1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses (including unused constants) 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // 13 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 14 // we scan linearly through values, removing unused ones as we go. The problem 15 // is that this may cause other earlier values to become unused. To make sure 16 // that we get them all, we iterate until things stop changing. Instead, when 17 // removing a value, recheck all of its operands to see if they are now unused. 18 // Piece of cake, and more efficient as well. 19 // 20 // Note, this is not trivial, because we have to worry about invalidating 21 // iterators. :( 22 // 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Optimizations/DCE.h" 26 #include "llvm/Support/STLExtras.h" 27 #include "llvm/Module.h" 28 #include "llvm/Method.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/iTerminators.h" 31 #include "llvm/iOther.h" 32 #include "llvm/Assembly/Writer.h" 33 #include "llvm/CFG.h" 34 #include <algorithm> 35 36 using namespace cfg; 37 38 struct ConstPoolDCE { 39 enum { EndOffs = 0 }; 40 static bool isDCEable(const ConstPoolVal *CPV) { 41 // TODO: The bytecode writer requires that all used types are in the 42 // constant pool for the current method. This is messy and is really 43 // irritating. FIXME 44 return CPV->getType() != Type::TypeTy; // Don't DCE Type plane constants! 45 } 46 }; 47 48 struct BasicBlockDCE { 49 enum { EndOffs = 1 }; 50 static bool isDCEable(const Instruction *I) { 51 return !I->hasSideEffects(); 52 } 53 }; 54 55 56 template<class Container, class DCEController> 57 static bool RemoveUnusedDefs(Container &Vals, DCEController DCEControl) { 58 bool Changed = false; 59 int Offset = DCEController::EndOffs; 60 61 for (typename Container::iterator DI = Vals.begin(); 62 DI != Vals.end()-Offset; ) { 63 // Look for un"used" definitions... 64 if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) { 65 // Bye bye 66 //cerr << "Removing: " << *DI; 67 delete Vals.remove(DI); 68 Changed = true; 69 } else { 70 ++DI; 71 } 72 } 73 return Changed; 74 } 75 76 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 77 // a single predecessor. This means that the PHI node must only have a single 78 // RHS value and can be eliminated. 79 // 80 // This routine is very simple because we know that PHI nodes must be the first 81 // things in a basic block, if they are present. 82 // 83 static bool RemoveSingularPHIs(BasicBlock *BB) { 84 pred_iterator PI(pred_begin(BB)); 85 if (PI == pred_end(BB) || ++PI != pred_end(BB)) 86 return false; // More than one predecessor... 87 88 Instruction *I = BB->front(); 89 if (!I->isPHINode()) return false; // No PHI nodes 90 91 //cerr << "Killing PHIs from " << BB; 92 //cerr << "Pred #0 = " << *pred_begin(BB); 93 94 //cerr << "Method == " << BB->getParent(); 95 96 do { 97 PHINode *PN = (PHINode*)I; 98 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 99 Value *V = PN->getOperand(0); 100 101 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 102 delete BB->getInstList().remove(BB->begin()); 103 104 I = BB->front(); 105 } while (I->isPHINode()); 106 107 return true; // Yes, we nuked at least one phi node 108 } 109 110 bool opt::DoRemoveUnusedConstants(SymTabValue *S) { 111 bool Changed = false; 112 ConstantPool &CP = S->getConstantPool(); 113 for (ConstantPool::plane_iterator PI = CP.begin(); PI != CP.end(); ++PI) 114 Changed |= RemoveUnusedDefs(**PI, ConstPoolDCE()); 115 return Changed; 116 } 117 118 static void ReplaceUsesWithConstant(Instruction *I) { 119 // Get the method level constant pool 120 ConstantPool &CP = I->getParent()->getParent()->getConstantPool(); 121 122 ConstPoolVal *CPV = 0; 123 ConstantPool::PlaneType *P; 124 if (!CP.getPlane(I->getType(), P)) { // Does plane exist? 125 // Yes, is it empty? 126 if (!P->empty()) CPV = P->front(); 127 } 128 129 if (CPV == 0) { // We don't have an existing constant to reuse. Just add one. 130 CPV = ConstPoolVal::getNullConstant(I->getType()); // Create a new constant 131 132 // Add the new value to the constant pool... 133 CP.insert(CPV); 134 } 135 136 // Make all users of this instruction reference the constant instead 137 I->replaceAllUsesWith(CPV); 138 } 139 140 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 141 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 142 // have extra slots added to them to hold the merge edges from BB's 143 // predecessors. 144 // 145 // Assumption: BB is the single predecessor of Succ. 146 // 147 static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 148 assert(Succ->front()->isPHINode() && "Only works on PHId BBs!"); 149 150 // If there is more than one predecessor, and there are PHI nodes in 151 // the successor, then we need to add incoming edges for the PHI nodes 152 // 153 const vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB)); 154 155 BasicBlock::iterator I = Succ->begin(); 156 do { // Loop over all of the PHI nodes in the successor BB 157 PHINode *PN = (PHINode*)*I; 158 Value *OldVal = PN->removeIncomingValue(BB); 159 assert(OldVal && "No entry in PHI for Pred BB!"); 160 161 for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 162 End = BBPreds.end(); PredI != End; ++PredI) { 163 // Add an incoming value for each of the new incoming values... 164 PN->addIncoming(OldVal, *PredI); 165 } 166 167 ++I; 168 } while ((*I)->isPHINode()); 169 } 170 171 172 // SimplifyCFG - This function is used to do simplification of a CFG. For 173 // example, it adjusts branches to branches to eliminate the extra hop, it 174 // eliminates unreachable basic blocks, and does other "peephole" optimization 175 // of the CFG. It returns true if a modification was made, and returns an 176 // iterator that designates the first element remaining after the block that 177 // was deleted. 178 // 179 // WARNING: The entry node of a method may not be simplified. 180 // 181 bool opt::SimplifyCFG(Method::iterator &BBIt) { 182 assert(*BBIt && (*BBIt)->getParent() && "Block not embedded in method!"); 183 BasicBlock *BB = *BBIt; 184 Method *M = BB->getParent(); 185 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 186 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 187 188 // Remove basic blocks that have no predecessors... which are unreachable. 189 if (pred_begin(BB) == pred_end(BB) && 190 !BB->hasConstantPoolReferences()) { 191 //cerr << "Removing BB: \n" << BB; 192 193 // Loop through all of our successors and make sure they know that one 194 // of their predecessors is going away. 195 for_each(succ_begin(BB), succ_end(BB), 196 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 197 198 while (!BB->empty()) { 199 Instruction *I = BB->back(); 200 // If this instruction is used, replace uses with an arbitrary 201 // constant value. Because control flow can't get here, we don't care 202 // what we replace the value with. Note that since this block is 203 // unreachable, and all values contained within it must dominate their 204 // uses, that all uses will eventually be removed. 205 if (!I->use_empty()) ReplaceUsesWithConstant(I); 206 207 // Remove the instruction from the basic block 208 delete BB->getInstList().pop_back(); 209 } 210 delete M->getBasicBlocks().remove(BBIt); 211 return true; 212 } 213 214 // Check to see if this block has no instructions and only a single 215 // successor. If so, replace block references with successor. 216 succ_iterator SI(succ_begin(BB)); 217 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? 218 Instruction *I = BB->front(); 219 if (I->isTerminator()) { // Terminator is the only instruction! 220 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor 221 //cerr << "Killing Trivial BB: \n" << BB; 222 223 if (Succ != BB) { // Arg, don't hurt infinite loops! 224 if (Succ->front()->isPHINode()) { 225 // If our successor has PHI nodes, then we need to update them to 226 // include entries for BB's predecessors, not for BB itself. 227 // 228 PropogatePredecessorsForPHIs(BB, Succ); 229 } 230 231 BB->replaceAllUsesWith(Succ); 232 BB = M->getBasicBlocks().remove(BBIt); 233 234 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 235 Succ->setName(BB->getName()); 236 delete BB; // Delete basic block 237 238 //cerr << "Method after removal: \n" << M; 239 return true; 240 } 241 } 242 } 243 244 // Merge basic blocks into their predecessor if there is only one pred, 245 // and if there is only one successor of the predecessor. 246 pred_iterator PI(pred_begin(BB)); 247 if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? 248 ++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) { 249 BasicBlock *Pred = *pred_begin(BB); 250 TerminatorInst *Term = Pred->getTerminator(); 251 assert(Term != 0 && "malformed basic block without terminator!"); 252 253 // Does the predecessor block only have a single successor? 254 succ_iterator SI(succ_begin(Pred)); 255 if (++SI == succ_end(Pred)) { 256 //cerr << "Merging: " << BB << "into: " << Pred; 257 258 // Delete the unconditianal branch from the predecessor... 259 BasicBlock::iterator DI = Pred->end(); 260 assert(Pred->getTerminator() && 261 "Degenerate basic block encountered!"); // Empty bb??? 262 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 263 264 // Move all definitions in the succecessor to the predecessor... 265 while (!BB->empty()) { 266 DI = BB->begin(); 267 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 268 Pred->getInstList().push_back(Def); // Add to end... 269 } 270 271 // Remove basic block from the method... and advance iterator to the 272 // next valid block... 273 BB = M->getBasicBlocks().remove(BBIt); 274 275 // Make all PHI nodes that refered to BB now refer to Pred as their 276 // source... 277 BB->replaceAllUsesWith(Pred); 278 279 // Inherit predecessors name if it exists... 280 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 281 282 delete BB; // You ARE the weakest link... goodbye 283 return true; 284 } 285 } 286 287 return false; 288 } 289 290 static bool DoDCEPass(Method *M) { 291 Method::iterator BBIt, BBEnd = M->end(); 292 if (M->begin() == BBEnd) return false; // Nothing to do 293 bool Changed = false; 294 295 // Loop through now and remove instructions that have no uses... 296 for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { 297 Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE()); 298 Changed |= RemoveSingularPHIs(*BBIt); 299 } 300 301 // Loop over all of the basic blocks (except the first one) and remove them 302 // if they are unneeded... 303 // 304 for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { 305 if (opt::SimplifyCFG(BBIt)) { 306 Changed = true; 307 } else { 308 ++BBIt; 309 } 310 } 311 312 // Remove unused constants 313 return Changed | opt::DoRemoveUnusedConstants(M); 314 } 315 316 317 // It is possible that we may require multiple passes over the code to fully 318 // eliminate dead code. Iterate until we are done. 319 // 320 bool opt::DoDeadCodeElimination(Method *M) { 321 bool Changed = false; 322 while (DoDCEPass(M)) Changed = true; 323 return Changed; 324 } 325 326 bool opt::DoDeadCodeElimination(Module *C) { 327 bool Val = C->reduceApply(DoDeadCodeElimination); 328 329 while (DoRemoveUnusedConstants(C)) Val = true; 330 return Val; 331 } 332