1 //===- DCE.cpp - Code to perform dead code elimination --------------------===// 2 // 3 // This file implements dead code elimination and basic block merging. 4 // 5 // Specifically, this: 6 // * removes definitions with no uses (including unused constants) 7 // * removes basic blocks with no predecessors 8 // * merges a basic block into its predecessor if there is only one and the 9 // predecessor only has one successor. 10 // * Eliminates PHI nodes for basic blocks with a single predecessor 11 // * Eliminates a basic block that only contains an unconditional branch 12 // * Eliminates method prototypes that are not referenced 13 // 14 // TODO: This should REALLY be worklist driven instead of iterative. Right now, 15 // we scan linearly through values, removing unused ones as we go. The problem 16 // is that this may cause other earlier values to become unused. To make sure 17 // that we get them all, we iterate until things stop changing. Instead, when 18 // removing a value, recheck all of its operands to see if they are now unused. 19 // Piece of cake, and more efficient as well. 20 // 21 // Note, this is not trivial, because we have to worry about invalidating 22 // iterators. :( 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Optimizations/DCE.h" 27 #include "llvm/Support/STLExtras.h" 28 #include "llvm/Module.h" 29 #include "llvm/Method.h" 30 #include "llvm/BasicBlock.h" 31 #include "llvm/iTerminators.h" 32 #include "llvm/iOther.h" 33 #include "llvm/Assembly/Writer.h" 34 #include "llvm/CFG.h" 35 #include <algorithm> 36 37 using namespace cfg; 38 39 struct ConstPoolDCE { 40 enum { EndOffs = 0 }; 41 static bool isDCEable(const ConstPoolVal *CPV) { 42 // TODO: The bytecode writer requires that all used types are in the 43 // constant pool for the current method. This is messy and is really 44 // irritating. FIXME 45 return CPV->getType() != Type::TypeTy; // Don't DCE Type plane constants! 46 } 47 }; 48 49 struct BasicBlockDCE { 50 enum { EndOffs = 1 }; 51 static bool isDCEable(const Instruction *I) { 52 return !I->hasSideEffects(); 53 } 54 }; 55 56 57 template<class Container, class DCEController> 58 static bool RemoveUnusedDefs(Container &Vals, DCEController DCEControl) { 59 bool Changed = false; 60 int Offset = DCEController::EndOffs; 61 62 for (typename Container::iterator DI = Vals.begin(); 63 DI != Vals.end()-Offset; ) { 64 // Look for un"used" definitions... 65 if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) { 66 // Bye bye 67 //cerr << "Removing: " << *DI; 68 delete Vals.remove(DI); 69 Changed = true; 70 } else { 71 ++DI; 72 } 73 } 74 return Changed; 75 } 76 77 // RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only 78 // a single predecessor. This means that the PHI node must only have a single 79 // RHS value and can be eliminated. 80 // 81 // This routine is very simple because we know that PHI nodes must be the first 82 // things in a basic block, if they are present. 83 // 84 static bool RemoveSingularPHIs(BasicBlock *BB) { 85 pred_iterator PI(pred_begin(BB)); 86 if (PI == pred_end(BB) || ++PI != pred_end(BB)) 87 return false; // More than one predecessor... 88 89 Instruction *I = BB->front(); 90 if (!I->isPHINode()) return false; // No PHI nodes 91 92 //cerr << "Killing PHIs from " << BB; 93 //cerr << "Pred #0 = " << *pred_begin(BB); 94 95 //cerr << "Method == " << BB->getParent(); 96 97 do { 98 PHINode *PN = (PHINode*)I; 99 assert(PN->getNumOperands() == 2 && "PHI node should only have one value!"); 100 Value *V = PN->getOperand(0); 101 102 PN->replaceAllUsesWith(V); // Replace PHI node with its single value. 103 delete BB->getInstList().remove(BB->begin()); 104 105 I = BB->front(); 106 } while (I->isPHINode()); 107 108 return true; // Yes, we nuked at least one phi node 109 } 110 111 static void ReplaceUsesWithConstant(Instruction *I) { 112 ConstPoolVal *CPV = ConstPoolVal::getNullConstant(I->getType()); 113 114 // Make all users of this instruction reference the constant instead 115 I->replaceAllUsesWith(CPV); 116 } 117 118 // PropogatePredecessors - This gets "Succ" ready to have the predecessors from 119 // "BB". This is a little tricky because "Succ" has PHI nodes, which need to 120 // have extra slots added to them to hold the merge edges from BB's 121 // predecessors. 122 // 123 // Assumption: BB is the single predecessor of Succ. 124 // 125 static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { 126 assert(Succ->front()->isPHINode() && "Only works on PHId BBs!"); 127 128 // If there is more than one predecessor, and there are PHI nodes in 129 // the successor, then we need to add incoming edges for the PHI nodes 130 // 131 const vector<BasicBlock*> BBPreds(pred_begin(BB), pred_end(BB)); 132 133 BasicBlock::iterator I = Succ->begin(); 134 do { // Loop over all of the PHI nodes in the successor BB 135 PHINode *PN = (PHINode*)*I; 136 Value *OldVal = PN->removeIncomingValue(BB); 137 assert(OldVal && "No entry in PHI for Pred BB!"); 138 139 for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(), 140 End = BBPreds.end(); PredI != End; ++PredI) { 141 // Add an incoming value for each of the new incoming values... 142 PN->addIncoming(OldVal, *PredI); 143 } 144 145 ++I; 146 } while ((*I)->isPHINode()); 147 } 148 149 150 // SimplifyCFG - This function is used to do simplification of a CFG. For 151 // example, it adjusts branches to branches to eliminate the extra hop, it 152 // eliminates unreachable basic blocks, and does other "peephole" optimization 153 // of the CFG. It returns true if a modification was made, and returns an 154 // iterator that designates the first element remaining after the block that 155 // was deleted. 156 // 157 // WARNING: The entry node of a method may not be simplified. 158 // 159 bool opt::SimplifyCFG(Method::iterator &BBIt) { 160 BasicBlock *BB = *BBIt; 161 Method *M = BB->getParent(); 162 163 assert(BB && BB->getParent() && "Block not embedded in method!"); 164 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 165 assert(BB->getParent()->front() != BB && "Can't Simplify entry block!"); 166 167 168 // Remove basic blocks that have no predecessors... which are unreachable. 169 if (pred_begin(BB) == pred_end(BB) && 170 !BB->hasConstantPoolReferences()) { 171 //cerr << "Removing BB: \n" << BB; 172 173 // Loop through all of our successors and make sure they know that one 174 // of their predecessors is going away. 175 for_each(succ_begin(BB), succ_end(BB), 176 std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB)); 177 178 while (!BB->empty()) { 179 Instruction *I = BB->back(); 180 // If this instruction is used, replace uses with an arbitrary 181 // constant value. Because control flow can't get here, we don't care 182 // what we replace the value with. Note that since this block is 183 // unreachable, and all values contained within it must dominate their 184 // uses, that all uses will eventually be removed. 185 if (!I->use_empty()) ReplaceUsesWithConstant(I); 186 187 // Remove the instruction from the basic block 188 delete BB->getInstList().pop_back(); 189 } 190 delete M->getBasicBlocks().remove(BBIt); 191 return true; 192 } 193 194 // Check to see if this block has no instructions and only a single 195 // successor. If so, replace block references with successor. 196 succ_iterator SI(succ_begin(BB)); 197 if (SI != succ_end(BB) && ++SI == succ_end(BB)) { // One succ? 198 Instruction *I = BB->front(); 199 if (I->isTerminator()) { // Terminator is the only instruction! 200 BasicBlock *Succ = *succ_begin(BB); // There is exactly one successor 201 //cerr << "Killing Trivial BB: \n" << BB; 202 203 if (Succ != BB) { // Arg, don't hurt infinite loops! 204 if (Succ->front()->isPHINode()) { 205 // If our successor has PHI nodes, then we need to update them to 206 // include entries for BB's predecessors, not for BB itself. 207 // 208 PropogatePredecessorsForPHIs(BB, Succ); 209 } 210 211 BB->replaceAllUsesWith(Succ); 212 BB = M->getBasicBlocks().remove(BBIt); 213 214 if (BB->hasName() && !Succ->hasName()) // Transfer name if we can 215 Succ->setName(BB->getName()); 216 delete BB; // Delete basic block 217 218 //cerr << "Method after removal: \n" << M; 219 return true; 220 } 221 } 222 } 223 224 // Merge basic blocks into their predecessor if there is only one pred, 225 // and if there is only one successor of the predecessor. 226 pred_iterator PI(pred_begin(BB)); 227 if (PI != pred_end(BB) && *PI != BB && // Not empty? Not same BB? 228 ++PI == pred_end(BB) && !BB->hasConstantPoolReferences()) { 229 BasicBlock *Pred = *pred_begin(BB); 230 TerminatorInst *Term = Pred->getTerminator(); 231 assert(Term != 0 && "malformed basic block without terminator!"); 232 233 // Does the predecessor block only have a single successor? 234 succ_iterator SI(succ_begin(Pred)); 235 if (++SI == succ_end(Pred)) { 236 //cerr << "Merging: " << BB << "into: " << Pred; 237 238 // Delete the unconditianal branch from the predecessor... 239 BasicBlock::iterator DI = Pred->end(); 240 assert(Pred->getTerminator() && 241 "Degenerate basic block encountered!"); // Empty bb??? 242 delete Pred->getInstList().remove(--DI); // Destroy uncond branch 243 244 // Move all definitions in the succecessor to the predecessor... 245 while (!BB->empty()) { 246 DI = BB->begin(); 247 Instruction *Def = BB->getInstList().remove(DI); // Remove from front 248 Pred->getInstList().push_back(Def); // Add to end... 249 } 250 251 // Remove basic block from the method... and advance iterator to the 252 // next valid block... 253 BB = M->getBasicBlocks().remove(BBIt); 254 255 // Make all PHI nodes that refered to BB now refer to Pred as their 256 // source... 257 BB->replaceAllUsesWith(Pred); 258 259 // Inherit predecessors name if it exists... 260 if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName()); 261 262 delete BB; // You ARE the weakest link... goodbye 263 return true; 264 } 265 } 266 267 return false; 268 } 269 270 static bool DoDCEPass(Method *M) { 271 Method::iterator BBIt, BBEnd = M->end(); 272 if (M->begin() == BBEnd) return false; // Nothing to do 273 bool Changed = false; 274 275 // Loop through now and remove instructions that have no uses... 276 for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) { 277 Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE()); 278 Changed |= RemoveSingularPHIs(*BBIt); 279 } 280 281 // Loop over all of the basic blocks (except the first one) and remove them 282 // if they are unneeded... 283 // 284 for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) { 285 if (opt::SimplifyCFG(BBIt)) { 286 Changed = true; 287 } else { 288 ++BBIt; 289 } 290 } 291 292 return Changed; 293 } 294 295 296 // It is possible that we may require multiple passes over the code to fully 297 // eliminate dead code. Iterate until we are done. 298 // 299 bool opt::DoDeadCodeElimination(Method *M) { 300 bool Changed = false; 301 while (DoDCEPass(M)) Changed = true; 302 return Changed; 303 } 304 305 bool opt::DoDeadCodeElimination(Module *Mod) { 306 bool Changed = false; 307 308 for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) { 309 Method *Meth = *MI; 310 if (!Meth->isExternal()) { // DCE normal methods 311 Changed |= DoDeadCodeElimination(Meth); 312 ++MI; // Next method please 313 } else if (Meth->use_size() == 0) { // No references to prototype? 314 //cerr << "Removing method proto: " << Meth->getName() << endl; 315 delete Mod->getMethodList().remove(MI); // Remove prototype 316 // Remove moves iterator to point to the next one automatically 317 } else { 318 ++MI; // Skip prototype in use. 319 } 320 } 321 322 return Changed; 323 } 324