1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // * Eliminates method prototypes that are not referenced 13 // 14 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 15 // we scan linearly through values, removing unused ones as we go. The problem 16 // is that this may cause other earlier values to become unused. To make sure 17 // that we get them all, we iterate until things stop changing. Instead, when 18 // removing a value, recheck all of its operands to see if they are now unused. 19 // Piece of cake, and more efficient as well. 20 // 21 // Note, this is not trivial, because we have to worry about invalidating 22 // iterators. :( 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/DCE.h" 27 #include "llvm/Module.h" 28 #include "llvm/GlobalVariable.h" 29 #include "llvm/Function.h" 30 #include "llvm/BasicBlock.h" 31 #include "llvm/iTerminators.h" 32 #include "llvm/iPHINode.h" 33 #include "llvm/ConstantVals.h" 34 #include "llvm/Support/CFG.h" 35 #include "llvm/Pass.h" 36 #include "Support/STLExtras.h" 37 #include <algorithm> 38 39 // dceInstruction - Inspect the instruction at *BBI and figure out if it's 40 // [trivially] dead. If so, remove the instruction and update the iterator 41 // to point to the instruction that immediately succeeded the original 42 // instruction. 43 // 44 bool dceInstruction(BasicBlock::InstListType &BBIL, 45 BasicBlock::iterator &BBI) { 46 // Look for un"used" definitions... 47 if ((*BBI)->use_empty() && !(*BBI)->hasSideEffects() && 48 !isa<TerminatorInst>(*BBI)) { 49 delete BBIL.remove(BBI); // Bye bye 50 return true; 51 } 52 return false; 53 } 54 55 static inline bool RemoveUnusedDefs(BasicBlock::InstListType &Vals) { 56 bool Changed = false; 57 for (BasicBlock::InstListType::iterator DI = Vals.begin(); 58 DI != Vals.end(); ) 59 if (dceInstruction(Vals, DI)) 60 Changed = true; 61 else 62 ++DI; 63 return Changed; 64 } 65 66 struct DeadInstElimination : public BasicBlockPass { 67 virtual bool runOnBasicBlock(BasicBlock *BB) { 68 return RemoveUnusedDefs(BB->getInstList()); 69 } 70 }; 71 72 Pass *createDeadInstEliminationPass() { 73 return new DeadInstElimination(); 74 } 75 76 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 77 // a single predecessor. This means that the PHI node must only have a single 78 // RHS value and can be eliminated. 79 // 80 // This routine is very simple because we know that PHI nodes must be the first 81 // things in a basic block, if they are present. 82 // 83 static bool RemoveSingularPHIs(BasicBlock *BB) { 84 pred_iterator PI(pred_begin(BB)); 85 if (PI == pred_end(BB) || ++PI != pred_end(BB)) 86 return false; // More than one predecessor... 87 88 Instruction *I = BB->front(); 89 if (!isa<PHINode>(I)) return false; // No PHI nodes 90 91 //cerr << "Killing PHIs from " << BB; 92 //cerr << "Pred #0 = " << *pred_begin(BB); 93 94 //cerr << "Function == " << BB->getParent(); 95 96 do { 97 PHINode *PN = cast<PHINode>(I); 98 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 99 Value *V = PN->getOperand(0); 100 101 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 102 delete BB->getInstList().remove(BB->begin()); 103 104 I = BB->front(); 105 } while (isa<PHINode>(I)); 106 107 return true; // Yes, we nuked at least one phi node 108 } 109 110 static void ReplaceUsesWithConstant(Instruction *I) { 111 // Make all users of this instruction reference the constant instead 112 I->replaceAllUsesWith(Constant::getNullValue(I->getType())); 113 } 114 115 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 116 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 117 // have extra slots added to them to hold the merge edges from BB's 118 // predecessors. This function returns true (failure) if the Succ BB already 119 // has a predecessor that is a predecessor of BB. 120 // 121 // Assumption: Succ is the single successor for BB. 122 // 123 static bool PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 124 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 125 assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!"); 126 127 // If there is more than one predecessor, and there are PHI nodes in 128 // the successor, then we need to add incoming edges for the PHI nodes 129 // 130 const std::vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB)); 131 132 // Check to see if one of the predecessors of BB is already a predecessor of 133 // Succ. If so, we cannot do the transformation! 134 // 135 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ); 136 PI != PE; ++PI) { 137 if (find(BBPreds.begin(), BBPreds.end(), *PI) != BBPreds.end()) 138 return true; 139 } 140 141 BasicBlock::iterator I = Succ->begin(); 142 do { // Loop over all of the PHI nodes in the successor BB 143 PHINode *PN = cast<PHINode>(*I); 144 Value *OldVal = PN->removeIncomingValue(BB); 145 assert(OldVal && "No entry in PHI for Pred BB!"); 146 147 for (std::vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 148 End = BBPreds.end(); PredI != End; ++PredI) { 149 // Add an incoming value for each of the new incoming values... 150 PN->addIncoming(OldVal, *PredI); 151 } 152 153 ++I; 154 } while (isa<PHINode>(*I)); 155 return false; 156 } 157 158 159 // SimplifyCFG - This function is used to do simplification of a CFG. For 160 // example, it adjusts branches to branches to eliminate the extra hop, it 161 // eliminates unreachable basic blocks, and does other "peephole" optimization 162 // of the CFG. It returns true if a modification was made, and returns an 163 // iterator that designates the first element remaining after the block that 164 // was deleted. 165 // 166 // WARNING: The entry node of a method may not be simplified. 167 // 168 bool SimplifyCFG(Function::iterator &BBIt) { 169 BasicBlock *BB = *BBIt; 170 Function *M = BB->getParent(); 171 172 assert(BB && BB->getParent() && "Block not embedded in method!"); 173 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 174 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 175 176 177 // Remove basic blocks that have no predecessors... which are unreachable. 178 if (pred_begin(BB) == pred_end(BB) && 179 !BB->hasConstantReferences()) { 180 //cerr << "Removing BB: \n" << BB; 181 182 // Loop through all of our successors and make sure they know that one 183 // of their predecessors is going away. 184 for_each(succ_begin(BB), succ_end(BB), 185 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 186 187 while (!BB->empty()) { 188 Instruction *I = BB->back(); 189 // If this instruction is used, replace uses with an arbitrary 190 // constant value. Because control flow can't get here, we don't care 191 // what we replace the value with. Note that since this block is 192 // unreachable, and all values contained within it must dominate their 193 // uses, that all uses will eventually be removed. 194 if (!I->use_empty()) ReplaceUsesWithConstant(I); 195 196 // Remove the instruction from the basic block 197 delete BB->getInstList().pop_back(); 198 } 199 delete M->getBasicBlocks().remove(BBIt); 200 return true; 201 } 202 203 // Check to see if this block has no instructions and only a single 204 // successor. If so, replace block references with successor. 205 succ_iterator SI(succ_begin(BB)); 206 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? 207 if (BB->front()->isTerminator()) { // Terminator is the only instruction! 208 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor 209 //cerr << "Killing Trivial BB: \n" << BB; 210 211 if (Succ != BB) { // Arg, don't hurt infinite loops! 212 // If our successor has PHI nodes, then we need to update them to 213 // include entries for BB's predecessors, not for BB itself. 214 // Be careful though, if this transformation fails (returns true) then 215 // we cannot do this transformation! 216 // 217 if (!isa<PHINode>(Succ->front()) || 218 !PropogatePredecessorsForPHIs(BB, Succ)) { 219 220 BB->replaceAllUsesWith(Succ); 221 BB = M->getBasicBlocks().remove(BBIt); 222 223 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 224 Succ->setName(BB->getName()); 225 delete BB; // Delete basic block 226 227 //cerr << "Function after removal: \n" << M; 228 return true; 229 } 230 } 231 } 232 } 233 234 // Merge basic blocks into their predecessor if there is only one pred, 235 // and if there is only one successor of the predecessor. 236 pred_iterator PI(pred_begin(BB)); 237 if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? 238 ++PI == pred_end(BB) && !BB->hasConstantReferences()) { 239 BasicBlock *Pred = *pred_begin(BB); 240 TerminatorInst *Term = Pred->getTerminator(); 241 assert(Term != 0 && "malformed basic block without terminator!"); 242 243 // Does the predecessor block only have a single successor? 244 succ_iterator SI(succ_begin(Pred)); 245 if (++SI == succ_end(Pred)) { 246 //cerr << "Merging: " << BB << "into: " << Pred; 247 248 // Delete the unconditianal branch from the predecessor... 249 BasicBlock::iterator DI = Pred->end(); 250 assert(Pred->getTerminator() && 251 "Degenerate basic block encountered!"); // Empty bb??? 252 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 253 254 // Move all definitions in the succecessor to the predecessor... 255 while (!BB->empty()) { 256 DI = BB->begin(); 257 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 258 Pred->getInstList().push_back(Def); // Add to end... 259 } 260 261 // Remove basic block from the method... and advance iterator to the 262 // next valid block... 263 BB = M->getBasicBlocks().remove(BBIt); 264 265 // Make all PHI nodes that refered to BB now refer to Pred as their 266 // source... 267 BB->replaceAllUsesWith(Pred); 268 269 // Inherit predecessors name if it exists... 270 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 271 272 delete BB; // You ARE the weakest link... goodbye 273 return true; 274 } 275 } 276 277 return false; 278 } 279 280 static bool DoDCEPass(Function *F) { 281 Function::iterator BBIt, BBEnd = F->end(); 282 if (F->begin() == BBEnd) return false; // Nothing to do 283 bool Changed = false; 284 285 // Loop through now and remove instructions that have no uses... 286 for (BBIt = F->begin(); BBIt != BBEnd; ++BBIt) { 287 Changed |= RemoveUnusedDefs((*BBIt)->getInstList()); 288 Changed |= RemoveSingularPHIs(*BBIt); 289 } 290 291 // Loop over all of the basic blocks (except the first one) and remove them 292 // if they are unneeded... 293 // 294 for (BBIt = F->begin(), ++BBIt; BBIt != F->end(); ) { 295 if (SimplifyCFG(BBIt)) { 296 Changed = true; 297 } else { 298 ++BBIt; 299 } 300 } 301 302 return Changed; 303 } 304 305 // Remove unused global values - This removes unused global values of no 306 // possible value. This currently includes unused method prototypes and 307 // unitialized global variables. 308 // 309 static bool RemoveUnusedGlobalValues(Module *Mod) { 310 bool Changed = false; 311 312 for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { 313 Function *Meth = *MI; 314 if (Meth->isExternal() && Meth->use_size() == 0) { 315 // No references to prototype? 316 //cerr << "Removing method proto: " << Meth->getName() << endl; 317 delete Mod->getFunctionList().remove(MI); // Remove prototype 318 // Remove moves iterator to point to the next one automatically 319 Changed = true; 320 } else { 321 ++MI; // Skip prototype in use. 322 } 323 } 324 325 for (Module::giterator GI = Mod->gbegin(); GI != Mod->gend(); ) { 326 GlobalVariable *GV = *GI; 327 if (!GV->hasInitializer() && GV->use_size() == 0) { 328 // No references to uninitialized global variable? 329 //cerr << "Removing global var: " << GV->getName() << endl; 330 delete Mod->getGlobalList().remove(GI); 331 // Remove moves iterator to point to the next one automatically 332 Changed = true; 333 } else { 334 ++GI; 335 } 336 } 337 338 return Changed; 339 } 340 341 namespace { 342 struct DeadCodeElimination : public MethodPass { 343 344 // Pass Interface... 345 virtual bool doInitialization(Module *M) { 346 return RemoveUnusedGlobalValues(M); 347 } 348 349 // It is possible that we may require multiple passes over the code to fully 350 // eliminate dead code. Iterate until we are done. 351 // 352 virtual bool runOnMethod(Function *F) { 353 bool Changed = false; 354 while (DoDCEPass(F)) Changed = true; 355 return Changed; 356 } 357 358 virtual bool doFinalization(Module *M) { 359 return RemoveUnusedGlobalValues(M); 360 } 361 }; 362 } 363 364 Pass *createDeadCodeEliminationPass() { 365 return new DeadCodeElimination(); 366 } 367