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) 992 return false; 993 return isa<UndefValue>(ThruOp(Later)); 994 } 995 if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { 996 // Trying to remove a store of the loaded value. 997 // Check that the pointers are the same, and 998 // - store's mask is a subset of the load's mask. 999 return IsSubmask(MaskOp(Later), MaskOp(Earlier)); 1000 } 1001 if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { 1002 // Trying to remove a dead store (earlier). 1003 // Check that the pointers are the same, 1004 // - the to-be-removed store's mask is a subset of the other store's 1005 // mask. 1006 return IsSubmask(MaskOp(Earlier), MaskOp(Later)); 1007 } 1008 return false; 1009 } 1010 1011 void removeMSSA(Instruction &Inst) { 1012 if (!MSSA) 1013 return; 1014 if (VerifyMemorySSA) 1015 MSSA->verifyMemorySSA(); 1016 // Removing a store here can leave MemorySSA in an unoptimized state by 1017 // creating MemoryPhis that have identical arguments and by creating 1018 // MemoryUses whose defining access is not an actual clobber. The phi case 1019 // is handled by MemorySSA when passing OptimizePhis = true to 1020 // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated 1021 // by MemorySSA's getClobberingMemoryAccess. 1022 MSSAUpdater->removeMemoryAccess(&Inst, true); 1023 } 1024 }; 1025 1026 } // end anonymous namespace 1027 1028 /// Determine if the memory referenced by LaterInst is from the same heap 1029 /// version as EarlierInst. 1030 /// This is currently called in two scenarios: 1031 /// 1032 /// load p 1033 /// ... 1034 /// load p 1035 /// 1036 /// and 1037 /// 1038 /// x = load p 1039 /// ... 1040 /// store x, p 1041 /// 1042 /// in both cases we want to verify that there are no possible writes to the 1043 /// memory referenced by p between the earlier and later instruction. 1044 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, 1045 unsigned LaterGeneration, 1046 Instruction *EarlierInst, 1047 Instruction *LaterInst) { 1048 // Check the simple memory generation tracking first. 1049 if (EarlierGeneration == LaterGeneration) 1050 return true; 1051 1052 if (!MSSA) 1053 return false; 1054 1055 // If MemorySSA has determined that one of EarlierInst or LaterInst does not 1056 // read/write memory, then we can safely return true here. 1057 // FIXME: We could be more aggressive when checking doesNotAccessMemory(), 1058 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass 1059 // by also checking the MemorySSA MemoryAccess on the instruction. Initial 1060 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled 1061 // with the default optimization pipeline. 1062 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst); 1063 if (!EarlierMA) 1064 return true; 1065 auto *LaterMA = MSSA->getMemoryAccess(LaterInst); 1066 if (!LaterMA) 1067 return true; 1068 1069 // Since we know LaterDef dominates LaterInst and EarlierInst dominates 1070 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between 1071 // EarlierInst and LaterInst and neither can any other write that potentially 1072 // clobbers LaterInst. 1073 MemoryAccess *LaterDef; 1074 if (ClobberCounter < EarlyCSEMssaOptCap) { 1075 LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(LaterInst); 1076 ClobberCounter++; 1077 } else 1078 LaterDef = LaterMA->getDefiningAccess(); 1079 1080 return MSSA->dominates(LaterDef, EarlierMA); 1081 } 1082 1083 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { 1084 // A location loaded from with an invariant_load is assumed to *never* change 1085 // within the visible scope of the compilation. 1086 if (auto *LI = dyn_cast<LoadInst>(I)) 1087 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1088 return true; 1089 1090 auto MemLocOpt = MemoryLocation::getOrNone(I); 1091 if (!MemLocOpt) 1092 // "target" intrinsic forms of loads aren't currently known to 1093 // MemoryLocation::get. TODO 1094 return false; 1095 MemoryLocation MemLoc = *MemLocOpt; 1096 if (!AvailableInvariants.count(MemLoc)) 1097 return false; 1098 1099 // Is the generation at which this became invariant older than the 1100 // current one? 1101 return AvailableInvariants.lookup(MemLoc) <= GenAt; 1102 } 1103 1104 bool EarlyCSE::handleBranchCondition(Instruction *CondInst, 1105 const BranchInst *BI, const BasicBlock *BB, 1106 const BasicBlock *Pred) { 1107 assert(BI->isConditional() && "Should be a conditional branch!"); 1108 assert(BI->getCondition() == CondInst && "Wrong condition?"); 1109 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); 1110 auto *TorF = (BI->getSuccessor(0) == BB) 1111 ? ConstantInt::getTrue(BB->getContext()) 1112 : ConstantInt::getFalse(BB->getContext()); 1113 auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, 1114 Value *&RHS) { 1115 if (Opcode == Instruction::And && 1116 match(I, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1117 return true; 1118 else if (Opcode == Instruction::Or && 1119 match(I, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1120 return true; 1121 return false; 1122 }; 1123 // If the condition is AND operation, we can propagate its operands into the 1124 // true branch. If it is OR operation, we can propagate them into the false 1125 // branch. 1126 unsigned PropagateOpcode = 1127 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or; 1128 1129 bool MadeChanges = false; 1130 SmallVector<Instruction *, 4> WorkList; 1131 SmallPtrSet<Instruction *, 4> Visited; 1132 WorkList.push_back(CondInst); 1133 while (!WorkList.empty()) { 1134 Instruction *Curr = WorkList.pop_back_val(); 1135 1136 AvailableValues.insert(Curr, TorF); 1137 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" 1138 << Curr->getName() << "' as " << *TorF << " in " 1139 << BB->getName() << "\n"); 1140 if (!DebugCounter::shouldExecute(CSECounter)) { 1141 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1142 } else { 1143 // Replace all dominated uses with the known value. 1144 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT, 1145 BasicBlockEdge(Pred, BB))) { 1146 NumCSECVP += Count; 1147 MadeChanges = true; 1148 } 1149 } 1150 1151 Value *LHS, *RHS; 1152 if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) 1153 for (auto *Op : { LHS, RHS }) 1154 if (Instruction *OPI = dyn_cast<Instruction>(Op)) 1155 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second) 1156 WorkList.push_back(OPI); 1157 } 1158 1159 return MadeChanges; 1160 } 1161 1162 Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, 1163 unsigned CurrentGeneration) { 1164 if (InVal.DefInst == nullptr) 1165 return nullptr; 1166 if (InVal.MatchingId != MemInst.getMatchingId()) 1167 return nullptr; 1168 // We don't yet handle removing loads with ordering of any kind. 1169 if (MemInst.isVolatile() || !MemInst.isUnordered()) 1170 return nullptr; 1171 // We can't replace an atomic load with one which isn't also atomic. 1172 if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) 1173 return nullptr; 1174 // The value V returned from this function is used differently depending 1175 // on whether MemInst is a load or a store. If it's a load, we will replace 1176 // MemInst with V, if it's a store, we will check if V is the same as the 1177 // available value. 1178 bool MemInstMatching = !MemInst.isLoad(); 1179 Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; 1180 Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); 1181 1182 // For stores check the result values before checking memory generation 1183 // (otherwise isSameMemGeneration may crash). 1184 Value *Result = MemInst.isStore() 1185 ? getOrCreateResult(Matching, Other->getType()) 1186 : nullptr; 1187 if (MemInst.isStore() && InVal.DefInst != Result) 1188 return nullptr; 1189 1190 // Deal with non-target memory intrinsics. 1191 bool MatchingNTI = isHandledNonTargetIntrinsic(Matching); 1192 bool OtherNTI = isHandledNonTargetIntrinsic(Other); 1193 if (OtherNTI != MatchingNTI) 1194 return nullptr; 1195 if (OtherNTI && MatchingNTI) { 1196 if (!isNonTargetIntrinsicMatch(cast<IntrinsicInst>(InVal.DefInst), 1197 cast<IntrinsicInst>(MemInst.get()))) 1198 return nullptr; 1199 } 1200 1201 if (!isOperatingOnInvariantMemAt(MemInst.get(), InVal.Generation) && 1202 !isSameMemGeneration(InVal.Generation, CurrentGeneration, InVal.DefInst, 1203 MemInst.get())) 1204 return nullptr; 1205 1206 if (!Result) 1207 Result = getOrCreateResult(Matching, Other->getType()); 1208 return Result; 1209 } 1210 1211 bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, 1212 const ParseMemoryInst &Later) { 1213 // Can we remove Earlier store because of Later store? 1214 1215 assert(Earlier.isUnordered() && !Earlier.isVolatile() && 1216 "Violated invariant"); 1217 if (Earlier.getPointerOperand() != Later.getPointerOperand()) 1218 return false; 1219 if (!Earlier.getValueType() || !Later.getValueType() || 1220 Earlier.getValueType() != Later.getValueType()) 1221 return false; 1222 if (Earlier.getMatchingId() != Later.getMatchingId()) 1223 return false; 1224 // At the moment, we don't remove ordered stores, but do remove 1225 // unordered atomic stores. There's no special requirement (for 1226 // unordered atomics) about removing atomic stores only in favor of 1227 // other atomic stores since we were going to execute the non-atomic 1228 // one anyway and the atomic one might never have become visible. 1229 if (!Earlier.isUnordered() || !Later.isUnordered()) 1230 return false; 1231 1232 // Deal with non-target memory intrinsics. 1233 bool ENTI = isHandledNonTargetIntrinsic(Earlier.get()); 1234 bool LNTI = isHandledNonTargetIntrinsic(Later.get()); 1235 if (ENTI && LNTI) 1236 return isNonTargetIntrinsicMatch(cast<IntrinsicInst>(Earlier.get()), 1237 cast<IntrinsicInst>(Later.get())); 1238 1239 // Because of the check above, at least one of them is false. 1240 // For now disallow matching intrinsics with non-intrinsics, 1241 // so assume that the stores match if neither is an intrinsic. 1242 return ENTI == LNTI; 1243 } 1244 1245 bool EarlyCSE::processNode(DomTreeNode *Node) { 1246 bool Changed = false; 1247 BasicBlock *BB = Node->getBlock(); 1248 1249 // If this block has a single predecessor, then the predecessor is the parent 1250 // of the domtree node and all of the live out memory values are still current 1251 // in this block. If this block has multiple predecessors, then they could 1252 // have invalidated the live-out memory values of our parent value. For now, 1253 // just be conservative and invalidate memory if this block has multiple 1254 // predecessors. 1255 if (!BB->getSinglePredecessor()) 1256 ++CurrentGeneration; 1257 1258 // If this node has a single predecessor which ends in a conditional branch, 1259 // we can infer the value of the branch condition given that we took this 1260 // path. We need the single predecessor to ensure there's not another path 1261 // which reaches this block where the condition might hold a different 1262 // value. Since we're adding this to the scoped hash table (like any other 1263 // def), it will have been popped if we encounter a future merge block. 1264 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1265 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()); 1266 if (BI && BI->isConditional()) { 1267 auto *CondInst = dyn_cast<Instruction>(BI->getCondition()); 1268 if (CondInst && SimpleValue::canHandle(CondInst)) 1269 Changed |= handleBranchCondition(CondInst, BI, BB, Pred); 1270 } 1271 } 1272 1273 /// LastStore - Keep track of the last non-volatile store that we saw... for 1274 /// as long as there in no instruction that reads memory. If we see a store 1275 /// to the same location, we delete the dead store. This zaps trivial dead 1276 /// stores which can occur in bitfield code among other things. 1277 Instruction *LastStore = nullptr; 1278 1279 // See if any instructions in the block can be eliminated. If so, do it. If 1280 // not, add them to AvailableValues. 1281 for (Instruction &Inst : make_early_inc_range(*BB)) { 1282 // Dead instructions should just be removed. 1283 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1284 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); 1285 if (!DebugCounter::shouldExecute(CSECounter)) { 1286 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1287 continue; 1288 } 1289 1290 salvageKnowledge(&Inst, &AC); 1291 salvageDebugInfo(Inst); 1292 removeMSSA(Inst); 1293 Inst.eraseFromParent(); 1294 Changed = true; 1295 ++NumSimplify; 1296 continue; 1297 } 1298 1299 // Skip assume intrinsics, they don't really have side effects (although 1300 // they're marked as such to ensure preservation of control dependencies), 1301 // and this pass will not bother with its removal. However, we should mark 1302 // its condition as true for all dominated blocks. 1303 if (auto *Assume = dyn_cast<AssumeInst>(&Inst)) { 1304 auto *CondI = dyn_cast<Instruction>(Assume->getArgOperand(0)); 1305 if (CondI && SimpleValue::canHandle(CondI)) { 1306 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst 1307 << '\n'); 1308 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1309 } else 1310 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); 1311 continue; 1312 } 1313 1314 // Likewise, noalias intrinsics don't actually write. 1315 if (match(&Inst, 1316 m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { 1317 LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst 1318 << '\n'); 1319 continue; 1320 } 1321 1322 // Skip sideeffect intrinsics, for the same reason as assume intrinsics. 1323 if (match(&Inst, m_Intrinsic<Intrinsic::sideeffect>())) { 1324 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); 1325 continue; 1326 } 1327 1328 // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. 1329 if (match(&Inst, m_Intrinsic<Intrinsic::pseudoprobe>())) { 1330 LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); 1331 continue; 1332 } 1333 1334 // We can skip all invariant.start intrinsics since they only read memory, 1335 // and we can forward values across it. For invariant starts without 1336 // invariant ends, we can use the fact that the invariantness never ends to 1337 // start a scope in the current generaton which is true for all future 1338 // generations. Also, we dont need to consume the last store since the 1339 // semantics of invariant.start allow us to perform DSE of the last 1340 // store, if there was a store following invariant.start. Consider: 1341 // 1342 // store 30, i8* p 1343 // invariant.start(p) 1344 // store 40, i8* p 1345 // We can DSE the store to 30, since the store 40 to invariant location p 1346 // causes undefined behaviour. 1347 if (match(&Inst, m_Intrinsic<Intrinsic::invariant_start>())) { 1348 // If there are any uses, the scope might end. 1349 if (!Inst.use_empty()) 1350 continue; 1351 MemoryLocation MemLoc = 1352 MemoryLocation::getForArgument(&cast<CallInst>(Inst), 1, TLI); 1353 // Don't start a scope if we already have a better one pushed 1354 if (!AvailableInvariants.count(MemLoc)) 1355 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1356 continue; 1357 } 1358 1359 if (isGuard(&Inst)) { 1360 if (auto *CondI = 1361 dyn_cast<Instruction>(cast<CallInst>(Inst).getArgOperand(0))) { 1362 if (SimpleValue::canHandle(CondI)) { 1363 // Do we already know the actual value of this condition? 1364 if (auto *KnownCond = AvailableValues.lookup(CondI)) { 1365 // Is the condition known to be true? 1366 if (isa<ConstantInt>(KnownCond) && 1367 cast<ConstantInt>(KnownCond)->isOne()) { 1368 LLVM_DEBUG(dbgs() 1369 << "EarlyCSE removing guard: " << Inst << '\n'); 1370 salvageKnowledge(&Inst, &AC); 1371 removeMSSA(Inst); 1372 Inst.eraseFromParent(); 1373 Changed = true; 1374 continue; 1375 } else 1376 // Use the known value if it wasn't true. 1377 cast<CallInst>(Inst).setArgOperand(0, KnownCond); 1378 } 1379 // The condition we're on guarding here is true for all dominated 1380 // locations. 1381 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext())); 1382 } 1383 } 1384 1385 // Guard intrinsics read all memory, but don't write any memory. 1386 // Accordingly, don't update the generation but consume the last store (to 1387 // avoid an incorrect DSE). 1388 LastStore = nullptr; 1389 continue; 1390 } 1391 1392 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 1393 // its simpler value. 1394 if (Value *V = simplifyInstruction(&Inst, SQ)) { 1395 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V 1396 << '\n'); 1397 if (!DebugCounter::shouldExecute(CSECounter)) { 1398 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1399 } else { 1400 bool Killed = false; 1401 if (!Inst.use_empty()) { 1402 Inst.replaceAllUsesWith(V); 1403 Changed = true; 1404 } 1405 if (isInstructionTriviallyDead(&Inst, &TLI)) { 1406 salvageKnowledge(&Inst, &AC); 1407 removeMSSA(Inst); 1408 Inst.eraseFromParent(); 1409 Changed = true; 1410 Killed = true; 1411 } 1412 if (Changed) 1413 ++NumSimplify; 1414 if (Killed) 1415 continue; 1416 } 1417 } 1418 1419 // If this is a simple instruction that we can value number, process it. 1420 if (SimpleValue::canHandle(&Inst)) { 1421 if (auto *CI = dyn_cast<ConstrainedFPIntrinsic>(&Inst)) { 1422 assert(CI->getExceptionBehavior() != fp::ebStrict && 1423 "Unexpected ebStrict from SimpleValue::canHandle()"); 1424 assert((!CI->getRoundingMode() || 1425 CI->getRoundingMode() != RoundingMode::Dynamic) && 1426 "Unexpected dynamic rounding from SimpleValue::canHandle()"); 1427 } 1428 // See if the instruction has an available value. If so, use it. 1429 if (Value *V = AvailableValues.lookup(&Inst)) { 1430 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V 1431 << '\n'); 1432 if (!DebugCounter::shouldExecute(CSECounter)) { 1433 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1434 continue; 1435 } 1436 if (auto *I = dyn_cast<Instruction>(V)) { 1437 // If I being poison triggers UB, there is no need to drop those 1438 // flags. Otherwise, only retain flags present on both I and Inst. 1439 // TODO: Currently some fast-math flags are not treated as 1440 // poison-generating even though they should. Until this is fixed, 1441 // always retain flags present on both I and Inst for floating point 1442 // instructions. 1443 if (isa<FPMathOperator>(I) || (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))) 1444 I->andIRFlags(&Inst); 1445 } 1446 Inst.replaceAllUsesWith(V); 1447 salvageKnowledge(&Inst, &AC); 1448 removeMSSA(Inst); 1449 Inst.eraseFromParent(); 1450 Changed = true; 1451 ++NumCSE; 1452 continue; 1453 } 1454 1455 // Otherwise, just remember that this value is available. 1456 AvailableValues.insert(&Inst, &Inst); 1457 continue; 1458 } 1459 1460 ParseMemoryInst MemInst(&Inst, TTI); 1461 // If this is a non-volatile load, process it. 1462 if (MemInst.isValid() && MemInst.isLoad()) { 1463 // (conservatively) we can't peak past the ordering implied by this 1464 // operation, but we can add this load to our set of available values 1465 if (MemInst.isVolatile() || !MemInst.isUnordered()) { 1466 LastStore = nullptr; 1467 ++CurrentGeneration; 1468 } 1469 1470 if (MemInst.isInvariantLoad()) { 1471 // If we pass an invariant load, we know that memory location is 1472 // indefinitely constant from the moment of first dereferenceability. 1473 // We conservatively treat the invariant_load as that moment. If we 1474 // pass a invariant load after already establishing a scope, don't 1475 // restart it since we want to preserve the earliest point seen. 1476 auto MemLoc = MemoryLocation::get(&Inst); 1477 if (!AvailableInvariants.count(MemLoc)) 1478 AvailableInvariants.insert(MemLoc, CurrentGeneration); 1479 } 1480 1481 // If we have an available version of this load, and if it is the right 1482 // generation or the load is known to be from an invariant location, 1483 // replace this instruction. 1484 // 1485 // If either the dominating load or the current load are invariant, then 1486 // we can assume the current load loads the same value as the dominating 1487 // load. 1488 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1489 if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1490 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst 1491 << " to: " << *InVal.DefInst << '\n'); 1492 if (!DebugCounter::shouldExecute(CSECounter)) { 1493 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1494 continue; 1495 } 1496 if (InVal.IsLoad) 1497 if (auto *I = dyn_cast<Instruction>(Op)) 1498 combineMetadataForCSE(I, &Inst, false); 1499 if (!Inst.use_empty()) 1500 Inst.replaceAllUsesWith(Op); 1501 salvageKnowledge(&Inst, &AC); 1502 removeMSSA(Inst); 1503 Inst.eraseFromParent(); 1504 Changed = true; 1505 ++NumCSELoad; 1506 continue; 1507 } 1508 1509 // Otherwise, remember that we have this instruction. 1510 AvailableLoads.insert(MemInst.getPointerOperand(), 1511 LoadValue(&Inst, CurrentGeneration, 1512 MemInst.getMatchingId(), 1513 MemInst.isAtomic(), 1514 MemInst.isLoad())); 1515 LastStore = nullptr; 1516 continue; 1517 } 1518 1519 // If this instruction may read from memory or throw (and potentially read 1520 // from memory in the exception handler), forget LastStore. Load/store 1521 // intrinsics will indicate both a read and a write to memory. The target 1522 // may override this (e.g. so that a store intrinsic does not read from 1523 // memory, and thus will be treated the same as a regular store for 1524 // commoning purposes). 1525 if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && 1526 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 1527 LastStore = nullptr; 1528 1529 // If this is a read-only call, process it. 1530 if (CallValue::canHandle(&Inst)) { 1531 // If we have an available version of this call, and if it is the right 1532 // generation, replace this instruction. 1533 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(&Inst); 1534 if (InVal.first != nullptr && 1535 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first, 1536 &Inst)) { 1537 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst 1538 << " to: " << *InVal.first << '\n'); 1539 if (!DebugCounter::shouldExecute(CSECounter)) { 1540 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1541 continue; 1542 } 1543 if (!Inst.use_empty()) 1544 Inst.replaceAllUsesWith(InVal.first); 1545 salvageKnowledge(&Inst, &AC); 1546 removeMSSA(Inst); 1547 Inst.eraseFromParent(); 1548 Changed = true; 1549 ++NumCSECall; 1550 continue; 1551 } 1552 1553 // Otherwise, remember that we have this instruction. 1554 AvailableCalls.insert(&Inst, std::make_pair(&Inst, CurrentGeneration)); 1555 continue; 1556 } 1557 1558 // A release fence requires that all stores complete before it, but does 1559 // not prevent the reordering of following loads 'before' the fence. As a 1560 // result, we don't need to consider it as writing to memory and don't need 1561 // to advance the generation. We do need to prevent DSE across the fence, 1562 // but that's handled above. 1563 if (auto *FI = dyn_cast<FenceInst>(&Inst)) 1564 if (FI->getOrdering() == AtomicOrdering::Release) { 1565 assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above"); 1566 continue; 1567 } 1568 1569 // write back DSE - If we write back the same value we just loaded from 1570 // the same location and haven't passed any intervening writes or ordering 1571 // operations, we can remove the write. The primary benefit is in allowing 1572 // the available load table to remain valid and value forward past where 1573 // the store originally was. 1574 if (MemInst.isValid() && MemInst.isStore()) { 1575 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand()); 1576 if (InVal.DefInst && 1577 InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { 1578 // It is okay to have a LastStore to a different pointer here if MemorySSA 1579 // tells us that the load and store are from the same memory generation. 1580 // In that case, LastStore should keep its present value since we're 1581 // removing the current store. 1582 assert((!LastStore || 1583 ParseMemoryInst(LastStore, TTI).getPointerOperand() == 1584 MemInst.getPointerOperand() || 1585 MSSA) && 1586 "can't have an intervening store if not using MemorySSA!"); 1587 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); 1588 if (!DebugCounter::shouldExecute(CSECounter)) { 1589 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1590 continue; 1591 } 1592 salvageKnowledge(&Inst, &AC); 1593 removeMSSA(Inst); 1594 Inst.eraseFromParent(); 1595 Changed = true; 1596 ++NumDSE; 1597 // We can avoid incrementing the generation count since we were able 1598 // to eliminate this store. 1599 continue; 1600 } 1601 } 1602 1603 // Okay, this isn't something we can CSE at all. Check to see if it is 1604 // something that could modify memory. If so, our available memory values 1605 // cannot be used so bump the generation count. 1606 if (Inst.mayWriteToMemory()) { 1607 ++CurrentGeneration; 1608 1609 if (MemInst.isValid() && MemInst.isStore()) { 1610 // We do a trivial form of DSE if there are two stores to the same 1611 // location with no intervening loads. Delete the earlier store. 1612 if (LastStore) { 1613 if (overridingStores(ParseMemoryInst(LastStore, TTI), MemInst)) { 1614 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 1615 << " due to: " << Inst << '\n'); 1616 if (!DebugCounter::shouldExecute(CSECounter)) { 1617 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n"); 1618 } else { 1619 salvageKnowledge(&Inst, &AC); 1620 removeMSSA(*LastStore); 1621 LastStore->eraseFromParent(); 1622 Changed = true; 1623 ++NumDSE; 1624 LastStore = nullptr; 1625 } 1626 } 1627 // fallthrough - we can exploit information about this store 1628 } 1629 1630 // Okay, we just invalidated anything we knew about loaded values. Try 1631 // to salvage *something* by remembering that the stored value is a live 1632 // version of the pointer. It is safe to forward from volatile stores 1633 // to non-volatile loads, so we don't have to check for volatility of 1634 // the store. 1635 AvailableLoads.insert(MemInst.getPointerOperand(), 1636 LoadValue(&Inst, CurrentGeneration, 1637 MemInst.getMatchingId(), 1638 MemInst.isAtomic(), 1639 MemInst.isLoad())); 1640 1641 // Remember that this was the last unordered store we saw for DSE. We 1642 // don't yet handle DSE on ordered or volatile stores since we don't 1643 // have a good way to model the ordering requirement for following 1644 // passes once the store is removed. We could insert a fence, but 1645 // since fences are slightly stronger than stores in their ordering, 1646 // it's not clear this is a profitable transform. Another option would 1647 // be to merge the ordering with that of the post dominating store. 1648 if (MemInst.isUnordered() && !MemInst.isVolatile()) 1649 LastStore = &Inst; 1650 else 1651 LastStore = nullptr; 1652 } 1653 } 1654 } 1655 1656 return Changed; 1657 } 1658 1659 bool EarlyCSE::run() { 1660 // Note, deque is being used here because there is significant performance 1661 // gains over vector when the container becomes very large due to the 1662 // specific access patterns. For more information see the mailing list 1663 // discussion on this: 1664 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 1665 std::deque<StackNode *> nodesToProcess; 1666 1667 bool Changed = false; 1668 1669 // Process the root node. 1670 nodesToProcess.push_back(new StackNode( 1671 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, 1672 CurrentGeneration, DT.getRootNode(), 1673 DT.getRootNode()->begin(), DT.getRootNode()->end())); 1674 1675 assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it."); 1676 1677 // Process the stack. 1678 while (!nodesToProcess.empty()) { 1679 // Grab the first item off the stack. Set the current generation, remove 1680 // the node from the stack, and process it. 1681 StackNode *NodeToProcess = nodesToProcess.back(); 1682 1683 // Initialize class members. 1684 CurrentGeneration = NodeToProcess->currentGeneration(); 1685 1686 // Check if the node needs to be processed. 1687 if (!NodeToProcess->isProcessed()) { 1688 // Process the node. 1689 Changed |= processNode(NodeToProcess->node()); 1690 NodeToProcess->childGeneration(CurrentGeneration); 1691 NodeToProcess->process(); 1692 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 1693 // Push the next child onto the stack. 1694 DomTreeNode *child = NodeToProcess->nextChild(); 1695 nodesToProcess.push_back( 1696 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants, 1697 AvailableCalls, NodeToProcess->childGeneration(), 1698 child, child->begin(), child->end())); 1699 } else { 1700 // It has been processed, and there are no more children to process, 1701 // so delete it and pop it off the stack. 1702 delete NodeToProcess; 1703 nodesToProcess.pop_back(); 1704 } 1705 } // while (!nodes...) 1706 1707 return Changed; 1708 } 1709 1710 PreservedAnalyses EarlyCSEPass::run(Function &F, 1711 FunctionAnalysisManager &AM) { 1712 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1713 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 1714 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1715 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1716 auto *MSSA = 1717 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr; 1718 1719 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1720 1721 if (!CSE.run()) 1722 return PreservedAnalyses::all(); 1723 1724 PreservedAnalyses PA; 1725 PA.preserveSet<CFGAnalyses>(); 1726 if (UseMemorySSA) 1727 PA.preserve<MemorySSAAnalysis>(); 1728 return PA; 1729 } 1730 1731 void EarlyCSEPass::printPipeline( 1732 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1733 static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( 1734 OS, MapClassName2PassName); 1735 OS << '<'; 1736 if (UseMemorySSA) 1737 OS << "memssa"; 1738 OS << '>'; 1739 } 1740 1741 namespace { 1742 1743 /// A simple and fast domtree-based CSE pass. 1744 /// 1745 /// This pass does a simple depth-first walk over the dominator tree, 1746 /// eliminating trivially redundant instructions and using instsimplify to 1747 /// canonicalize things as it goes. It is intended to be fast and catch obvious 1748 /// cases so that instcombine and other passes are more effective. It is 1749 /// expected that a later pass of GVN will catch the interesting/hard cases. 1750 template<bool UseMemorySSA> 1751 class EarlyCSELegacyCommonPass : public FunctionPass { 1752 public: 1753 static char ID; 1754 1755 EarlyCSELegacyCommonPass() : FunctionPass(ID) { 1756 if (UseMemorySSA) 1757 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); 1758 else 1759 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 1760 } 1761 1762 bool runOnFunction(Function &F) override { 1763 if (skipFunction(F)) 1764 return false; 1765 1766 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1767 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1768 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1769 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1770 auto *MSSA = 1771 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; 1772 1773 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA); 1774 1775 return CSE.run(); 1776 } 1777 1778 void getAnalysisUsage(AnalysisUsage &AU) const override { 1779 AU.addRequired<AssumptionCacheTracker>(); 1780 AU.addRequired<DominatorTreeWrapperPass>(); 1781 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1782 AU.addRequired<TargetTransformInfoWrapperPass>(); 1783 if (UseMemorySSA) { 1784 AU.addRequired<AAResultsWrapperPass>(); 1785 AU.addRequired<MemorySSAWrapperPass>(); 1786 AU.addPreserved<MemorySSAWrapperPass>(); 1787 } 1788 AU.addPreserved<GlobalsAAWrapperPass>(); 1789 AU.addPreserved<AAResultsWrapperPass>(); 1790 AU.setPreservesCFG(); 1791 } 1792 }; 1793 1794 } // end anonymous namespace 1795 1796 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; 1797 1798 template<> 1799 char EarlyCSELegacyPass::ID = 0; 1800 1801 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 1802 false) 1803 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1804 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1805 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1806 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1807 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 1808 1809 using EarlyCSEMemSSALegacyPass = 1810 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; 1811 1812 template<> 1813 char EarlyCSEMemSSALegacyPass::ID = 0; 1814 1815 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { 1816 if (UseMemorySSA) 1817 return new EarlyCSEMemSSALegacyPass(); 1818 else 1819 return new EarlyCSELegacyPass(); 1820 } 1821 1822 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1823 "Early CSE w/ MemorySSA", false, false) 1824 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1825 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1826 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1827 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1828 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1829 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 1830 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa", 1831 "Early CSE w/ MemorySSA", false, false) 1832