1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // * Eliminates method prototypes that are not referenced 13 // 14 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 15 // we scan linearly through values, removing unused ones as we go. The problem 16 // is that this may cause other earlier values to become unused. To make sure 17 // that we get them all, we iterate until things stop changing. Instead, when 18 // removing a value, recheck all of its operands to see if they are now unused. 19 // Piece of cake, and more efficient as well. 20 // 21 // Note, this is not trivial, because we have to worry about invalidating 22 // iterators. :( 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/DCE.h" 27 #include "llvm/Module.h" 28 #include "llvm/GlobalVariable.h" 29 #include "llvm/Function.h" 30 #include "llvm/BasicBlock.h" 31 #include "llvm/iTerminators.h" 32 #include "llvm/iPHINode.h" 33 #include "llvm/ConstantVals.h" 34 #include "llvm/Support/CFG.h" 35 #include "llvm/Pass.h" 36 #include "Support/STLExtras.h" 37 #include <algorithm> 38 39 // dceInstruction - Inspect the instruction at *BBI and figure out if it's 40 // [trivially] dead. If so, remove the instruction and update the iterator 41 // to point to the instruction that immediately succeeded the original 42 // instruction. 43 // 44 bool dceInstruction(BasicBlock::InstListType &BBIL, 45 BasicBlock::iterator &BBI) { 46 // Look for un"used" definitions... 47 if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() && 48 !isa<TerminatorInst>(*BBI)) { 49 delete BBIL.remove(BBI); // Bye bye 50 return true; 51 } 52 return false; 53 } 54 55 static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) { 56 bool Changed = false; 57 for (BasicBlock::InstListType::iterator DI = Vals.begin(); 58 DI != Vals.end(); ) 59 if (dceInstruction(Vals, DI)) 60 Changed = true; 61 else 62 ++DI; 63 return Changed; 64 } 65 66 struct DeadInstElimination : public BasicBlockPass { 67 virtual bool runOnBasicBlock(BasicBlock *BB) { 68 return RemoveUnusedDefs(BB->getInstList()); 69 } 70 }; 71 72 Pass *createDeadInstEliminationPass() { 73 return new DeadInstElimination(); 74 } 75 76 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 77 // a single predecessor. This means that the PHI node must only have a single 78 // RHS value and can be eliminated. 79 // 80 // This routine is very simple because we know that PHI nodes must be the first 81 // things in a basic block, if they are present. 82 // 83 static bool RemoveSingularPHIs(BasicBlock *BB) { 84 pred_iterator PI(pred_begin(BB)); 85 if (PI == pred_end(BB) || ++PI != pred_end(BB)) 86 return false; // More than one predecessor... 87 88 Instruction *I = BB->front(); 89 if (!isa<PHINode>(I)) return false; // No PHI nodes 90 91 //cerr << "Killing PHIs from " << BB; 92 //cerr << "Pred #0 = " << *pred_begin(BB); 93 94 //cerr << "Function == " << BB->getParent(); 95 96 do { 97 PHINode *PN = cast<PHINode>(I); 98 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 99 Value *V = PN->getOperand(0); 100 101 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 102 delete BB->getInstList().remove(BB->begin()); 103 104 I = BB->front(); 105 } while (isa<PHINode>(I)); 106 107 return true; // Yes, we nuked at least one phi node 108 } 109 110 static void ReplaceUsesWithConstant(Instruction *I) { 111 Constant *CPV = Constant::getNullConstant(I->getType()); 112 113 // Make all users of this instruction reference the constant instead 114 I->replaceAllUsesWith(CPV); 115 } 116 117 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 118 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 119 // have extra slots added to them to hold the merge edges from BB's 120 // predecessors. This function returns true (failure) if the Succ BB already 121 // has a predecessor that is a predecessor of BB. 122 // 123 // Assumption: Succ is the single successor for BB. 124 // 125 static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 126 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 127 assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!"); 128 129 // If there is more than one predecessor, and there are PHI nodes in 130 // the successor, then we need to add incoming edges for the PHI nodes 131 // 132 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB)); 133 134 // Check to see if one of the predecessors of BB is already a predecessor of 135 // Succ. If so, we cannot do the transformation! 136 // 137 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); 138 PI != PE; ++PI) { 139 if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) 140 return true; 141 } 142 143 BasicBlock::iterator I = Succ->begin(); 144 do { // Loop over all of the PHI nodes in the successor BB 145 PHINode *PN = cast<PHINode>(*I); 146 Value *OldVal = PN->removeIncomingValue(BB); 147 assert(OldVal && "No entry in PHI for Pred BB!"); 148 149 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 150 End = BBPreds.end(); PredI != End; ++PredI) { 151 // Add an incoming value for each of the new incoming values... 152 PN->addIncoming(OldVal, *PredI); 153 } 154 155 ++I; 156 } while (isa<PHINode>(*I)); 157 return false; 158 } 159 160 161 // SimplifyCFG - This function is used to do simplification of a CFG. For 162 // example, it adjusts branches to branches to eliminate the extra hop, it 163 // eliminates unreachable basic blocks, and does other "peephole" optimization 164 // of the CFG. It returns true if a modification was made, and returns an 165 // iterator that designates the first element remaining after the block that 166 // was deleted. 167 // 168 // WARNING: The entry node of a method may not be simplified. 169 // 170 bool SimplifyCFG(Function::iterator &BBIt) { 171 BasicBlock *BB = *BBIt; 172 Function *M = BB->getParent(); 173 174 assert(BB && BB->getParent() && "Block not embedded in method!"); 175 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 176 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 177 178 179 // Remove basic blocks that have no predecessors... which are unreachable. 180 if (pred_begin(BB) == pred_end(BB) && 181 !BB->hasConstantReferences()) { 182 //cerr << "Removing BB: \n" << BB; 183 184 // Loop through all of our successors and make sure they know that one 185 // of their predecessors is going away. 186 for_each(succ_begin(BB), succ_end(BB), 187 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 188 189 while (!BB->empty()) { 190 Instruction *I = BB->back(); 191 // If this instruction is used, replace uses with an arbitrary 192 // constant value. Because control flow can't get here, we don't care 193 // what we replace the value with. Note that since this block is 194 // unreachable, and all values contained within it must dominate their 195 // uses, that all uses will eventually be removed. 196 if (!I->use_empty()) ReplaceUsesWithConstant(I); 197 198 // Remove the instruction from the basic block 199 delete BB->getInstList().pop_back(); 200 } 201 delete M->getBasicBlocks().remove(BBIt); 202 return true; 203 } 204 205 // Check to see if this block has no instructions and only a single 206 // successor. If so, replace block references with successor. 207 succ_iterator SI(succ_begin(BB)); 208 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? 209 if (BB->front()->isTerminator()) { // Terminator is the only instruction! 210 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor 211 //cerr << "Killing Trivial BB: \n" << BB; 212 213 if (Succ != BB) { // Arg, don't hurt infinite loops! 214 // If our successor has PHI nodes, then we need to update them to 215 // include entries for BB's predecessors, not for BB itself. 216 // Be careful though, if this transformation fails (returns true) then 217 // we cannot do this transformation! 218 // 219 if (!isa<PHINode>(Succ->front()) || 220 !PropogatePredecessorsForPHIs(BB, Succ)) { 221 222 BB->replaceAllUsesWith(Succ); 223 BB = M->getBasicBlocks().remove(BBIt); 224 225 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 226 Succ->setName(BB->getName()); 227 delete BB; // Delete basic block 228 229 //cerr << "Function after removal: \n" << M; 230 return true; 231 } 232 } 233 } 234 } 235 236 // Merge basic blocks into their predecessor if there is only one pred, 237 // and if there is only one successor of the predecessor. 238 pred_iterator PI(pred_begin(BB)); 239 if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? 240 ++PI == pred_end(BB) && !BB->hasConstantReferences()) { 241 BasicBlock *Pred = *pred_begin(BB); 242 TerminatorInst *Term = Pred->getTerminator(); 243 assert(Term != 0 && "malformed basic block without terminator!"); 244 245 // Does the predecessor block only have a single successor? 246 succ_iterator SI(succ_begin(Pred)); 247 if (++SI == succ_end(Pred)) { 248 //cerr << "Merging: " << BB << "into: " << Pred; 249 250 // Delete the unconditianal branch from the predecessor... 251 BasicBlock::iterator DI = Pred->end(); 252 assert(Pred->getTerminator() && 253 "Degenerate basic block encountered!"); // Empty bb??? 254 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 255 256 // Move all definitions in the succecessor to the predecessor... 257 while (!BB->empty()) { 258 DI = BB->begin(); 259 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 260 Pred->getInstList().push_back(Def); // Add to end... 261 } 262 263 // Remove basic block from the method... and advance iterator to the 264 // next valid block... 265 BB = M->getBasicBlocks().remove(BBIt); 266 267 // Make all PHI nodes that refered to BB now refer to Pred as their 268 // source... 269 BB->replaceAllUsesWith(Pred); 270 271 // Inherit predecessors name if it exists... 272 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 273 274 delete BB; // You ARE the weakest link... goodbye 275 return true; 276 } 277 } 278 279 return false; 280 } 281 282 static bool DoDCEPass(Function *F) { 283 Function::iterator BBIt, BBEnd = F->end(); 284 if (F->begin() == BBEnd) return false; // Nothing to do 285 bool Changed = false; 286 287 // Loop through now and remove instructions that have no uses... 288 for (BBIt = F->begin(); BBIt != BBEnd; ++BBIt) { 289 Changed |= RemoveUnusedDefs((*BBIt)->getInstList()); 290 Changed |= RemoveSingularPHIs(*BBIt); 291 } 292 293 // Loop over all of the basic blocks (except the first one) and remove them 294 // if they are unneeded... 295 // 296 for (BBIt = F->begin(), ++BBIt; BBIt != F->end(); ) { 297 if (SimplifyCFG(BBIt)) { 298 Changed = true; 299 } else { 300 ++BBIt; 301 } 302 } 303 304 return Changed; 305 } 306 307 // Remove unused global values - This removes unused global values of no 308 // possible value. This currently includes unused method prototypes and 309 // unitialized global variables. 310 // 311 static bool RemoveUnusedGlobalValues(Module *Mod) { 312 bool Changed = false; 313 314 for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { 315 Function *Meth = *MI; 316 if (Meth->isExternal() && Meth->use_size() == 0) { 317 // No references to prototype? 318 //cerr << "Removing method proto: " << Meth->getName() << endl; 319 delete Mod->getFunctionList().remove(MI); // Remove prototype 320 // Remove moves iterator to point to the next one automatically 321 Changed = true; 322 } else { 323 ++MI; // Skip prototype in use. 324 } 325 } 326 327 for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) { 328 GlobalVariable *GV = *GI; 329 if (!GV->hasInitializer() && GV->use_size() == 0) { 330 // No references to uninitialized global variable? 331 //cerr << "Removing global var: " << GV->getName() << endl; 332 delete Mod->getGlobalList().remove(GI); 333 // Remove moves iterator to point to the next one automatically 334 Changed = true; 335 } else { 336 ++GI; 337 } 338 } 339 340 return Changed; 341 } 342 343 namespace { 344 struct DeadCodeElimination : public MethodPass { 345 346 // Pass Interface... 347 virtual bool doInitialization(Module *M) { 348 return RemoveUnusedGlobalValues(M); 349 } 350 351 // It is possible that we may require multiple passes over the code to fully 352 // eliminate dead code. Iterate until we are done. 353 // 354 virtual bool runOnMethod(Function *F) { 355 bool Changed = false; 356 while (DoDCEPass(F)) Changed = true; 357 return Changed; 358 } 359 360 virtual bool doFinalization(Module *M) { 361 return RemoveUnusedGlobalValues(M); 362 } 363 }; 364 } 365 366 Pass *createDeadCodeEliminationPass() { 367 return new DeadCodeElimination(); 368 } 369