xref: /llvm-project/llvm/lib/Transforms/Scalar/DivRemPairs.cpp (revision 5e4e6b1fb17646374d57b7a11b09e6f060debf99)
1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/PatternMatch.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/DebugCounter.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
27 
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30 
31 #define DEBUG_TYPE "div-rem-pairs"
32 STATISTIC(NumPairs, "Number of div/rem pairs");
33 STATISTIC(NumRecomposed, "Number of instructions recomposed");
34 STATISTIC(NumHoisted, "Number of instructions hoisted");
35 STATISTIC(NumDecomposed, "Number of instructions decomposed");
36 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
37               "Controls transformations in div-rem-pairs pass");
38 
39 namespace {
40 struct ExpandedMatch {
41   DivRemMapKey Key;
42   Instruction *Value;
43 };
44 } // namespace
45 
46 /// See if we can match: (which is the form we expand into)
47 ///   X - ((X ?/ Y) * Y)
48 /// which is equivalent to:
49 ///   X ?% Y
50 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
51   Value *Dividend, *XroundedDownToMultipleOfY;
52   if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
53     return llvm::None;
54 
55   Value *Divisor;
56   Instruction *Div;
57   // Look for  ((X / Y) * Y)
58   if (!match(
59           XroundedDownToMultipleOfY,
60           m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
61                                m_Instruction(Div)),
62                   m_Deferred(Divisor))))
63     return llvm::None;
64 
65   ExpandedMatch M;
66   M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
67   M.Key.Dividend = Dividend;
68   M.Key.Divisor = Divisor;
69   M.Value = &I;
70   return M;
71 }
72 
73 /// A thin wrapper to store two values that we matched as div-rem pair.
74 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
75 struct DivRemPairWorklistEntry {
76   /// The actual udiv/sdiv instruction. Source of truth.
77   AssertingVH<Instruction> DivInst;
78 
79   /// The instruction that we have matched as a remainder instruction.
80   /// Should only be used as Value, don't introspect it.
81   AssertingVH<Instruction> RemInst;
82 
83   DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
84       : DivInst(DivInst_), RemInst(RemInst_) {
85     assert((DivInst->getOpcode() == Instruction::UDiv ||
86             DivInst->getOpcode() == Instruction::SDiv) &&
87            "Not a division.");
88     assert(DivInst->getType() == RemInst->getType() && "Types should match.");
89     // We can't check anything else about remainder instruction,
90     // it's not strictly required to be a urem/srem.
91   }
92 
93   /// The type for this pair, identical for both the div and rem.
94   Type *getType() const { return DivInst->getType(); }
95 
96   /// Is this pair signed or unsigned?
97   bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
98 
99   /// In this pair, what are the divident and divisor?
100   Value *getDividend() const { return DivInst->getOperand(0); }
101   Value *getDivisor() const { return DivInst->getOperand(1); }
102 
103   bool isRemExpanded() const {
104     switch (RemInst->getOpcode()) {
105     case Instruction::SRem:
106     case Instruction::URem:
107       return false; // single 'rem' instruction - unexpanded form.
108     default:
109       return true; // anything else means we have remainder in expanded form.
110     }
111   }
112 };
113 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
114 
115 /// Find matching pairs of integer div/rem ops (they have the same numerator,
116 /// denominator, and signedness). Place those pairs into a worklist for further
117 /// processing. This indirection is needed because we have to use TrackingVH<>
118 /// because we will be doing RAUW, and if one of the rem instructions we change
119 /// happens to be an input to another div/rem in the maps, we'd have problems.
120 static DivRemWorklistTy getWorklist(Function &F) {
121   // Insert all divide and remainder instructions into maps keyed by their
122   // operands and opcode (signed or unsigned).
123   DenseMap<DivRemMapKey, Instruction *> DivMap;
124   // Use a MapVector for RemMap so that instructions are moved/inserted in a
125   // deterministic order.
126   MapVector<DivRemMapKey, Instruction *> RemMap;
127   for (auto &BB : F) {
128     for (auto &I : BB) {
129       if (I.getOpcode() == Instruction::SDiv)
130         DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
131       else if (I.getOpcode() == Instruction::UDiv)
132         DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
133       else if (I.getOpcode() == Instruction::SRem)
134         RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
135       else if (I.getOpcode() == Instruction::URem)
136         RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
137       else if (auto Match = matchExpandedRem(I))
138         RemMap[Match->Key] = Match->Value;
139     }
140   }
141 
142   // We'll accumulate the matching pairs of div-rem instructions here.
143   DivRemWorklistTy Worklist;
144 
145   // We can iterate over either map because we are only looking for matched
146   // pairs. Choose remainders for efficiency because they are usually even more
147   // rare than division.
148   for (auto &RemPair : RemMap) {
149     // Find the matching division instruction from the division map.
150     Instruction *DivInst = DivMap[RemPair.first];
151     if (!DivInst)
152       continue;
153 
154     // We have a matching pair of div/rem instructions.
155     NumPairs++;
156     Instruction *RemInst = RemPair.second;
157 
158     // Place it in the worklist.
159     Worklist.emplace_back(DivInst, RemInst);
160   }
161 
162   return Worklist;
163 }
164 
165 /// Find matching pairs of integer div/rem ops (they have the same numerator,
166 /// denominator, and signedness). If they exist in different basic blocks, bring
167 /// them together by hoisting or replace the common division operation that is
168 /// implicit in the remainder:
169 /// X % Y <--> X - ((X / Y) * Y).
170 ///
171 /// We can largely ignore the normal safety and cost constraints on speculation
172 /// of these ops when we find a matching pair. This is because we are already
173 /// guaranteed that any exceptions and most cost are already incurred by the
174 /// first member of the pair.
175 ///
176 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
177 /// SimplifyCFG, but it's split off on its own because it's different enough
178 /// that it doesn't quite match the stated objectives of those passes.
179 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
180                            const DominatorTree &DT) {
181   bool Changed = false;
182 
183   // Get the matching pairs of div-rem instructions. We want this extra
184   // indirection to avoid dealing with having to RAUW the keys of the maps.
185   DivRemWorklistTy Worklist = getWorklist(F);
186 
187   // Process each entry in the worklist.
188   for (DivRemPairWorklistEntry &E : Worklist) {
189     if (!DebugCounter::shouldExecute(DRPCounter))
190       continue;
191 
192     bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
193 
194     auto &DivInst = E.DivInst;
195     auto &RemInst = E.RemInst;
196 
197     const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
198     (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
199 
200     if (HasDivRemOp && E.isRemExpanded()) {
201       // The target supports div+rem but the rem is expanded.
202       // We should recompose it first.
203       Value *X = E.getDividend();
204       Value *Y = E.getDivisor();
205       Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
206                                           : BinaryOperator::CreateURem(X, Y);
207       // Note that we place it right next to the original expanded instruction,
208       // and letting further handling to move it if needed.
209       RealRem->setName(RemInst->getName() + ".recomposed");
210       RealRem->insertAfter(RemInst);
211       Instruction *OrigRemInst = RemInst;
212       // Update AssertingVH<> with new instruction so it doesn't assert.
213       RemInst = RealRem;
214       // And replace the original instruction with the new one.
215       OrigRemInst->replaceAllUsesWith(RealRem);
216       OrigRemInst->eraseFromParent();
217       NumRecomposed++;
218       // Note that we have left ((X / Y) * Y) around.
219       // If it had other uses we could rewrite it as X - X % Y
220     }
221 
222     assert((!E.isRemExpanded() || !HasDivRemOp) &&
223            "*If* the target supports div-rem, then by now the RemInst *is* "
224            "Instruction::[US]Rem.");
225 
226     // If the target supports div+rem and the instructions are in the same block
227     // already, there's nothing to do. The backend should handle this. If the
228     // target does not support div+rem, then we will decompose the rem.
229     if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
230       continue;
231 
232     bool DivDominates = DT.dominates(DivInst, RemInst);
233     if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
234       // We have matching div-rem pair, but they are in two different blocks,
235       // neither of which dominates one another.
236       assert(!RemOriginallyWasInExpandedForm &&
237              "Won't happen for expanded-form rem.");
238       // FIXME: We could hoist both ops to the common predecessor block?
239       continue;
240     }
241 
242     // The target does not have a single div/rem operation,
243     // and the rem is already in expanded form. Nothing to do.
244     if (!HasDivRemOp && E.isRemExpanded())
245       continue;
246 
247     if (HasDivRemOp) {
248       // The target has a single div/rem operation. Hoist the lower instruction
249       // to make the matched pair visible to the backend.
250       if (DivDominates)
251         RemInst->moveAfter(DivInst);
252       else
253         DivInst->moveAfter(RemInst);
254       NumHoisted++;
255     } else {
256       // The target does not have a single div/rem operation,
257       // and the rem is *not* in a already-expanded form.
258       // Decompose the remainder calculation as:
259       // X % Y --> X - ((X / Y) * Y).
260 
261       assert(!RemOriginallyWasInExpandedForm &&
262              "We should not be expanding if the rem was in expanded form to "
263              "begin with.");
264 
265       Value *X = E.getDividend();
266       Value *Y = E.getDivisor();
267       Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
268       Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
269 
270       // If the remainder dominates, then hoist the division up to that block:
271       //
272       // bb1:
273       //   %rem = srem %x, %y
274       // bb2:
275       //   %div = sdiv %x, %y
276       // -->
277       // bb1:
278       //   %div = sdiv %x, %y
279       //   %mul = mul %div, %y
280       //   %rem = sub %x, %mul
281       //
282       // If the division dominates, it's already in the right place. The mul+sub
283       // will be in a different block because we don't assume that they are
284       // cheap to speculatively execute:
285       //
286       // bb1:
287       //   %div = sdiv %x, %y
288       // bb2:
289       //   %rem = srem %x, %y
290       // -->
291       // bb1:
292       //   %div = sdiv %x, %y
293       // bb2:
294       //   %mul = mul %div, %y
295       //   %rem = sub %x, %mul
296       //
297       // If the div and rem are in the same block, we do the same transform,
298       // but any code movement would be within the same block.
299 
300       if (!DivDominates)
301         DivInst->moveBefore(RemInst);
302       Mul->insertAfter(RemInst);
303       Sub->insertAfter(Mul);
304 
305       // Now kill the explicit remainder. We have replaced it with:
306       // (sub X, (mul (div X, Y), Y)
307       Sub->setName(RemInst->getName() + ".decomposed");
308       Instruction *OrigRemInst = RemInst;
309       // Update AssertingVH<> with new instruction so it doesn't assert.
310       RemInst = Sub;
311       // And replace the original instruction with the new one.
312       OrigRemInst->replaceAllUsesWith(Sub);
313       OrigRemInst->eraseFromParent();
314       NumDecomposed++;
315     }
316     Changed = true;
317   }
318 
319   return Changed;
320 }
321 
322 // Pass manager boilerplate below here.
323 
324 namespace {
325 struct DivRemPairsLegacyPass : public FunctionPass {
326   static char ID;
327   DivRemPairsLegacyPass() : FunctionPass(ID) {
328     initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
329   }
330 
331   void getAnalysisUsage(AnalysisUsage &AU) const override {
332     AU.addRequired<DominatorTreeWrapperPass>();
333     AU.addRequired<TargetTransformInfoWrapperPass>();
334     AU.setPreservesCFG();
335     AU.addPreserved<DominatorTreeWrapperPass>();
336     AU.addPreserved<GlobalsAAWrapperPass>();
337     FunctionPass::getAnalysisUsage(AU);
338   }
339 
340   bool runOnFunction(Function &F) override {
341     if (skipFunction(F))
342       return false;
343     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
344     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
345     return optimizeDivRem(F, TTI, DT);
346   }
347 };
348 } // namespace
349 
350 char DivRemPairsLegacyPass::ID = 0;
351 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
352                       "Hoist/decompose integer division and remainder", false,
353                       false)
354 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
355 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
356                     "Hoist/decompose integer division and remainder", false,
357                     false)
358 FunctionPass *llvm::createDivRemPairsPass() {
359   return new DivRemPairsLegacyPass();
360 }
361 
362 PreservedAnalyses DivRemPairsPass::run(Function &F,
363                                        FunctionAnalysisManager &FAM) {
364   TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
365   DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
366   if (!optimizeDivRem(F, TTI, DT))
367     return PreservedAnalyses::all();
368   // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
369   PreservedAnalyses PA;
370   PA.preserveSet<CFGAnalyses>();
371   PA.preserve<GlobalsAA>();
372   return PA;
373 }
374