1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses (including unused constants) 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // * Eliminates method prototypes that are not referenced 13 // 14 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 15 // we scan linearly through values, removing unused ones as we go. The problem 16 // is that this may cause other earlier values to become unused. To make sure 17 // that we get them all, we iterate until things stop changing. Instead, when 18 // removing a value, recheck all of its operands to see if they are now unused. 19 // Piece of cake, and more efficient as well. 20 // 21 // Note, this is not trivial, because we have to worry about invalidating 22 // iterators. :( 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Optimizations/DCE.h" 27 #include "llvm/Support/STLExtras.h" 28 #include "llvm/Module.h" 29 #include "llvm/GlobalVariable.h" 30 #include "llvm/Method.h" 31 #include "llvm/BasicBlock.h" 32 #include "llvm/iTerminators.h" 33 #include "llvm/iOther.h" 34 #include "llvm/Assembly/Writer.h" 35 #include <algorithm> 36 37 // dceInstruction - Inspect the instruction at *BBI and figure out if it's 38 // [trivially] dead. If so, remove the instruction and update the iterator 39 // to point to the instruction that immediately succeeded the original 40 // instruction. 41 // 42 bool opt::DeadCodeElimination::dceInstruction(BasicBlock::InstListType &BBIL, 43 BasicBlock::iterator &BBI) { 44 // Look for un"used" definitions... 45 if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() && 46 !isa<TerminatorInst>(*BBI)) { 47 delete BBIL.remove(BBI); // Bye bye 48 return true; 49 } 50 return false; 51 } 52 53 static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) { 54 bool Changed = false; 55 for (BasicBlock::InstListType::iterator DI = Vals.begin(); 56 DI != Vals.end(); ) 57 if (opt::DeadCodeElimination::dceInstruction(Vals, DI)) 58 Changed = true; 59 else 60 ++DI; 61 return Changed; 62 } 63 64 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 65 // a single predecessor. This means that the PHI node must only have a single 66 // RHS value and can be eliminated. 67 // 68 // This routine is very simple because we know that PHI nodes must be the first 69 // things in a basic block, if they are present. 70 // 71 static bool RemoveSingularPHIs(BasicBlock *BB) { 72 BasicBlock::pred_iterator PI(BB->pred_begin()); 73 if (PI == BB->pred_end() || ++PI != BB->pred_end()) 74 return false; // More than one predecessor... 75 76 Instruction *I = BB->front(); 77 if (!isa<PHINode>(I)) return false; // No PHI nodes 78 79 //cerr << "Killing PHIs from " << BB; 80 //cerr << "Pred #0 = " << *BB->pred_begin(); 81 82 //cerr << "Method == " << BB->getParent(); 83 84 do { 85 PHINode *PN = cast<PHINode>(I); 86 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 87 Value *V = PN->getOperand(0); 88 89 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 90 delete BB->getInstList().remove(BB->begin()); 91 92 I = BB->front(); 93 } while (isa<PHINode>(I)); 94 95 return true; // Yes, we nuked at least one phi node 96 } 97 98 static void ReplaceUsesWithConstant(Instruction *I) { 99 ConstPoolVal *CPV = ConstPoolVal::getNullConstant(I->getType()); 100 101 // Make all users of this instruction reference the constant instead 102 I->replaceAllUsesWith(CPV); 103 } 104 105 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 106 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 107 // have extra slots added to them to hold the merge edges from BB's 108 // predecessors. 109 // 110 // Assumption: BB is the single predecessor of Succ. 111 // 112 static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 113 assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!"); 114 115 // If there is more than one predecessor, and there are PHI nodes in 116 // the successor, then we need to add incoming edges for the PHI nodes 117 // 118 const vector<BasicBlock*> BBPreds(BB->pred_begin(), BB->pred_end()); 119 120 BasicBlock::iterator I = Succ->begin(); 121 do { // Loop over all of the PHI nodes in the successor BB 122 PHINode *PN = cast<PHINode>(*I); 123 Value *OldVal = PN->removeIncomingValue(BB); 124 assert(OldVal && "No entry in PHI for Pred BB!"); 125 126 for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 127 End = BBPreds.end(); PredI != End; ++PredI) { 128 // Add an incoming value for each of the new incoming values... 129 PN->addIncoming(OldVal, *PredI); 130 } 131 132 ++I; 133 } while (isa<PHINode>(*I)); 134 } 135 136 137 // SimplifyCFG - This function is used to do simplification of a CFG. For 138 // example, it adjusts branches to branches to eliminate the extra hop, it 139 // eliminates unreachable basic blocks, and does other "peephole" optimization 140 // of the CFG. It returns true if a modification was made, and returns an 141 // iterator that designates the first element remaining after the block that 142 // was deleted. 143 // 144 // WARNING: The entry node of a method may not be simplified. 145 // 146 bool opt::SimplifyCFG(Method::iterator &BBIt) { 147 BasicBlock *BB = *BBIt; 148 Method *M = BB->getParent(); 149 150 assert(BB && BB->getParent() && "Block not embedded in method!"); 151 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 152 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 153 154 155 // Remove basic blocks that have no predecessors... which are unreachable. 156 if (BB->pred_begin() == BB->pred_end() && 157 !BB->hasConstantPoolReferences()) { 158 //cerr << "Removing BB: \n" << BB; 159 160 // Loop through all of our successors and make sure they know that one 161 // of their predecessors is going away. 162 for_each(BB->succ_begin(), BB->succ_end(), 163 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 164 165 while (!BB->empty()) { 166 Instruction *I = BB->back(); 167 // If this instruction is used, replace uses with an arbitrary 168 // constant value. Because control flow can't get here, we don't care 169 // what we replace the value with. Note that since this block is 170 // unreachable, and all values contained within it must dominate their 171 // uses, that all uses will eventually be removed. 172 if (!I->use_empty()) ReplaceUsesWithConstant(I); 173 174 // Remove the instruction from the basic block 175 delete BB->getInstList().pop_back(); 176 } 177 delete M->getBasicBlocks().remove(BBIt); 178 return true; 179 } 180 181 // Check to see if this block has no instructions and only a single 182 // successor. If so, replace block references with successor. 183 BasicBlock::succ_iterator SI(BB->succ_begin()); 184 if (SI != BB->succ_end() && ++SI == BB->succ_end()) { // One succ? 185 Instruction *I = BB->front(); 186 if (I->isTerminator()) { // Terminator is the only instruction! 187 BasicBlock *Succ = *BB->succ_begin(); // There is exactly one successor 188 //cerr << "Killing Trivial BB: \n" << BB; 189 190 if (Succ != BB) { // Arg, don't hurt infinite loops! 191 if (isa<PHINode>(Succ->front())) { 192 // If our successor has PHI nodes, then we need to update them to 193 // include entries for BB's predecessors, not for BB itself. 194 // 195 PropogatePredecessorsForPHIs(BB, Succ); 196 } 197 198 BB->replaceAllUsesWith(Succ); 199 BB = M->getBasicBlocks().remove(BBIt); 200 201 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 202 Succ->setName(BB->getName()); 203 delete BB; // Delete basic block 204 205 //cerr << "Method after removal: \n" << M; 206 return true; 207 } 208 } 209 } 210 211 // Merge basic blocks into their predecessor if there is only one pred, 212 // and if there is only one successor of the predecessor. 213 BasicBlock::pred_iterator PI(BB->pred_begin()); 214 if (PI != BB->pred_end() && *PI != BB && // Not empty? Not same BB? 215 ++PI == BB->pred_end() && !BB->hasConstantPoolReferences()) { 216 BasicBlock *Pred = *BB->pred_begin(); 217 TerminatorInst *Term = Pred->getTerminator(); 218 assert(Term != 0 && "malformed basic block without terminator!"); 219 220 // Does the predecessor block only have a single successor? 221 BasicBlock::succ_iterator SI(Pred->succ_begin()); 222 if (++SI == Pred->succ_end()) { 223 //cerr << "Merging: " << BB << "into: " << Pred; 224 225 // Delete the unconditianal branch from the predecessor... 226 BasicBlock::iterator DI = Pred->end(); 227 assert(Pred->getTerminator() && 228 "Degenerate basic block encountered!"); // Empty bb??? 229 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 230 231 // Move all definitions in the succecessor to the predecessor... 232 while (!BB->empty()) { 233 DI = BB->begin(); 234 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 235 Pred->getInstList().push_back(Def); // Add to end... 236 } 237 238 // Remove basic block from the method... and advance iterator to the 239 // next valid block... 240 BB = M->getBasicBlocks().remove(BBIt); 241 242 // Make all PHI nodes that refered to BB now refer to Pred as their 243 // source... 244 BB->replaceAllUsesWith(Pred); 245 246 // Inherit predecessors name if it exists... 247 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 248 249 delete BB; // You ARE the weakest link... goodbye 250 return true; 251 } 252 } 253 254 return false; 255 } 256 257 static bool DoDCEPass(Method *M) { 258 Method::iterator BBIt, BBEnd = M->end(); 259 if (M->begin() == BBEnd) return false; // Nothing to do 260 bool Changed = false; 261 262 // Loop through now and remove instructions that have no uses... 263 for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { 264 Changed |= RemoveUnusedDefs((*BBIt)->getInstList()); 265 Changed |= RemoveSingularPHIs(*BBIt); 266 } 267 268 // Loop over all of the basic blocks (except the first one) and remove them 269 // if they are unneeded... 270 // 271 for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { 272 if (opt::SimplifyCFG(BBIt)) { 273 Changed = true; 274 } else { 275 ++BBIt; 276 } 277 } 278 279 return Changed; 280 } 281 282 283 // It is possible that we may require multiple passes over the code to fully 284 // eliminate dead code. Iterate until we are done. 285 // 286 bool opt::DeadCodeElimination::doDCE(Method *M) { 287 bool Changed = false; 288 while (DoDCEPass(M)) Changed = true; 289 return Changed; 290 } 291 292 bool opt::DeadCodeElimination::RemoveUnusedGlobalValues(Module *Mod) { 293 bool Changed = false; 294 295 for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { 296 Method *Meth = *MI; 297 if (Meth->isExternal() && Meth->use_size() == 0) { 298 // No references to prototype? 299 //cerr << "Removing method proto: " << Meth->getName() << endl; 300 delete Mod->getMethodList().remove(MI); // Remove prototype 301 // Remove moves iterator to point to the next one automatically 302 Changed = true; 303 } else { 304 ++MI; // Skip prototype in use. 305 } 306 } 307 308 for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) { 309 GlobalVariable *GV = *GI; 310 if (!GV->hasInitializer() && GV->use_size() == 0) { 311 // No references to uninitialized global variable? 312 //cerr << "Removing global var: " << GV->getName() << endl; 313 delete Mod->getGlobalList().remove(GI); 314 // Remove moves iterator to point to the next one automatically 315 Changed = true; 316 } else { 317 ++GI; 318 } 319 } 320 321 return Changed; 322 } 323