xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision fee8f561bdc9317eee13b8f1866ca0dc778c1dc5)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #include <cmath>
37 #include <string>
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 #define DEBUG_TYPE "constraint-elimination"
43 
44 STATISTIC(NumCondsRemoved, "Number of instructions removed");
45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
46               "Controls which conditions are eliminated");
47 
48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
50 
51 namespace {
52 
53 class ConstraintInfo;
54 
55 struct StackEntry {
56   unsigned NumIn;
57   unsigned NumOut;
58   bool IsSigned = false;
59   /// Variables that can be removed from the system once the stack entry gets
60   /// removed.
61   SmallVector<Value *, 2> ValuesToRelease;
62 
63   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
64              SmallVector<Value *, 2> ValuesToRelease)
65       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
66         ValuesToRelease(ValuesToRelease) {}
67 };
68 
69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
70 struct PreconditionTy {
71   CmpInst::Predicate Pred;
72   Value *Op0;
73   Value *Op1;
74 
75   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
76       : Pred(Pred), Op0(Op0), Op1(Op1) {}
77 };
78 
79 struct ConstraintTy {
80   SmallVector<int64_t, 8> Coefficients;
81   SmallVector<PreconditionTy, 2> Preconditions;
82 
83   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
84 
85   bool IsSigned = false;
86   bool IsEq = false;
87 
88   ConstraintTy() = default;
89 
90   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
91       : Coefficients(Coefficients), IsSigned(IsSigned) {}
92 
93   unsigned size() const { return Coefficients.size(); }
94 
95   unsigned empty() const { return Coefficients.empty(); }
96 
97   /// Returns true if all preconditions for this list of constraints are
98   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
99   bool isValid(const ConstraintInfo &Info) const;
100 };
101 
102 /// Wrapper encapsulating separate constraint systems and corresponding value
103 /// mappings for both unsigned and signed information. Facts are added to and
104 /// conditions are checked against the corresponding system depending on the
105 /// signed-ness of their predicates. While the information is kept separate
106 /// based on signed-ness, certain conditions can be transferred between the two
107 /// systems.
108 class ConstraintInfo {
109   DenseMap<Value *, unsigned> UnsignedValue2Index;
110   DenseMap<Value *, unsigned> SignedValue2Index;
111 
112   ConstraintSystem UnsignedCS;
113   ConstraintSystem SignedCS;
114 
115   const DataLayout &DL;
116 
117 public:
118   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
119 
120   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
121     return Signed ? SignedValue2Index : UnsignedValue2Index;
122   }
123   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
124     return Signed ? SignedValue2Index : UnsignedValue2Index;
125   }
126 
127   ConstraintSystem &getCS(bool Signed) {
128     return Signed ? SignedCS : UnsignedCS;
129   }
130   const ConstraintSystem &getCS(bool Signed) const {
131     return Signed ? SignedCS : UnsignedCS;
132   }
133 
134   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
135   void popLastNVariables(bool Signed, unsigned N) {
136     getCS(Signed).popLastNVariables(N);
137   }
138 
139   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
140 
141   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
142                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
143 
144   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
145   /// constraints, using indices from the corresponding constraint system.
146   /// New variables that need to be added to the system are collected in
147   /// \p NewVariables.
148   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
149                              SmallVectorImpl<Value *> &NewVariables) const;
150 
151   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
152   /// constraints using getConstraint. Returns an empty constraint if the result
153   /// cannot be used to query the existing constraint system, e.g. because it
154   /// would require adding new variables. Also tries to convert signed
155   /// predicates to unsigned ones if possible to allow using the unsigned system
156   /// which increases the effectiveness of the signed <-> unsigned transfer
157   /// logic.
158   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
159                                        Value *Op1) const;
160 
161   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
162   /// system if \p Pred is signed/unsigned.
163   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
164                              unsigned NumIn, unsigned NumOut,
165                              SmallVectorImpl<StackEntry> &DFSInStack);
166 };
167 
168 /// Represents a (Coefficient * Variable) entry after IR decomposition.
169 struct DecompEntry {
170   int64_t Coefficient;
171   Value *Variable;
172   /// True if the variable is known positive in the current constraint.
173   bool IsKnownPositive;
174 
175   DecompEntry(int64_t Coefficient, Value *Variable,
176               bool IsKnownPositive = false)
177       : Coefficient(Coefficient), Variable(Variable),
178         IsKnownPositive(IsKnownPositive) {}
179 };
180 
181 } // namespace
182 
183 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
184 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
185 // pair is the constant-factor and X must be nullptr. If the expression cannot
186 // be decomposed, returns an empty vector.
187 static SmallVector<DecompEntry, 4>
188 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
189           bool IsSigned, const DataLayout &DL) {
190 
191   auto CanUseSExt = [](ConstantInt *CI) {
192     const APInt &Val = CI->getValue();
193     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
194   };
195   // Decompose \p V used with a signed predicate.
196   if (IsSigned) {
197     if (auto *CI = dyn_cast<ConstantInt>(V)) {
198       if (CanUseSExt(CI))
199         return {{CI->getSExtValue(), nullptr}};
200     }
201 
202     return {{0, nullptr}, {1, V}};
203   }
204 
205   if (auto *CI = dyn_cast<ConstantInt>(V)) {
206     if (CI->uge(MaxConstraintValue))
207       return {};
208     return {{int64_t(CI->getZExtValue()), nullptr}};
209   }
210   auto *GEP = dyn_cast<GetElementPtrInst>(V);
211   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
212     Value *Op0, *Op1;
213     ConstantInt *CI;
214 
215     auto GTI = gep_type_begin(GEP);
216     int64_t Scale = static_cast<int64_t>(
217         DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
218     int64_t MulRes;
219     // Handle the (gep (gep ....), C) case by incrementing the constant
220     // coefficient of the inner GEP, if C is a constant.
221     auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand());
222     if (InnerGEP && InnerGEP->getNumOperands() == 2 &&
223         isa<ConstantInt>(GEP->getOperand(1))) {
224       APInt Offset = cast<ConstantInt>(GEP->getOperand(1))->getValue();
225       auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
226       if (!MulOverflow(Scale, Offset.getSExtValue(), MulRes)) {
227         Result[0].Coefficient += MulRes;
228         if (Offset.isNegative()) {
229           // Add pre-condition ensuring the GEP is increasing monotonically and
230           // can be de-composed.
231           Preconditions.emplace_back(
232               CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
233               ConstantInt::get(InnerGEP->getOperand(1)->getType(),
234                                -1 * Offset.getSExtValue()));
235         }
236         return Result;
237       }
238     }
239 
240     // If the index is zero-extended, it is guaranteed to be positive.
241     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
242               m_ZExt(m_Value(Op0)))) {
243       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
244           CanUseSExt(CI) &&
245           !MulOverflow(Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue())),
246                        MulRes))
247         return {{0, nullptr}, {1, GEP->getPointerOperand()}, {MulRes, Op1}};
248       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
249           CanUseSExt(CI) && match(Op0, m_NUWAdd(m_Value(), m_Value())) &&
250           !MulOverflow(Scale, CI->getSExtValue(), MulRes))
251         return {{MulRes, nullptr}, {1, GEP->getPointerOperand()}, {Scale, Op1}};
252       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {Scale, Op0, true}};
253     }
254 
255     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
256         !CI->isNegative() && CanUseSExt(CI) &&
257         !MulOverflow(Scale, CI->getSExtValue(), MulRes))
258       return {{MulRes, nullptr}, {1, GEP->getPointerOperand()}};
259 
260     SmallVector<DecompEntry, 4> Result;
261     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
262               m_NSWShl(m_Value(Op0), m_ConstantInt(CI))) &&
263         CanUseSExt(CI) &&
264         !MulOverflow(Scale, int64_t(std::pow(int64_t(2), CI->getSExtValue())),
265                      MulRes))
266       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {MulRes, Op0}};
267     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
268                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
269              CanUseSExt(CI) && !MulOverflow(Scale, CI->getSExtValue(), MulRes))
270       Result = {{MulRes, nullptr}, {1, GEP->getPointerOperand()}, {Scale, Op0}};
271     else {
272       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
273       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {Scale, Op0}};
274     }
275     // If Op0 is signed non-negative, the GEP is increasing monotonically and
276     // can be de-composed.
277     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
278                                ConstantInt::get(Op0->getType(), 0));
279     return Result;
280   }
281 
282   Value *Op0;
283   bool IsKnownPositive = false;
284   if (match(V, m_ZExt(m_Value(Op0)))) {
285     IsKnownPositive = true;
286     V = Op0;
287   }
288 
289   auto MergeResults = [&Preconditions, IsSigned,
290                        DL](Value *A, Value *B,
291                            bool IsSignedB) -> SmallVector<DecompEntry, 4> {
292     auto ResA = decompose(A, Preconditions, IsSigned, DL);
293     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
294     if (ResA.empty() || ResB.empty())
295       return {};
296     ResA[0].Coefficient += ResB[0].Coefficient;
297     append_range(ResA, drop_begin(ResB));
298     return ResA;
299   };
300   Value *Op1;
301   ConstantInt *CI;
302   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
303     return MergeResults(Op0, Op1, IsSigned);
304   }
305   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
306       CanUseSExt(CI)) {
307     Preconditions.emplace_back(
308         CmpInst::ICMP_UGE, Op0,
309         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
310     return MergeResults(Op0, CI, true);
311   }
312 
313   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
314     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
315   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
316     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
317 
318   return {{0, nullptr}, {1, V, IsKnownPositive}};
319 }
320 
321 ConstraintTy
322 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
323                               SmallVectorImpl<Value *> &NewVariables) const {
324   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
325   bool IsEq = false;
326   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
327   switch (Pred) {
328   case CmpInst::ICMP_UGT:
329   case CmpInst::ICMP_UGE:
330   case CmpInst::ICMP_SGT:
331   case CmpInst::ICMP_SGE: {
332     Pred = CmpInst::getSwappedPredicate(Pred);
333     std::swap(Op0, Op1);
334     break;
335   }
336   case CmpInst::ICMP_EQ:
337     if (match(Op1, m_Zero())) {
338       Pred = CmpInst::ICMP_ULE;
339     } else {
340       IsEq = true;
341       Pred = CmpInst::ICMP_ULE;
342     }
343     break;
344   case CmpInst::ICMP_NE:
345     if (!match(Op1, m_Zero()))
346       return {};
347     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
348     std::swap(Op0, Op1);
349     break;
350   default:
351     break;
352   }
353 
354   // Only ULE and ULT predicates are supported at the moment.
355   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
356       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
357     return {};
358 
359   SmallVector<PreconditionTy, 4> Preconditions;
360   bool IsSigned = CmpInst::isSigned(Pred);
361   auto &Value2Index = getValue2Index(IsSigned);
362   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
363                         Preconditions, IsSigned, DL);
364   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
365                         Preconditions, IsSigned, DL);
366   // Skip if decomposing either of the values failed.
367   if (ADec.empty() || BDec.empty())
368     return {};
369 
370   int64_t Offset1 = ADec[0].Coefficient;
371   int64_t Offset2 = BDec[0].Coefficient;
372   Offset1 *= -1;
373 
374   // Create iterator ranges that skip the constant-factor.
375   auto VariablesA = llvm::drop_begin(ADec);
376   auto VariablesB = llvm::drop_begin(BDec);
377 
378   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
379   // new entry to NewVariables.
380   DenseMap<Value *, unsigned> NewIndexMap;
381   auto GetOrAddIndex = [&Value2Index, &NewVariables,
382                         &NewIndexMap](Value *V) -> unsigned {
383     auto V2I = Value2Index.find(V);
384     if (V2I != Value2Index.end())
385       return V2I->second;
386     auto Insert =
387         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
388     if (Insert.second)
389       NewVariables.push_back(V);
390     return Insert.first->second;
391   };
392 
393   // Make sure all variables have entries in Value2Index or NewVariables.
394   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
395     GetOrAddIndex(KV.Variable);
396 
397   // Build result constraint, by first adding all coefficients from A and then
398   // subtracting all coefficients from B.
399   ConstraintTy Res(
400       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
401       IsSigned);
402   // Collect variables that are known to be positive in all uses in the
403   // constraint.
404   DenseMap<Value *, bool> KnownPositiveVariables;
405   Res.IsEq = IsEq;
406   auto &R = Res.Coefficients;
407   for (const auto &KV : VariablesA) {
408     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
409     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
410     I.first->second &= KV.IsKnownPositive;
411   }
412 
413   for (const auto &KV : VariablesB) {
414     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
415     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
416     I.first->second &= KV.IsKnownPositive;
417   }
418 
419   int64_t OffsetSum;
420   if (AddOverflow(Offset1, Offset2, OffsetSum))
421     return {};
422   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
423     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
424       return {};
425   R[0] = OffsetSum;
426   Res.Preconditions = std::move(Preconditions);
427 
428   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
429   // variables.
430   while (!NewVariables.empty()) {
431     int64_t Last = R.back();
432     if (Last != 0)
433       break;
434     R.pop_back();
435     Value *RemovedV = NewVariables.pop_back_val();
436     NewIndexMap.erase(RemovedV);
437   }
438 
439   // Add extra constraints for variables that are known positive.
440   for (auto &KV : KnownPositiveVariables) {
441     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
442                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
443       continue;
444     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
445     C[GetOrAddIndex(KV.first)] = -1;
446     Res.ExtraInfo.push_back(C);
447   }
448   return Res;
449 }
450 
451 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
452                                                      Value *Op0,
453                                                      Value *Op1) const {
454   // If both operands are known to be non-negative, change signed predicates to
455   // unsigned ones. This increases the reasoning effectiveness in combination
456   // with the signed <-> unsigned transfer logic.
457   if (CmpInst::isSigned(Pred) &&
458       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
459       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
460     Pred = CmpInst::getUnsignedPredicate(Pred);
461 
462   SmallVector<Value *> NewVariables;
463   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
464   if (R.IsEq || !NewVariables.empty())
465     return {};
466   return R;
467 }
468 
469 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
470   return Coefficients.size() > 0 &&
471          all_of(Preconditions, [&Info](const PreconditionTy &C) {
472            return Info.doesHold(C.Pred, C.Op0, C.Op1);
473          });
474 }
475 
476 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
477                               Value *B) const {
478   auto R = getConstraintForSolving(Pred, A, B);
479   return R.Preconditions.empty() && !R.empty() &&
480          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
481 }
482 
483 void ConstraintInfo::transferToOtherSystem(
484     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
485     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
486   // Check if we can combine facts from the signed and unsigned systems to
487   // derive additional facts.
488   if (!A->getType()->isIntegerTy())
489     return;
490   // FIXME: This currently depends on the order we add facts. Ideally we
491   // would first add all known facts and only then try to add additional
492   // facts.
493   switch (Pred) {
494   default:
495     break;
496   case CmpInst::ICMP_ULT:
497     //  If B is a signed positive constant, A >=s 0 and A <s B.
498     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
499       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
500               NumOut, DFSInStack);
501       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
502     }
503     break;
504   case CmpInst::ICMP_SLT:
505     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
506       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
507     break;
508   case CmpInst::ICMP_SGT:
509     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
510       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
511               NumOut, DFSInStack);
512     break;
513   case CmpInst::ICMP_SGE:
514     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
515       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
516     }
517     break;
518   }
519 }
520 
521 namespace {
522 /// Represents either a condition that holds on entry to a block or a basic
523 /// block, with their respective Dominator DFS in and out numbers.
524 struct ConstraintOrBlock {
525   unsigned NumIn;
526   unsigned NumOut;
527   bool IsBlock;
528   bool Not;
529   union {
530     BasicBlock *BB;
531     CmpInst *Condition;
532   };
533 
534   ConstraintOrBlock(DomTreeNode *DTN)
535       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
536         BB(DTN->getBlock()) {}
537   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
538       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
539         Not(Not), Condition(Condition) {}
540 };
541 
542 /// Keep state required to build worklist.
543 struct State {
544   DominatorTree &DT;
545   SmallVector<ConstraintOrBlock, 64> WorkList;
546 
547   State(DominatorTree &DT) : DT(DT) {}
548 
549   /// Process block \p BB and add known facts to work-list.
550   void addInfoFor(BasicBlock &BB);
551 
552   /// Returns true if we can add a known condition from BB to its successor
553   /// block Succ. Each predecessor of Succ can either be BB or be dominated
554   /// by Succ (e.g. the case when adding a condition from a pre-header to a
555   /// loop header).
556   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
557     if (BB.getSingleSuccessor()) {
558       assert(BB.getSingleSuccessor() == Succ);
559       return DT.properlyDominates(&BB, Succ);
560     }
561     return any_of(successors(&BB),
562                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
563            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
564              return Pred == &BB || DT.dominates(Succ, Pred);
565            });
566   }
567 };
568 
569 } // namespace
570 
571 #ifndef NDEBUG
572 static void dumpWithNames(const ConstraintSystem &CS,
573                           DenseMap<Value *, unsigned> &Value2Index) {
574   SmallVector<std::string> Names(Value2Index.size(), "");
575   for (auto &KV : Value2Index) {
576     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
577   }
578   CS.dump(Names);
579 }
580 
581 static void dumpWithNames(ArrayRef<int64_t> C,
582                           DenseMap<Value *, unsigned> &Value2Index) {
583   ConstraintSystem CS;
584   CS.addVariableRowFill(C);
585   dumpWithNames(CS, Value2Index);
586 }
587 #endif
588 
589 void State::addInfoFor(BasicBlock &BB) {
590   WorkList.emplace_back(DT.getNode(&BB));
591 
592   // True as long as long as the current instruction is guaranteed to execute.
593   bool GuaranteedToExecute = true;
594   // Scan BB for assume calls.
595   // TODO: also use this scan to queue conditions to simplify, so we can
596   // interleave facts from assumes and conditions to simplify in a single
597   // basic block. And to skip another traversal of each basic block when
598   // simplifying.
599   for (Instruction &I : BB) {
600     Value *Cond;
601     // For now, just handle assumes with a single compare as condition.
602     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
603         isa<ICmpInst>(Cond)) {
604       if (GuaranteedToExecute) {
605         // The assume is guaranteed to execute when BB is entered, hence Cond
606         // holds on entry to BB.
607         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
608       } else {
609         // Otherwise the condition only holds in the successors.
610         for (BasicBlock *Succ : successors(&BB)) {
611           if (!canAddSuccessor(BB, Succ))
612             continue;
613           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
614         }
615       }
616     }
617     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
618   }
619 
620   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
621   if (!Br || !Br->isConditional())
622     return;
623 
624   Value *Cond = Br->getCondition();
625 
626   // If the condition is a chain of ORs/AND and the successor only has the
627   // current block as predecessor, queue conditions for the successor.
628   Value *Op0, *Op1;
629   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
630       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
631     bool IsOr = match(Cond, m_LogicalOr());
632     bool IsAnd = match(Cond, m_LogicalAnd());
633     // If there's a select that matches both AND and OR, we need to commit to
634     // one of the options. Arbitrarily pick OR.
635     if (IsOr && IsAnd)
636       IsAnd = false;
637 
638     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
639     if (canAddSuccessor(BB, Successor)) {
640       SmallVector<Value *> CondWorkList;
641       SmallPtrSet<Value *, 8> SeenCond;
642       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
643         if (SeenCond.insert(V).second)
644           CondWorkList.push_back(V);
645       };
646       QueueValue(Op1);
647       QueueValue(Op0);
648       while (!CondWorkList.empty()) {
649         Value *Cur = CondWorkList.pop_back_val();
650         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
651           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
652           continue;
653         }
654         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
655           QueueValue(Op1);
656           QueueValue(Op0);
657           continue;
658         }
659         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
660           QueueValue(Op1);
661           QueueValue(Op0);
662           continue;
663         }
664       }
665     }
666     return;
667   }
668 
669   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
670   if (!CmpI)
671     return;
672   if (canAddSuccessor(BB, Br->getSuccessor(0)))
673     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
674   if (canAddSuccessor(BB, Br->getSuccessor(1)))
675     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
676 }
677 
678 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
679                              unsigned NumIn, unsigned NumOut,
680                              SmallVectorImpl<StackEntry> &DFSInStack) {
681   // If the constraint has a pre-condition, skip the constraint if it does not
682   // hold.
683   SmallVector<Value *> NewVariables;
684   auto R = getConstraint(Pred, A, B, NewVariables);
685   if (!R.isValid(*this))
686     return;
687 
688   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
689              A->printAsOperand(dbgs(), false); dbgs() << ", ";
690              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
691   bool Added = false;
692   auto &CSToUse = getCS(R.IsSigned);
693   if (R.Coefficients.empty())
694     return;
695 
696   Added |= CSToUse.addVariableRowFill(R.Coefficients);
697 
698   // If R has been added to the system, add the new variables and queue it for
699   // removal once it goes out-of-scope.
700   if (Added) {
701     SmallVector<Value *, 2> ValuesToRelease;
702     auto &Value2Index = getValue2Index(R.IsSigned);
703     for (Value *V : NewVariables) {
704       Value2Index.insert({V, Value2Index.size() + 1});
705       ValuesToRelease.push_back(V);
706     }
707 
708     LLVM_DEBUG({
709       dbgs() << "  constraint: ";
710       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
711       dbgs() << "\n";
712     });
713 
714     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
715 
716     if (R.IsEq) {
717       // Also add the inverted constraint for equality constraints.
718       for (auto &Coeff : R.Coefficients)
719         Coeff *= -1;
720       CSToUse.addVariableRowFill(R.Coefficients);
721 
722       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
723                               SmallVector<Value *, 2>());
724     }
725   }
726 }
727 
728 static bool
729 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
730                           SmallVectorImpl<Instruction *> &ToRemove) {
731   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
732                               ConstraintInfo &Info) {
733     auto R = Info.getConstraintForSolving(Pred, A, B);
734     if (R.size() < 2 || !R.isValid(Info))
735       return false;
736 
737     auto &CSToUse = Info.getCS(R.IsSigned);
738     return CSToUse.isConditionImplied(R.Coefficients);
739   };
740 
741   bool Changed = false;
742   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
743     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
744     // can be simplified to a regular sub.
745     Value *A = II->getArgOperand(0);
746     Value *B = II->getArgOperand(1);
747     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
748         !DoesConditionHold(CmpInst::ICMP_SGE, B,
749                            ConstantInt::get(A->getType(), 0), Info))
750       return false;
751 
752     IRBuilder<> Builder(II->getParent(), II->getIterator());
753     Value *Sub = nullptr;
754     for (User *U : make_early_inc_range(II->users())) {
755       if (match(U, m_ExtractValue<0>(m_Value()))) {
756         if (!Sub)
757           Sub = Builder.CreateSub(A, B);
758         U->replaceAllUsesWith(Sub);
759         Changed = true;
760       } else if (match(U, m_ExtractValue<1>(m_Value()))) {
761         U->replaceAllUsesWith(Builder.getFalse());
762         Changed = true;
763       } else
764         continue;
765 
766       if (U->use_empty()) {
767         auto *I = cast<Instruction>(U);
768         ToRemove.push_back(I);
769         I->setOperand(0, PoisonValue::get(II->getType()));
770         Changed = true;
771       }
772     }
773 
774     if (II->use_empty()) {
775       II->eraseFromParent();
776       Changed = true;
777     }
778   }
779   return Changed;
780 }
781 
782 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
783   bool Changed = false;
784   DT.updateDFSNumbers();
785 
786   ConstraintInfo Info(F.getParent()->getDataLayout());
787   State S(DT);
788 
789   // First, collect conditions implied by branches and blocks with their
790   // Dominator DFS in and out numbers.
791   for (BasicBlock &BB : F) {
792     if (!DT.getNode(&BB))
793       continue;
794     S.addInfoFor(BB);
795   }
796 
797   // Next, sort worklist by dominance, so that dominating blocks and conditions
798   // come before blocks and conditions dominated by them. If a block and a
799   // condition have the same numbers, the condition comes before the block, as
800   // it holds on entry to the block. Also make sure conditions with constant
801   // operands come before conditions without constant operands. This increases
802   // the effectiveness of the current signed <-> unsigned fact transfer logic.
803   stable_sort(
804       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
805         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
806           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
807                  !isa<ConstantInt>(B.Condition->getOperand(1));
808         };
809         bool NoConstOpA = HasNoConstOp(A);
810         bool NoConstOpB = HasNoConstOp(B);
811         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
812                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
813       });
814 
815   SmallVector<Instruction *> ToRemove;
816 
817   // Finally, process ordered worklist and eliminate implied conditions.
818   SmallVector<StackEntry, 16> DFSInStack;
819   for (ConstraintOrBlock &CB : S.WorkList) {
820     // First, pop entries from the stack that are out-of-scope for CB. Remove
821     // the corresponding entry from the constraint system.
822     while (!DFSInStack.empty()) {
823       auto &E = DFSInStack.back();
824       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
825                         << "\n");
826       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
827       assert(E.NumIn <= CB.NumIn);
828       if (CB.NumOut <= E.NumOut)
829         break;
830       LLVM_DEBUG({
831         dbgs() << "Removing ";
832         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
833                       Info.getValue2Index(E.IsSigned));
834         dbgs() << "\n";
835       });
836 
837       Info.popLastConstraint(E.IsSigned);
838       // Remove variables in the system that went out of scope.
839       auto &Mapping = Info.getValue2Index(E.IsSigned);
840       for (Value *V : E.ValuesToRelease)
841         Mapping.erase(V);
842       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
843       DFSInStack.pop_back();
844     }
845 
846     LLVM_DEBUG({
847       dbgs() << "Processing ";
848       if (CB.IsBlock)
849         dbgs() << *CB.BB;
850       else
851         dbgs() << *CB.Condition;
852       dbgs() << "\n";
853     });
854 
855     // For a block, check if any CmpInsts become known based on the current set
856     // of constraints.
857     if (CB.IsBlock) {
858       for (Instruction &I : make_early_inc_range(*CB.BB)) {
859         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
860           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
861           continue;
862         }
863         auto *Cmp = dyn_cast<ICmpInst>(&I);
864         if (!Cmp)
865           continue;
866 
867         LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
868         auto R = Info.getConstraintForSolving(
869             Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1));
870         if (R.empty() || !R.isValid(Info))
871           continue;
872 
873         auto &CSToUse = Info.getCS(R.IsSigned);
874 
875         // If there was extra information collected during decomposition, apply
876         // it now and remove it immediately once we are done with reasoning
877         // about the constraint.
878         for (auto &Row : R.ExtraInfo)
879           CSToUse.addVariableRow(Row);
880         auto InfoRestorer = make_scope_exit([&]() {
881           for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
882             CSToUse.popLastConstraint();
883         });
884 
885         if (CSToUse.isConditionImplied(R.Coefficients)) {
886           if (!DebugCounter::shouldExecute(EliminatedCounter))
887             continue;
888 
889           LLVM_DEBUG({
890             dbgs() << "Condition " << *Cmp
891                    << " implied by dominating constraints\n";
892             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
893           });
894           Cmp->replaceUsesWithIf(
895               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
896                 // Conditions in an assume trivially simplify to true. Skip uses
897                 // in assume calls to not destroy the available information.
898                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
899                 return !II || II->getIntrinsicID() != Intrinsic::assume;
900               });
901           NumCondsRemoved++;
902           Changed = true;
903         }
904         if (CSToUse.isConditionImplied(
905                 ConstraintSystem::negate(R.Coefficients))) {
906           if (!DebugCounter::shouldExecute(EliminatedCounter))
907             continue;
908 
909           LLVM_DEBUG({
910             dbgs() << "Condition !" << *Cmp
911                    << " implied by dominating constraints\n";
912             dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
913           });
914           Cmp->replaceAllUsesWith(
915               ConstantInt::getFalse(F.getParent()->getContext()));
916           NumCondsRemoved++;
917           Changed = true;
918         }
919       }
920       continue;
921     }
922 
923     ICmpInst::Predicate Pred;
924     Value *A, *B;
925     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
926       // Use the inverse predicate if required.
927       if (CB.Not)
928         Pred = CmpInst::getInversePredicate(Pred);
929 
930       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
931       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
932     }
933   }
934 
935 #ifndef NDEBUG
936   unsigned SignedEntries =
937       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
938   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
939          "updates to CS and DFSInStack are out of sync");
940   assert(Info.getCS(true).size() == SignedEntries &&
941          "updates to CS and DFSInStack are out of sync");
942 #endif
943 
944   for (Instruction *I : ToRemove)
945     I->eraseFromParent();
946   return Changed;
947 }
948 
949 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
950                                                  FunctionAnalysisManager &AM) {
951   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
952   if (!eliminateConstraints(F, DT))
953     return PreservedAnalyses::all();
954 
955   PreservedAnalyses PA;
956   PA.preserve<DominatorTreeAnalysis>();
957   PA.preserveSet<CFGAnalyses>();
958   return PA;
959 }
960 
961 namespace {
962 
963 class ConstraintElimination : public FunctionPass {
964 public:
965   static char ID;
966 
967   ConstraintElimination() : FunctionPass(ID) {
968     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
969   }
970 
971   bool runOnFunction(Function &F) override {
972     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
973     return eliminateConstraints(F, DT);
974   }
975 
976   void getAnalysisUsage(AnalysisUsage &AU) const override {
977     AU.setPreservesCFG();
978     AU.addRequired<DominatorTreeWrapperPass>();
979     AU.addPreserved<GlobalsAAWrapperPass>();
980     AU.addPreserved<DominatorTreeWrapperPass>();
981   }
982 };
983 
984 } // end anonymous namespace
985 
986 char ConstraintElimination::ID = 0;
987 
988 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
989                       "Constraint Elimination", false, false)
990 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
991 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
992 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
993                     "Constraint Elimination", false, false)
994 
995 FunctionPass *llvm::createConstraintEliminationPass() {
996   return new ConstraintElimination();
997 }
998