1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses (including unused constants) 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // * Eliminates method prototypes that are not referenced 13 // 14 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 15 // we scan linearly through values, removing unused ones as we go. The problem 16 // is that this may cause other earlier values to become unused. To make sure 17 // that we get them all, we iterate until things stop changing. Instead, when 18 // removing a value, recheck all of its operands to see if they are now unused. 19 // Piece of cake, and more efficient as well. 20 // 21 // Note, this is not trivial, because we have to worry about invalidating 22 // iterators. :( 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Optimizations/DCE.h" 27 #include "llvm/Support/STLExtras.h" 28 #include "llvm/Module.h" 29 #include "llvm/GlobalVariable.h" 30 #include "llvm/Method.h" 31 #include "llvm/BasicBlock.h" 32 #include "llvm/iTerminators.h" 33 #include "llvm/iOther.h" 34 #include "llvm/Assembly/Writer.h" 35 #include <algorithm> 36 37 struct ConstPoolDCE { 38 enum { EndOffs = 0 }; 39 static bool isDCEable(const ConstPoolVal *CPV) { 40 // TODO: The bytecode writer requires that all used types are in the 41 // constant pool for the current method. This is messy and is really 42 // irritating. FIXME 43 return CPV->getType() != Type::TypeTy; // Don't DCE Type plane constants! 44 } 45 }; 46 47 struct BasicBlockDCE { 48 enum { EndOffs = 1 }; 49 static bool isDCEable(const Instruction *I) { 50 return !I->hasSideEffects(); 51 } 52 }; 53 54 55 template<class Container, class DCEController> 56 static bool RemoveUnusedDefs(Container &Vals, DCEController DCEControl) { 57 bool Changed = false; 58 int Offset = DCEController::EndOffs; 59 60 for (typename Container::iterator DI = Vals.begin(); 61 DI != Vals.end()-Offset; ) { 62 // Look for un"used" definitions... 63 if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) { 64 // Bye bye 65 //cerr << "Removing: " << *DI; 66 delete Vals.remove(DI); 67 Changed = true; 68 } else { 69 ++DI; 70 } 71 } 72 return Changed; 73 } 74 75 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 76 // a single predecessor. This means that the PHI node must only have a single 77 // RHS value and can be eliminated. 78 // 79 // This routine is very simple because we know that PHI nodes must be the first 80 // things in a basic block, if they are present. 81 // 82 static bool RemoveSingularPHIs(BasicBlock *BB) { 83 BasicBlock::pred_iterator PI(BB->pred_begin()); 84 if (PI == BB->pred_end() || ++PI != BB->pred_end()) 85 return false; // More than one predecessor... 86 87 Instruction *I = BB->front(); 88 if (!isa<PHINode>(I)) return false; // No PHI nodes 89 90 //cerr << "Killing PHIs from " << BB; 91 //cerr << "Pred #0 = " << *BB->pred_begin(); 92 93 //cerr << "Method == " << BB->getParent(); 94 95 do { 96 PHINode *PN = cast<PHINode>(I); 97 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 98 Value *V = PN->getOperand(0); 99 100 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 101 delete BB->getInstList().remove(BB->begin()); 102 103 I = BB->front(); 104 } while (isa<PHINode>(I)); 105 106 return true; // Yes, we nuked at least one phi node 107 } 108 109 static void ReplaceUsesWithConstant(Instruction *I) { 110 ConstPoolVal *CPV = ConstPoolVal::getNullConstant(I->getType()); 111 112 // Make all users of this instruction reference the constant instead 113 I->replaceAllUsesWith(CPV); 114 } 115 116 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 117 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 118 // have extra slots added to them to hold the merge edges from BB's 119 // predecessors. 120 // 121 // Assumption: BB is the single predecessor of Succ. 122 // 123 static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 124 assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!"); 125 126 // If there is more than one predecessor, and there are PHI nodes in 127 // the successor, then we need to add incoming edges for the PHI nodes 128 // 129 const vector<BasicBlock*> BBPreds(BB->pred_begin(), BB->pred_end()); 130 131 BasicBlock::iterator I = Succ->begin(); 132 do { // Loop over all of the PHI nodes in the successor BB 133 PHINode *PN = cast<PHINode>(*I); 134 Value *OldVal = PN->removeIncomingValue(BB); 135 assert(OldVal && "No entry in PHI for Pred BB!"); 136 137 for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 138 End = BBPreds.end(); PredI != End; ++PredI) { 139 // Add an incoming value for each of the new incoming values... 140 PN->addIncoming(OldVal, *PredI); 141 } 142 143 ++I; 144 } while (isa<PHINode>(*I)); 145 } 146 147 148 // SimplifyCFG - This function is used to do simplification of a CFG. For 149 // example, it adjusts branches to branches to eliminate the extra hop, it 150 // eliminates unreachable basic blocks, and does other "peephole" optimization 151 // of the CFG. It returns true if a modification was made, and returns an 152 // iterator that designates the first element remaining after the block that 153 // was deleted. 154 // 155 // WARNING: The entry node of a method may not be simplified. 156 // 157 bool opt::SimplifyCFG(Method::iterator &BBIt) { 158 BasicBlock *BB = *BBIt; 159 Method *M = BB->getParent(); 160 161 assert(BB && BB->getParent() && "Block not embedded in method!"); 162 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 163 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 164 165 166 // Remove basic blocks that have no predecessors... which are unreachable. 167 if (BB->pred_begin() == BB->pred_end() && 168 !BB->hasConstantPoolReferences()) { 169 //cerr << "Removing BB: \n" << BB; 170 171 // Loop through all of our successors and make sure they know that one 172 // of their predecessors is going away. 173 for_each(BB->succ_begin(), BB->succ_end(), 174 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 175 176 while (!BB->empty()) { 177 Instruction *I = BB->back(); 178 // If this instruction is used, replace uses with an arbitrary 179 // constant value. Because control flow can't get here, we don't care 180 // what we replace the value with. Note that since this block is 181 // unreachable, and all values contained within it must dominate their 182 // uses, that all uses will eventually be removed. 183 if (!I->use_empty()) ReplaceUsesWithConstant(I); 184 185 // Remove the instruction from the basic block 186 delete BB->getInstList().pop_back(); 187 } 188 delete M->getBasicBlocks().remove(BBIt); 189 return true; 190 } 191 192 // Check to see if this block has no instructions and only a single 193 // successor. If so, replace block references with successor. 194 BasicBlock::succ_iterator SI(BB->succ_begin()); 195 if (SI != BB->succ_end() && ++SI == BB->succ_end()) { // One succ? 196 Instruction *I = BB->front(); 197 if (I->isTerminator()) { // Terminator is the only instruction! 198 BasicBlock *Succ = *BB->succ_begin(); // There is exactly one successor 199 //cerr << "Killing Trivial BB: \n" << BB; 200 201 if (Succ != BB) { // Arg, don't hurt infinite loops! 202 if (isa<PHINode>(Succ->front())) { 203 // If our successor has PHI nodes, then we need to update them to 204 // include entries for BB's predecessors, not for BB itself. 205 // 206 PropogatePredecessorsForPHIs(BB, Succ); 207 } 208 209 BB->replaceAllUsesWith(Succ); 210 BB = M->getBasicBlocks().remove(BBIt); 211 212 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 213 Succ->setName(BB->getName()); 214 delete BB; // Delete basic block 215 216 //cerr << "Method after removal: \n" << M; 217 return true; 218 } 219 } 220 } 221 222 // Merge basic blocks into their predecessor if there is only one pred, 223 // and if there is only one successor of the predecessor. 224 BasicBlock::pred_iterator PI(BB->pred_begin()); 225 if (PI != BB->pred_end() && *PI != BB && // Not empty? Not same BB? 226 ++PI == BB->pred_end() && !BB->hasConstantPoolReferences()) { 227 BasicBlock *Pred = *BB->pred_begin(); 228 TerminatorInst *Term = Pred->getTerminator(); 229 assert(Term != 0 && "malformed basic block without terminator!"); 230 231 // Does the predecessor block only have a single successor? 232 BasicBlock::succ_iterator SI(Pred->succ_begin()); 233 if (++SI == Pred->succ_end()) { 234 //cerr << "Merging: " << BB << "into: " << Pred; 235 236 // Delete the unconditianal branch from the predecessor... 237 BasicBlock::iterator DI = Pred->end(); 238 assert(Pred->getTerminator() && 239 "Degenerate basic block encountered!"); // Empty bb??? 240 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 241 242 // Move all definitions in the succecessor to the predecessor... 243 while (!BB->empty()) { 244 DI = BB->begin(); 245 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 246 Pred->getInstList().push_back(Def); // Add to end... 247 } 248 249 // Remove basic block from the method... and advance iterator to the 250 // next valid block... 251 BB = M->getBasicBlocks().remove(BBIt); 252 253 // Make all PHI nodes that refered to BB now refer to Pred as their 254 // source... 255 BB->replaceAllUsesWith(Pred); 256 257 // Inherit predecessors name if it exists... 258 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 259 260 delete BB; // You ARE the weakest link... goodbye 261 return true; 262 } 263 } 264 265 return false; 266 } 267 268 static bool DoDCEPass(Method *M) { 269 Method::iterator BBIt, BBEnd = M->end(); 270 if (M->begin() == BBEnd) return false; // Nothing to do 271 bool Changed = false; 272 273 // Loop through now and remove instructions that have no uses... 274 for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { 275 Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE()); 276 Changed |= RemoveSingularPHIs(*BBIt); 277 } 278 279 // Loop over all of the basic blocks (except the first one) and remove them 280 // if they are unneeded... 281 // 282 for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { 283 if (opt::SimplifyCFG(BBIt)) { 284 Changed = true; 285 } else { 286 ++BBIt; 287 } 288 } 289 290 return Changed; 291 } 292 293 294 // It is possible that we may require multiple passes over the code to fully 295 // eliminate dead code. Iterate until we are done. 296 // 297 bool opt::DeadCodeElimination::doDCE(Method *M) { 298 bool Changed = false; 299 while (DoDCEPass(M)) Changed = true; 300 return Changed; 301 } 302 303 bool opt::DeadCodeElimination::RemoveUnusedGlobalValues(Module *Mod) { 304 bool Changed = false; 305 306 for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { 307 Method *Meth = *MI; 308 if (Meth->isExternal() && Meth->use_size() == 0) { 309 // No references to prototype? 310 //cerr << "Removing method proto: " << Meth->getName() << endl; 311 delete Mod->getMethodList().remove(MI); // Remove prototype 312 // Remove moves iterator to point to the next one automatically 313 Changed = true; 314 } else { 315 ++MI; // Skip prototype in use. 316 } 317 } 318 319 for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) { 320 GlobalVariable *GV = *GI; 321 if (!GV->hasInitializer() && GV->use_size() == 0) { 322 // No references to uninitialized global variable? 323 //cerr << "Removing global var: " << GV->getName() << endl; 324 delete Mod->getGlobalList().remove(GI); 325 // Remove moves iterator to point to the next one automatically 326 Changed = true; 327 } else { 328 ++GI; 329 } 330 } 331 332 return Changed; 333 } 334