1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass hoists and/or decomposes/recomposes integer division and remainder 10 // instructions to enable CFG improvements and better codegen. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/DivRemPairs.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/GlobalsModRef.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/PatternMatch.h" 23 #include "llvm/InitializePasses.h" 24 #include "llvm/Pass.h" 25 #include "llvm/Support/DebugCounter.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 28 29 using namespace llvm; 30 using namespace llvm::PatternMatch; 31 32 #define DEBUG_TYPE "div-rem-pairs" 33 STATISTIC(NumPairs, "Number of div/rem pairs"); 34 STATISTIC(NumRecomposed, "Number of instructions recomposed"); 35 STATISTIC(NumHoisted, "Number of instructions hoisted"); 36 STATISTIC(NumDecomposed, "Number of instructions decomposed"); 37 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform", 38 "Controls transformations in div-rem-pairs pass"); 39 40 namespace { 41 struct ExpandedMatch { 42 DivRemMapKey Key; 43 Instruction *Value; 44 }; 45 } // namespace 46 47 /// See if we can match: (which is the form we expand into) 48 /// X - ((X ?/ Y) * Y) 49 /// which is equivalent to: 50 /// X ?% Y 51 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) { 52 Value *Dividend, *XroundedDownToMultipleOfY; 53 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY)))) 54 return llvm::None; 55 56 Value *Divisor; 57 Instruction *Div; 58 // Look for ((X / Y) * Y) 59 if (!match( 60 XroundedDownToMultipleOfY, 61 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)), 62 m_Instruction(Div)), 63 m_Deferred(Divisor)))) 64 return llvm::None; 65 66 ExpandedMatch M; 67 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv; 68 M.Key.Dividend = Dividend; 69 M.Key.Divisor = Divisor; 70 M.Value = &I; 71 return M; 72 } 73 74 namespace { 75 /// A thin wrapper to store two values that we matched as div-rem pair. 76 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys. 77 struct DivRemPairWorklistEntry { 78 /// The actual udiv/sdiv instruction. Source of truth. 79 AssertingVH<Instruction> DivInst; 80 81 /// The instruction that we have matched as a remainder instruction. 82 /// Should only be used as Value, don't introspect it. 83 AssertingVH<Instruction> RemInst; 84 85 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_) 86 : DivInst(DivInst_), RemInst(RemInst_) { 87 assert((DivInst->getOpcode() == Instruction::UDiv || 88 DivInst->getOpcode() == Instruction::SDiv) && 89 "Not a division."); 90 assert(DivInst->getType() == RemInst->getType() && "Types should match."); 91 // We can't check anything else about remainder instruction, 92 // it's not strictly required to be a urem/srem. 93 } 94 95 /// The type for this pair, identical for both the div and rem. 96 Type *getType() const { return DivInst->getType(); } 97 98 /// Is this pair signed or unsigned? 99 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; } 100 101 /// In this pair, what are the divident and divisor? 102 Value *getDividend() const { return DivInst->getOperand(0); } 103 Value *getDivisor() const { return DivInst->getOperand(1); } 104 105 bool isRemExpanded() const { 106 switch (RemInst->getOpcode()) { 107 case Instruction::SRem: 108 case Instruction::URem: 109 return false; // single 'rem' instruction - unexpanded form. 110 default: 111 return true; // anything else means we have remainder in expanded form. 112 } 113 } 114 }; 115 } // namespace 116 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>; 117 118 /// Find matching pairs of integer div/rem ops (they have the same numerator, 119 /// denominator, and signedness). Place those pairs into a worklist for further 120 /// processing. This indirection is needed because we have to use TrackingVH<> 121 /// because we will be doing RAUW, and if one of the rem instructions we change 122 /// happens to be an input to another div/rem in the maps, we'd have problems. 123 static DivRemWorklistTy getWorklist(Function &F) { 124 // Insert all divide and remainder instructions into maps keyed by their 125 // operands and opcode (signed or unsigned). 126 DenseMap<DivRemMapKey, Instruction *> DivMap; 127 // Use a MapVector for RemMap so that instructions are moved/inserted in a 128 // deterministic order. 129 MapVector<DivRemMapKey, Instruction *> RemMap; 130 for (auto &BB : F) { 131 for (auto &I : BB) { 132 if (I.getOpcode() == Instruction::SDiv) 133 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 134 else if (I.getOpcode() == Instruction::UDiv) 135 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 136 else if (I.getOpcode() == Instruction::SRem) 137 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I; 138 else if (I.getOpcode() == Instruction::URem) 139 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I; 140 else if (auto Match = matchExpandedRem(I)) 141 RemMap[Match->Key] = Match->Value; 142 } 143 } 144 145 // We'll accumulate the matching pairs of div-rem instructions here. 146 DivRemWorklistTy Worklist; 147 148 // We can iterate over either map because we are only looking for matched 149 // pairs. Choose remainders for efficiency because they are usually even more 150 // rare than division. 151 for (auto &RemPair : RemMap) { 152 // Find the matching division instruction from the division map. 153 Instruction *DivInst = DivMap[RemPair.first]; 154 if (!DivInst) 155 continue; 156 157 // We have a matching pair of div/rem instructions. 158 NumPairs++; 159 Instruction *RemInst = RemPair.second; 160 161 // Place it in the worklist. 162 Worklist.emplace_back(DivInst, RemInst); 163 } 164 165 return Worklist; 166 } 167 168 /// Find matching pairs of integer div/rem ops (they have the same numerator, 169 /// denominator, and signedness). If they exist in different basic blocks, bring 170 /// them together by hoisting or replace the common division operation that is 171 /// implicit in the remainder: 172 /// X % Y <--> X - ((X / Y) * Y). 173 /// 174 /// We can largely ignore the normal safety and cost constraints on speculation 175 /// of these ops when we find a matching pair. This is because we are already 176 /// guaranteed that any exceptions and most cost are already incurred by the 177 /// first member of the pair. 178 /// 179 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or 180 /// SimplifyCFG, but it's split off on its own because it's different enough 181 /// that it doesn't quite match the stated objectives of those passes. 182 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI, 183 const DominatorTree &DT) { 184 bool Changed = false; 185 186 // Get the matching pairs of div-rem instructions. We want this extra 187 // indirection to avoid dealing with having to RAUW the keys of the maps. 188 DivRemWorklistTy Worklist = getWorklist(F); 189 190 // Process each entry in the worklist. 191 for (DivRemPairWorklistEntry &E : Worklist) { 192 if (!DebugCounter::shouldExecute(DRPCounter)) 193 continue; 194 195 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned()); 196 197 auto &DivInst = E.DivInst; 198 auto &RemInst = E.RemInst; 199 200 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded(); 201 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning 202 203 if (HasDivRemOp && E.isRemExpanded()) { 204 // The target supports div+rem but the rem is expanded. 205 // We should recompose it first. 206 Value *X = E.getDividend(); 207 Value *Y = E.getDivisor(); 208 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y) 209 : BinaryOperator::CreateURem(X, Y); 210 // Note that we place it right next to the original expanded instruction, 211 // and letting further handling to move it if needed. 212 RealRem->setName(RemInst->getName() + ".recomposed"); 213 RealRem->insertAfter(RemInst); 214 Instruction *OrigRemInst = RemInst; 215 // Update AssertingVH<> with new instruction so it doesn't assert. 216 RemInst = RealRem; 217 // And replace the original instruction with the new one. 218 OrigRemInst->replaceAllUsesWith(RealRem); 219 OrigRemInst->eraseFromParent(); 220 NumRecomposed++; 221 // Note that we have left ((X / Y) * Y) around. 222 // If it had other uses we could rewrite it as X - X % Y 223 } 224 225 assert((!E.isRemExpanded() || !HasDivRemOp) && 226 "*If* the target supports div-rem, then by now the RemInst *is* " 227 "Instruction::[US]Rem."); 228 229 // If the target supports div+rem and the instructions are in the same block 230 // already, there's nothing to do. The backend should handle this. If the 231 // target does not support div+rem, then we will decompose the rem. 232 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent()) 233 continue; 234 235 bool DivDominates = DT.dominates(DivInst, RemInst); 236 if (!DivDominates && !DT.dominates(RemInst, DivInst)) { 237 // We have matching div-rem pair, but they are in two different blocks, 238 // neither of which dominates one another. 239 // FIXME: We could hoist both ops to the common predecessor block? 240 continue; 241 } 242 243 // The target does not have a single div/rem operation, 244 // and the rem is already in expanded form. Nothing to do. 245 if (!HasDivRemOp && E.isRemExpanded()) 246 continue; 247 248 if (HasDivRemOp) { 249 // The target has a single div/rem operation. Hoist the lower instruction 250 // to make the matched pair visible to the backend. 251 if (DivDominates) 252 RemInst->moveAfter(DivInst); 253 else 254 DivInst->moveAfter(RemInst); 255 NumHoisted++; 256 } else { 257 // The target does not have a single div/rem operation, 258 // and the rem is *not* in a already-expanded form. 259 // Decompose the remainder calculation as: 260 // X % Y --> X - ((X / Y) * Y). 261 262 assert(!RemOriginallyWasInExpandedForm && 263 "We should not be expanding if the rem was in expanded form to " 264 "begin with."); 265 266 Value *X = E.getDividend(); 267 Value *Y = E.getDivisor(); 268 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y); 269 Instruction *Sub = BinaryOperator::CreateSub(X, Mul); 270 271 // If the remainder dominates, then hoist the division up to that block: 272 // 273 // bb1: 274 // %rem = srem %x, %y 275 // bb2: 276 // %div = sdiv %x, %y 277 // --> 278 // bb1: 279 // %div = sdiv %x, %y 280 // %mul = mul %div, %y 281 // %rem = sub %x, %mul 282 // 283 // If the division dominates, it's already in the right place. The mul+sub 284 // will be in a different block because we don't assume that they are 285 // cheap to speculatively execute: 286 // 287 // bb1: 288 // %div = sdiv %x, %y 289 // bb2: 290 // %rem = srem %x, %y 291 // --> 292 // bb1: 293 // %div = sdiv %x, %y 294 // bb2: 295 // %mul = mul %div, %y 296 // %rem = sub %x, %mul 297 // 298 // If the div and rem are in the same block, we do the same transform, 299 // but any code movement would be within the same block. 300 301 if (!DivDominates) 302 DivInst->moveBefore(RemInst); 303 Mul->insertAfter(RemInst); 304 Sub->insertAfter(Mul); 305 306 // Now kill the explicit remainder. We have replaced it with: 307 // (sub X, (mul (div X, Y), Y) 308 Sub->setName(RemInst->getName() + ".decomposed"); 309 Instruction *OrigRemInst = RemInst; 310 // Update AssertingVH<> with new instruction so it doesn't assert. 311 RemInst = Sub; 312 // And replace the original instruction with the new one. 313 OrigRemInst->replaceAllUsesWith(Sub); 314 OrigRemInst->eraseFromParent(); 315 NumDecomposed++; 316 } 317 Changed = true; 318 } 319 320 return Changed; 321 } 322 323 // Pass manager boilerplate below here. 324 325 namespace { 326 struct DivRemPairsLegacyPass : public FunctionPass { 327 static char ID; 328 DivRemPairsLegacyPass() : FunctionPass(ID) { 329 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry()); 330 } 331 332 void getAnalysisUsage(AnalysisUsage &AU) const override { 333 AU.addRequired<DominatorTreeWrapperPass>(); 334 AU.addRequired<TargetTransformInfoWrapperPass>(); 335 AU.setPreservesCFG(); 336 AU.addPreserved<DominatorTreeWrapperPass>(); 337 AU.addPreserved<GlobalsAAWrapperPass>(); 338 FunctionPass::getAnalysisUsage(AU); 339 } 340 341 bool runOnFunction(Function &F) override { 342 if (skipFunction(F)) 343 return false; 344 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 345 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 346 return optimizeDivRem(F, TTI, DT); 347 } 348 }; 349 } // namespace 350 351 char DivRemPairsLegacyPass::ID = 0; 352 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs", 353 "Hoist/decompose integer division and remainder", false, 354 false) 355 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 356 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs", 357 "Hoist/decompose integer division and remainder", false, 358 false) 359 FunctionPass *llvm::createDivRemPairsPass() { 360 return new DivRemPairsLegacyPass(); 361 } 362 363 PreservedAnalyses DivRemPairsPass::run(Function &F, 364 FunctionAnalysisManager &FAM) { 365 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F); 366 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); 367 if (!optimizeDivRem(F, TTI, DT)) 368 return PreservedAnalyses::all(); 369 // TODO: This pass just hoists/replaces math ops - all analyses are preserved? 370 PreservedAnalyses PA; 371 PA.preserveSet<CFGAnalyses>(); 372 PA.preserve<GlobalsAA>(); 373 return PA; 374 } 375