1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/Analysis/ValueTracking.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Function.h" 23 #include "llvm/IR/PatternMatch.h" 24 #include "llvm/InitializePasses.h" 25 #include "llvm/Pass.h" 26 #include "llvm/Support/DebugCounter.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 29 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 #define DEBUG_TYPE "div-rem-pairs" 34 STATISTIC(NumPairs, "Number of div/rem pairs"); 35 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 36 STATISTIC(NumHoisted, "Number of instructions hoisted"); 37 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 38 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 39 "Controls transformations in div-rem-pairs pass"); 40 41 namespace { 42 struct ExpandedMatch { 43 DivRemMapKey Key; 44 Instruction *Value; 45 }; 46 } // namespace 47 48 /// See if we can match: (which is the form we expand into) 49 /// X - ((X ?/ Y) * Y) 50 /// which is equivalent to: 51 /// X ?% Y 52 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 53 Value *Dividend, *XroundedDownToMultipleOfY; 54 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 55 return llvm::None; 56 57 Value *Divisor; 58 Instruction *Div; 59 // Look for ((X / Y) * Y) 60 if (!match( 61 XroundedDownToMultipleOfY, 62 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 63 m_Instruction(Div)), 64 m_Deferred(Divisor)))) 65 return llvm::None; 66 67 ExpandedMatch M; 68 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 69 M.Key.Dividend = Dividend; 70 M.Key.Divisor = Divisor; 71 M.Value = &I; 72 return M; 73 } 74 75 namespace { 76 /// A thin wrapper to store two values that we matched as div-rem pair. 77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 78 struct DivRemPairWorklistEntry { 79 /// The actual udiv/sdiv instruction. Source of truth. 80 AssertingVH<Instruction> DivInst; 81 82 /// The instruction that we have matched as a remainder instruction. 83 /// Should only be used as Value, don't introspect it. 84 AssertingVH<Instruction> RemInst; 85 86 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 87 : DivInst(DivInst_), RemInst(RemInst_) { 88 assert((DivInst->getOpcode() == Instruction::UDiv || 89 DivInst->getOpcode() == Instruction::SDiv) && 90 "Not a division."); 91 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 92 // We can't check anything else about remainder instruction, 93 // it's not strictly required to be a urem/srem. 94 } 95 96 /// The type for this pair, identical for both the div and rem. 97 Type *getType() const { return DivInst->getType(); } 98 99 /// Is this pair signed or unsigned? 100 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 101 102 /// In this pair, what are the divident and divisor? 103 Value *getDividend() const { return DivInst->getOperand(0); } 104 Value *getDivisor() const { return DivInst->getOperand(1); } 105 106 bool isRemExpanded() const { 107 switch (RemInst->getOpcode()) { 108 case Instruction::SRem: 109 case Instruction::URem: 110 return false; // single 'rem' instruction - unexpanded form. 111 default: 112 return true; // anything else means we have remainder in expanded form. 113 } 114 } 115 }; 116 } // namespace 117 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 118 119 /// Find matching pairs of integer div/rem ops (they have the same numerator, 120 /// denominator, and signedness). Place those pairs into a worklist for further 121 /// processing. This indirection is needed because we have to use TrackingVH<> 122 /// because we will be doing RAUW, and if one of the rem instructions we change 123 /// happens to be an input to another div/rem in the maps, we'd have problems. 124 static DivRemWorklistTy getWorklist(Function &F) { 125 // Insert all divide and remainder instructions into maps keyed by their 126 // operands and opcode (signed or unsigned). 127 DenseMap<DivRemMapKey, Instruction *> DivMap; 128 // Use a MapVector for RemMap so that instructions are moved/inserted in a 129 // deterministic order. 130 MapVector<DivRemMapKey, Instruction *> RemMap; 131 for (auto &BB : F) { 132 for (auto &I : BB) { 133 if (I.getOpcode() == Instruction::SDiv) 134 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 135 else if (I.getOpcode() == Instruction::UDiv) 136 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 137 else if (I.getOpcode() == Instruction::SRem) 138 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 139 else if (I.getOpcode() == Instruction::URem) 140 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 141 else if (auto Match = matchExpandedRem(I)) 142 RemMap[Match->Key] = Match->Value; 143 } 144 } 145 146 // We'll accumulate the matching pairs of div-rem instructions here. 147 DivRemWorklistTy Worklist; 148 149 // We can iterate over either map because we are only looking for matched 150 // pairs. Choose remainders for efficiency because they are usually even more 151 // rare than division. 152 for (auto &RemPair : RemMap) { 153 // Find the matching division instruction from the division map. 154 Instruction *DivInst = DivMap[RemPair.first]; 155 if (!DivInst) 156 continue; 157 158 // We have a matching pair of div/rem instructions. 159 NumPairs++; 160 Instruction *RemInst = RemPair.second; 161 162 // Place it in the worklist. 163 Worklist.emplace_back(DivInst, RemInst); 164 } 165 166 return Worklist; 167 } 168 169 /// Find matching pairs of integer div/rem ops (they have the same numerator, 170 /// denominator, and signedness). If they exist in different basic blocks, bring 171 /// them together by hoisting or replace the common division operation that is 172 /// implicit in the remainder: 173 /// X % Y <--> X - ((X / Y) * Y). 174 /// 175 /// We can largely ignore the normal safety and cost constraints on speculation 176 /// of these ops when we find a matching pair. This is because we are already 177 /// guaranteed that any exceptions and most cost are already incurred by the 178 /// first member of the pair. 179 /// 180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 181 /// SimplifyCFG, but it's split off on its own because it's different enough 182 /// that it doesn't quite match the stated objectives of those passes. 183 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 184 const DominatorTree &DT) { 185 bool Changed = false; 186 187 // Get the matching pairs of div-rem instructions. We want this extra 188 // indirection to avoid dealing with having to RAUW the keys of the maps. 189 DivRemWorklistTy Worklist = getWorklist(F); 190 191 // Process each entry in the worklist. 192 for (DivRemPairWorklistEntry &E : Worklist) { 193 if (!DebugCounter::shouldExecute(DRPCounter)) 194 continue; 195 196 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 197 198 auto &DivInst = E.DivInst; 199 auto &RemInst = E.RemInst; 200 201 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 202 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 203 204 if (HasDivRemOp && E.isRemExpanded()) { 205 // The target supports div+rem but the rem is expanded. 206 // We should recompose it first. 207 Value *X = E.getDividend(); 208 Value *Y = E.getDivisor(); 209 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 210 : BinaryOperator::CreateURem(X, Y); 211 // Note that we place it right next to the original expanded instruction, 212 // and letting further handling to move it if needed. 213 RealRem->setName(RemInst->getName() + ".recomposed"); 214 RealRem->insertAfter(RemInst); 215 Instruction *OrigRemInst = RemInst; 216 // Update AssertingVH<> with new instruction so it doesn't assert. 217 RemInst = RealRem; 218 // And replace the original instruction with the new one. 219 OrigRemInst->replaceAllUsesWith(RealRem); 220 OrigRemInst->eraseFromParent(); 221 NumRecomposed++; 222 // Note that we have left ((X / Y) * Y) around. 223 // If it had other uses we could rewrite it as X - X % Y 224 } 225 226 assert((!E.isRemExpanded() || !HasDivRemOp) && 227 "*If* the target supports div-rem, then by now the RemInst *is* " 228 "Instruction::[US]Rem."); 229 230 // If the target supports div+rem and the instructions are in the same block 231 // already, there's nothing to do. The backend should handle this. If the 232 // target does not support div+rem, then we will decompose the rem. 233 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 234 continue; 235 236 bool DivDominates = DT.dominates(DivInst, RemInst); 237 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 238 // We have matching div-rem pair, but they are in two different blocks, 239 // neither of which dominates one another. 240 // FIXME: We could hoist both ops to the common predecessor block? 241 continue; 242 } 243 244 // The target does not have a single div/rem operation, 245 // and the rem is already in expanded form. Nothing to do. 246 if (!HasDivRemOp && E.isRemExpanded()) 247 continue; 248 249 if (HasDivRemOp) { 250 // The target has a single div/rem operation. Hoist the lower instruction 251 // to make the matched pair visible to the backend. 252 if (DivDominates) 253 RemInst->moveAfter(DivInst); 254 else 255 DivInst->moveAfter(RemInst); 256 NumHoisted++; 257 } else { 258 // The target does not have a single div/rem operation, 259 // and the rem is *not* in a already-expanded form. 260 // Decompose the remainder calculation as: 261 // X % Y --> X - ((X / Y) * Y). 262 263 assert(!RemOriginallyWasInExpandedForm && 264 "We should not be expanding if the rem was in expanded form to " 265 "begin with."); 266 267 Value *X = E.getDividend(); 268 Value *Y = E.getDivisor(); 269 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 270 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 271 272 // If the remainder dominates, then hoist the division up to that block: 273 // 274 // bb1: 275 // %rem = srem %x, %y 276 // bb2: 277 // %div = sdiv %x, %y 278 // --> 279 // bb1: 280 // %div = sdiv %x, %y 281 // %mul = mul %div, %y 282 // %rem = sub %x, %mul 283 // 284 // If the division dominates, it's already in the right place. The mul+sub 285 // will be in a different block because we don't assume that they are 286 // cheap to speculatively execute: 287 // 288 // bb1: 289 // %div = sdiv %x, %y 290 // bb2: 291 // %rem = srem %x, %y 292 // --> 293 // bb1: 294 // %div = sdiv %x, %y 295 // bb2: 296 // %mul = mul %div, %y 297 // %rem = sub %x, %mul 298 // 299 // If the div and rem are in the same block, we do the same transform, 300 // but any code movement would be within the same block. 301 302 if (!DivDominates) 303 DivInst->moveBefore(RemInst); 304 Mul->insertAfter(RemInst); 305 Sub->insertAfter(Mul); 306 307 // If X can be undef, X should be frozen first. 308 // For example, let's assume that Y = 1 & X = undef: 309 // %div = sdiv undef, 1 // %div = undef 310 // %rem = srem undef, 1 // %rem = 0 311 // => 312 // %div = sdiv undef, 1 // %div = undef 313 // %mul = mul %div, 1 // %mul = undef 314 // %rem = sub %x, %mul // %rem = undef - undef = undef 315 // If X is not frozen, %rem becomes undef after transformation. 316 // TODO: We need a undef-specific checking function in ValueTracking 317 if (!isGuaranteedNotToBeUndefOrPoison(X, DivInst, &DT)) { 318 auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst); 319 DivInst->setOperand(0, FrX); 320 Sub->setOperand(0, FrX); 321 } 322 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0, 323 // but %rem in tgt can be one of many integer values. 324 if (!isGuaranteedNotToBeUndefOrPoison(Y, DivInst, &DT)) { 325 auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst); 326 DivInst->setOperand(1, FrY); 327 Mul->setOperand(1, FrY); 328 } 329 330 // Now kill the explicit remainder. We have replaced it with: 331 // (sub X, (mul (div X, Y), Y) 332 Sub->setName(RemInst->getName() + ".decomposed"); 333 Instruction *OrigRemInst = RemInst; 334 // Update AssertingVH<> with new instruction so it doesn't assert. 335 RemInst = Sub; 336 // And replace the original instruction with the new one. 337 OrigRemInst->replaceAllUsesWith(Sub); 338 OrigRemInst->eraseFromParent(); 339 NumDecomposed++; 340 } 341 Changed = true; 342 } 343 344 return Changed; 345 } 346 347 // Pass manager boilerplate below here. 348 349 namespace { 350 struct DivRemPairsLegacyPass : public FunctionPass { 351 static char ID; 352 DivRemPairsLegacyPass() : FunctionPass(ID) { 353 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 354 } 355 356 void getAnalysisUsage(AnalysisUsage &AU) const override { 357 AU.addRequired<DominatorTreeWrapperPass>(); 358 AU.addRequired<TargetTransformInfoWrapperPass>(); 359 AU.setPreservesCFG(); 360 AU.addPreserved<DominatorTreeWrapperPass>(); 361 AU.addPreserved<GlobalsAAWrapperPass>(); 362 FunctionPass::getAnalysisUsage(AU); 363 } 364 365 bool runOnFunction(Function &F) override { 366 if (skipFunction(F)) 367 return false; 368 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 369 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 370 return optimizeDivRem(F, TTI, DT); 371 } 372 }; 373 } // namespace 374 375 char DivRemPairsLegacyPass::ID = 0; 376 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 377 "Hoist/decompose integer division and remainder", false, 378 false) 379 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 380 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 381 "Hoist/decompose integer division and remainder", false, 382 false) 383 FunctionPass *llvm::createDivRemPairsPass() { 384 return new DivRemPairsLegacyPass(); 385 } 386 387 PreservedAnalyses DivRemPairsPass::run(Function &F, 388 FunctionAnalysisManager &FAM) { 389 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 390 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 391 if (!optimizeDivRem(F, TTI, DT)) 392 return PreservedAnalyses::all(); 393 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 394 PreservedAnalyses PA; 395 PA.preserveSet<CFGAnalyses>(); 396 PA.preserve<GlobalsAA>(); 397 return PA; 398 } 399