1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/DebugCounter.h" 32 #include "llvm/Support/MathExtras.h" 33 34 #include <cmath> 35 #include <string> 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "constraint-elimination" 41 42 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 43 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 44 "Controls which conditions are eliminated"); 45 46 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 47 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 48 49 // A helper to multiply 2 signed integers where overflowing is allowed. 50 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 51 int64_t Result; 52 MulOverflow(A, B, Result); 53 return Result; 54 } 55 56 // A helper to add 2 signed integers where overflowing is allowed. 57 static int64_t addWithOverflow(int64_t A, int64_t B) { 58 int64_t Result; 59 AddOverflow(A, B, Result); 60 return Result; 61 } 62 63 namespace { 64 65 class ConstraintInfo; 66 67 struct StackEntry { 68 unsigned NumIn; 69 unsigned NumOut; 70 bool IsSigned = false; 71 /// Variables that can be removed from the system once the stack entry gets 72 /// removed. 73 SmallVector<Value *, 2> ValuesToRelease; 74 75 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 76 SmallVector<Value *, 2> ValuesToRelease) 77 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 78 ValuesToRelease(ValuesToRelease) {} 79 }; 80 81 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 82 struct PreconditionTy { 83 CmpInst::Predicate Pred; 84 Value *Op0; 85 Value *Op1; 86 87 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 88 : Pred(Pred), Op0(Op0), Op1(Op1) {} 89 }; 90 91 struct ConstraintTy { 92 SmallVector<int64_t, 8> Coefficients; 93 SmallVector<PreconditionTy, 2> Preconditions; 94 95 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 96 97 bool IsSigned = false; 98 bool IsEq = false; 99 100 ConstraintTy() = default; 101 102 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 103 : Coefficients(Coefficients), IsSigned(IsSigned) {} 104 105 unsigned size() const { return Coefficients.size(); } 106 107 unsigned empty() const { return Coefficients.empty(); } 108 109 /// Returns true if all preconditions for this list of constraints are 110 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 111 bool isValid(const ConstraintInfo &Info) const; 112 }; 113 114 /// Wrapper encapsulating separate constraint systems and corresponding value 115 /// mappings for both unsigned and signed information. Facts are added to and 116 /// conditions are checked against the corresponding system depending on the 117 /// signed-ness of their predicates. While the information is kept separate 118 /// based on signed-ness, certain conditions can be transferred between the two 119 /// systems. 120 class ConstraintInfo { 121 DenseMap<Value *, unsigned> UnsignedValue2Index; 122 DenseMap<Value *, unsigned> SignedValue2Index; 123 124 ConstraintSystem UnsignedCS; 125 ConstraintSystem SignedCS; 126 127 const DataLayout &DL; 128 129 public: 130 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 131 132 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 133 return Signed ? SignedValue2Index : UnsignedValue2Index; 134 } 135 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 136 return Signed ? SignedValue2Index : UnsignedValue2Index; 137 } 138 139 ConstraintSystem &getCS(bool Signed) { 140 return Signed ? SignedCS : UnsignedCS; 141 } 142 const ConstraintSystem &getCS(bool Signed) const { 143 return Signed ? SignedCS : UnsignedCS; 144 } 145 146 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 147 void popLastNVariables(bool Signed, unsigned N) { 148 getCS(Signed).popLastNVariables(N); 149 } 150 151 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 152 153 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 154 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 155 156 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 157 /// constraints, using indices from the corresponding constraint system. 158 /// New variables that need to be added to the system are collected in 159 /// \p NewVariables. 160 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 161 SmallVectorImpl<Value *> &NewVariables) const; 162 163 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 164 /// constraints using getConstraint. Returns an empty constraint if the result 165 /// cannot be used to query the existing constraint system, e.g. because it 166 /// would require adding new variables. Also tries to convert signed 167 /// predicates to unsigned ones if possible to allow using the unsigned system 168 /// which increases the effectiveness of the signed <-> unsigned transfer 169 /// logic. 170 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 171 Value *Op1) const; 172 173 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 174 /// system if \p Pred is signed/unsigned. 175 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 176 unsigned NumIn, unsigned NumOut, 177 SmallVectorImpl<StackEntry> &DFSInStack); 178 }; 179 180 /// Represents a (Coefficient * Variable) entry after IR decomposition. 181 struct DecompEntry { 182 int64_t Coefficient; 183 Value *Variable; 184 /// True if the variable is known positive in the current constraint. 185 bool IsKnownNonNegative; 186 187 DecompEntry(int64_t Coefficient, Value *Variable, 188 bool IsKnownNonNegative = false) 189 : Coefficient(Coefficient), Variable(Variable), 190 IsKnownNonNegative(IsKnownNonNegative) {} 191 }; 192 193 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 194 struct Decomposition { 195 int64_t Offset = 0; 196 SmallVector<DecompEntry, 3> Vars; 197 198 Decomposition(int64_t Offset) : Offset(Offset) {} 199 Decomposition(Value *V, bool IsKnownNonNegative = false) { 200 Vars.emplace_back(1, V, IsKnownNonNegative); 201 } 202 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 203 : Offset(Offset), Vars(Vars) {} 204 205 void add(int64_t OtherOffset) { 206 Offset = addWithOverflow(Offset, OtherOffset); 207 } 208 209 void add(const Decomposition &Other) { 210 add(Other.Offset); 211 append_range(Vars, Other.Vars); 212 } 213 214 void mul(int64_t Factor) { 215 Offset = multiplyWithOverflow(Offset, Factor); 216 for (auto &Var : Vars) 217 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 218 } 219 }; 220 221 } // namespace 222 223 static Decomposition decompose(Value *V, 224 SmallVectorImpl<PreconditionTy> &Preconditions, 225 bool IsSigned, const DataLayout &DL); 226 227 static bool canUseSExt(ConstantInt *CI) { 228 const APInt &Val = CI->getValue(); 229 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 230 } 231 232 static Decomposition 233 decomposeGEP(GetElementPtrInst &GEP, 234 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 235 const DataLayout &DL) { 236 // Do not reason about pointers where the index size is larger than 64 bits, 237 // as the coefficients used to encode constraints are 64 bit integers. 238 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 239 return &GEP; 240 241 if (!GEP.isInBounds()) 242 return &GEP; 243 244 assert(!IsSigned && "The logic below only supports decomposition for " 245 "unsinged predicates at the moment."); 246 Type *PtrTy = GEP.getType()->getScalarType(); 247 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 248 MapVector<Value *, APInt> VariableOffsets; 249 APInt ConstantOffset(BitWidth, 0); 250 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 251 return &GEP; 252 253 // Handle the (gep (gep ....), C) case by incrementing the constant 254 // coefficient of the inner GEP, if C is a constant. 255 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 256 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 257 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 258 Result.add(ConstantOffset.getSExtValue()); 259 260 if (ConstantOffset.isNegative()) { 261 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 262 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 263 if (ConstantOffsetI % Scale != 0) 264 return &GEP; 265 // Add pre-condition ensuring the GEP is increasing monotonically and 266 // can be de-composed. 267 // Both sides are normalized by being divided by Scale. 268 Preconditions.emplace_back( 269 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 270 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 271 -1 * (ConstantOffsetI / Scale))); 272 } 273 return Result; 274 } 275 276 Decomposition Result(ConstantOffset.getSExtValue(), 277 DecompEntry(1, GEP.getPointerOperand())); 278 for (auto [Index, Scale] : VariableOffsets) { 279 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 280 IdxResult.mul(Scale.getSExtValue()); 281 Result.add(IdxResult); 282 283 // If Op0 is signed non-negative, the GEP is increasing monotonically and 284 // can be de-composed. 285 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 286 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 287 ConstantInt::get(Index->getType(), 0)); 288 } 289 return Result; 290 } 291 292 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 293 // Variable } where Coefficient * Variable. The sum of the constant offset and 294 // pairs equals \p V. 295 static Decomposition decompose(Value *V, 296 SmallVectorImpl<PreconditionTy> &Preconditions, 297 bool IsSigned, const DataLayout &DL) { 298 299 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 300 bool IsSignedB) { 301 auto ResA = decompose(A, Preconditions, IsSigned, DL); 302 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 303 ResA.add(ResB); 304 return ResA; 305 }; 306 307 // Decompose \p V used with a signed predicate. 308 if (IsSigned) { 309 if (auto *CI = dyn_cast<ConstantInt>(V)) { 310 if (canUseSExt(CI)) 311 return CI->getSExtValue(); 312 } 313 Value *Op0; 314 Value *Op1; 315 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 316 return MergeResults(Op0, Op1, IsSigned); 317 318 return V; 319 } 320 321 if (auto *CI = dyn_cast<ConstantInt>(V)) { 322 if (CI->uge(MaxConstraintValue)) 323 return V; 324 return int64_t(CI->getZExtValue()); 325 } 326 327 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 328 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 329 330 Value *Op0; 331 bool IsKnownNonNegative = false; 332 if (match(V, m_ZExt(m_Value(Op0)))) { 333 IsKnownNonNegative = true; 334 V = Op0; 335 } 336 337 Value *Op1; 338 ConstantInt *CI; 339 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 340 return MergeResults(Op0, Op1, IsSigned); 341 } 342 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 343 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 344 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 345 ConstantInt::get(Op0->getType(), 0)); 346 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 347 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 348 ConstantInt::get(Op1->getType(), 0)); 349 350 return MergeResults(Op0, Op1, IsSigned); 351 } 352 353 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 354 canUseSExt(CI)) { 355 Preconditions.emplace_back( 356 CmpInst::ICMP_UGE, Op0, 357 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 358 return MergeResults(Op0, CI, true); 359 } 360 361 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 362 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 363 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 364 Result.mul(Mult); 365 return Result; 366 } 367 368 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 369 (!CI->isNegative())) { 370 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 371 Result.mul(CI->getSExtValue()); 372 return Result; 373 } 374 375 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 376 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 377 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 378 return {0, {{1, Op0}, {-1, Op1}}}; 379 380 return {V, IsKnownNonNegative}; 381 } 382 383 ConstraintTy 384 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 385 SmallVectorImpl<Value *> &NewVariables) const { 386 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 387 bool IsEq = false; 388 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 389 switch (Pred) { 390 case CmpInst::ICMP_UGT: 391 case CmpInst::ICMP_UGE: 392 case CmpInst::ICMP_SGT: 393 case CmpInst::ICMP_SGE: { 394 Pred = CmpInst::getSwappedPredicate(Pred); 395 std::swap(Op0, Op1); 396 break; 397 } 398 case CmpInst::ICMP_EQ: 399 if (match(Op1, m_Zero())) { 400 Pred = CmpInst::ICMP_ULE; 401 } else { 402 IsEq = true; 403 Pred = CmpInst::ICMP_ULE; 404 } 405 break; 406 case CmpInst::ICMP_NE: 407 if (!match(Op1, m_Zero())) 408 return {}; 409 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 410 std::swap(Op0, Op1); 411 break; 412 default: 413 break; 414 } 415 416 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 417 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 418 return {}; 419 420 SmallVector<PreconditionTy, 4> Preconditions; 421 bool IsSigned = CmpInst::isSigned(Pred); 422 auto &Value2Index = getValue2Index(IsSigned); 423 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 424 Preconditions, IsSigned, DL); 425 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 426 Preconditions, IsSigned, DL); 427 int64_t Offset1 = ADec.Offset; 428 int64_t Offset2 = BDec.Offset; 429 Offset1 *= -1; 430 431 auto &VariablesA = ADec.Vars; 432 auto &VariablesB = BDec.Vars; 433 434 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 435 // new entry to NewVariables. 436 DenseMap<Value *, unsigned> NewIndexMap; 437 auto GetOrAddIndex = [&Value2Index, &NewVariables, 438 &NewIndexMap](Value *V) -> unsigned { 439 auto V2I = Value2Index.find(V); 440 if (V2I != Value2Index.end()) 441 return V2I->second; 442 auto Insert = 443 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 444 if (Insert.second) 445 NewVariables.push_back(V); 446 return Insert.first->second; 447 }; 448 449 // Make sure all variables have entries in Value2Index or NewVariables. 450 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 451 GetOrAddIndex(KV.Variable); 452 453 // Build result constraint, by first adding all coefficients from A and then 454 // subtracting all coefficients from B. 455 ConstraintTy Res( 456 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 457 IsSigned); 458 // Collect variables that are known to be positive in all uses in the 459 // constraint. 460 DenseMap<Value *, bool> KnownNonNegativeVariables; 461 Res.IsEq = IsEq; 462 auto &R = Res.Coefficients; 463 for (const auto &KV : VariablesA) { 464 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 465 auto I = 466 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 467 I.first->second &= KV.IsKnownNonNegative; 468 } 469 470 for (const auto &KV : VariablesB) { 471 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 472 auto I = 473 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 474 I.first->second &= KV.IsKnownNonNegative; 475 } 476 477 int64_t OffsetSum; 478 if (AddOverflow(Offset1, Offset2, OffsetSum)) 479 return {}; 480 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 481 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 482 return {}; 483 R[0] = OffsetSum; 484 Res.Preconditions = std::move(Preconditions); 485 486 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 487 // variables. 488 while (!NewVariables.empty()) { 489 int64_t Last = R.back(); 490 if (Last != 0) 491 break; 492 R.pop_back(); 493 Value *RemovedV = NewVariables.pop_back_val(); 494 NewIndexMap.erase(RemovedV); 495 } 496 497 // Add extra constraints for variables that are known positive. 498 for (auto &KV : KnownNonNegativeVariables) { 499 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 500 NewIndexMap.find(KV.first) == NewIndexMap.end())) 501 continue; 502 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 503 C[GetOrAddIndex(KV.first)] = -1; 504 Res.ExtraInfo.push_back(C); 505 } 506 return Res; 507 } 508 509 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 510 Value *Op0, 511 Value *Op1) const { 512 // If both operands are known to be non-negative, change signed predicates to 513 // unsigned ones. This increases the reasoning effectiveness in combination 514 // with the signed <-> unsigned transfer logic. 515 if (CmpInst::isSigned(Pred) && 516 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 517 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 518 Pred = CmpInst::getUnsignedPredicate(Pred); 519 520 SmallVector<Value *> NewVariables; 521 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 522 if (R.IsEq || !NewVariables.empty()) 523 return {}; 524 return R; 525 } 526 527 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 528 return Coefficients.size() > 0 && 529 all_of(Preconditions, [&Info](const PreconditionTy &C) { 530 return Info.doesHold(C.Pred, C.Op0, C.Op1); 531 }); 532 } 533 534 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 535 Value *B) const { 536 auto R = getConstraintForSolving(Pred, A, B); 537 return R.Preconditions.empty() && !R.empty() && 538 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 539 } 540 541 void ConstraintInfo::transferToOtherSystem( 542 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 543 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 544 // Check if we can combine facts from the signed and unsigned systems to 545 // derive additional facts. 546 if (!A->getType()->isIntegerTy()) 547 return; 548 // FIXME: This currently depends on the order we add facts. Ideally we 549 // would first add all known facts and only then try to add additional 550 // facts. 551 switch (Pred) { 552 default: 553 break; 554 case CmpInst::ICMP_ULT: 555 // If B is a signed positive constant, A >=s 0 and A <s B. 556 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 557 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 558 NumOut, DFSInStack); 559 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 560 } 561 break; 562 case CmpInst::ICMP_SLT: 563 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 564 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 565 break; 566 case CmpInst::ICMP_SGT: 567 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 568 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 569 NumOut, DFSInStack); 570 break; 571 case CmpInst::ICMP_SGE: 572 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 573 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 574 } 575 break; 576 } 577 } 578 579 namespace { 580 /// Represents either 581 /// * a condition that holds on entry to a block (=conditional fact) 582 /// * an assume (=assume fact) 583 /// * an instruction to simplify. 584 /// It also tracks the Dominator DFS in and out numbers for each entry. 585 struct FactOrCheck { 586 Instruction *Inst; 587 unsigned NumIn; 588 unsigned NumOut; 589 bool IsCheck; 590 bool Not; 591 592 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 593 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 594 IsCheck(IsCheck), Not(Not) {} 595 596 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 597 bool Not = false) { 598 return FactOrCheck(DTN, Inst, false, Not); 599 } 600 601 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 602 return FactOrCheck(DTN, Inst, true, false); 603 } 604 605 bool isAssumeFact() const { 606 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 607 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 608 return true; 609 } 610 return false; 611 } 612 613 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 614 }; 615 616 /// Keep state required to build worklist. 617 struct State { 618 DominatorTree &DT; 619 SmallVector<FactOrCheck, 64> WorkList; 620 621 State(DominatorTree &DT) : DT(DT) {} 622 623 /// Process block \p BB and add known facts to work-list. 624 void addInfoFor(BasicBlock &BB); 625 626 /// Returns true if we can add a known condition from BB to its successor 627 /// block Succ. 628 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 629 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 630 } 631 }; 632 633 } // namespace 634 635 #ifndef NDEBUG 636 static void dumpWithNames(const ConstraintSystem &CS, 637 DenseMap<Value *, unsigned> &Value2Index) { 638 SmallVector<std::string> Names(Value2Index.size(), ""); 639 for (auto &KV : Value2Index) { 640 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 641 } 642 CS.dump(Names); 643 } 644 645 static void dumpWithNames(ArrayRef<int64_t> C, 646 DenseMap<Value *, unsigned> &Value2Index) { 647 ConstraintSystem CS; 648 CS.addVariableRowFill(C); 649 dumpWithNames(CS, Value2Index); 650 } 651 #endif 652 653 void State::addInfoFor(BasicBlock &BB) { 654 // True as long as long as the current instruction is guaranteed to execute. 655 bool GuaranteedToExecute = true; 656 // Queue conditions and assumes. 657 for (Instruction &I : BB) { 658 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 659 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 660 continue; 661 } 662 663 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 664 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 665 continue; 666 } 667 668 Value *Cond; 669 // For now, just handle assumes with a single compare as condition. 670 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 671 isa<ICmpInst>(Cond)) { 672 if (GuaranteedToExecute) { 673 // The assume is guaranteed to execute when BB is entered, hence Cond 674 // holds on entry to BB. 675 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 676 cast<Instruction>(Cond))); 677 } else { 678 WorkList.emplace_back( 679 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 680 } 681 } 682 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 683 } 684 685 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 686 if (!Br || !Br->isConditional()) 687 return; 688 689 Value *Cond = Br->getCondition(); 690 691 // If the condition is a chain of ORs/AND and the successor only has the 692 // current block as predecessor, queue conditions for the successor. 693 Value *Op0, *Op1; 694 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 695 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 696 bool IsOr = match(Cond, m_LogicalOr()); 697 bool IsAnd = match(Cond, m_LogicalAnd()); 698 // If there's a select that matches both AND and OR, we need to commit to 699 // one of the options. Arbitrarily pick OR. 700 if (IsOr && IsAnd) 701 IsAnd = false; 702 703 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 704 if (canAddSuccessor(BB, Successor)) { 705 SmallVector<Value *> CondWorkList; 706 SmallPtrSet<Value *, 8> SeenCond; 707 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 708 if (SeenCond.insert(V).second) 709 CondWorkList.push_back(V); 710 }; 711 QueueValue(Op1); 712 QueueValue(Op0); 713 while (!CondWorkList.empty()) { 714 Value *Cur = CondWorkList.pop_back_val(); 715 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 716 WorkList.emplace_back( 717 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 718 continue; 719 } 720 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 721 QueueValue(Op1); 722 QueueValue(Op0); 723 continue; 724 } 725 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 726 QueueValue(Op1); 727 QueueValue(Op0); 728 continue; 729 } 730 } 731 } 732 return; 733 } 734 735 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 736 if (!CmpI) 737 return; 738 if (canAddSuccessor(BB, Br->getSuccessor(0))) 739 WorkList.emplace_back( 740 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 741 if (canAddSuccessor(BB, Br->getSuccessor(1))) 742 WorkList.emplace_back( 743 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 744 } 745 746 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) { 747 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 748 749 CmpInst::Predicate Pred = Cmp->getPredicate(); 750 Value *A = Cmp->getOperand(0); 751 Value *B = Cmp->getOperand(1); 752 753 auto R = Info.getConstraintForSolving(Pred, A, B); 754 if (R.empty() || !R.isValid(Info)){ 755 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 756 return false; 757 } 758 759 auto &CSToUse = Info.getCS(R.IsSigned); 760 761 // If there was extra information collected during decomposition, apply 762 // it now and remove it immediately once we are done with reasoning 763 // about the constraint. 764 for (auto &Row : R.ExtraInfo) 765 CSToUse.addVariableRow(Row); 766 auto InfoRestorer = make_scope_exit([&]() { 767 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 768 CSToUse.popLastConstraint(); 769 }); 770 771 bool Changed = false; 772 if (CSToUse.isConditionImplied(R.Coefficients)) { 773 if (!DebugCounter::shouldExecute(EliminatedCounter)) 774 return false; 775 776 LLVM_DEBUG({ 777 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 778 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 779 }); 780 Constant *TrueC = 781 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 782 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 783 // Conditions in an assume trivially simplify to true. Skip uses 784 // in assume calls to not destroy the available information. 785 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 786 return !II || II->getIntrinsicID() != Intrinsic::assume; 787 }); 788 NumCondsRemoved++; 789 Changed = true; 790 } 791 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 792 if (!DebugCounter::shouldExecute(EliminatedCounter)) 793 return false; 794 795 LLVM_DEBUG({ 796 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 797 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 798 }); 799 Constant *FalseC = 800 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 801 Cmp->replaceAllUsesWith(FalseC); 802 NumCondsRemoved++; 803 Changed = true; 804 } 805 return Changed; 806 } 807 808 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 809 unsigned NumIn, unsigned NumOut, 810 SmallVectorImpl<StackEntry> &DFSInStack) { 811 // If the constraint has a pre-condition, skip the constraint if it does not 812 // hold. 813 SmallVector<Value *> NewVariables; 814 auto R = getConstraint(Pred, A, B, NewVariables); 815 if (!R.isValid(*this)) 816 return; 817 818 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 819 A->printAsOperand(dbgs(), false); dbgs() << ", "; 820 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 821 bool Added = false; 822 auto &CSToUse = getCS(R.IsSigned); 823 if (R.Coefficients.empty()) 824 return; 825 826 Added |= CSToUse.addVariableRowFill(R.Coefficients); 827 828 // If R has been added to the system, add the new variables and queue it for 829 // removal once it goes out-of-scope. 830 if (Added) { 831 SmallVector<Value *, 2> ValuesToRelease; 832 auto &Value2Index = getValue2Index(R.IsSigned); 833 for (Value *V : NewVariables) { 834 Value2Index.insert({V, Value2Index.size() + 1}); 835 ValuesToRelease.push_back(V); 836 } 837 838 LLVM_DEBUG({ 839 dbgs() << " constraint: "; 840 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 841 dbgs() << "\n"; 842 }); 843 844 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 845 std::move(ValuesToRelease)); 846 847 if (R.IsEq) { 848 // Also add the inverted constraint for equality constraints. 849 for (auto &Coeff : R.Coefficients) 850 Coeff *= -1; 851 CSToUse.addVariableRowFill(R.Coefficients); 852 853 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 854 SmallVector<Value *, 2>()); 855 } 856 } 857 } 858 859 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 860 SmallVectorImpl<Instruction *> &ToRemove) { 861 bool Changed = false; 862 IRBuilder<> Builder(II->getParent(), II->getIterator()); 863 Value *Sub = nullptr; 864 for (User *U : make_early_inc_range(II->users())) { 865 if (match(U, m_ExtractValue<0>(m_Value()))) { 866 if (!Sub) 867 Sub = Builder.CreateSub(A, B); 868 U->replaceAllUsesWith(Sub); 869 Changed = true; 870 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 871 U->replaceAllUsesWith(Builder.getFalse()); 872 Changed = true; 873 } else 874 continue; 875 876 if (U->use_empty()) { 877 auto *I = cast<Instruction>(U); 878 ToRemove.push_back(I); 879 I->setOperand(0, PoisonValue::get(II->getType())); 880 Changed = true; 881 } 882 } 883 884 if (II->use_empty()) { 885 II->eraseFromParent(); 886 Changed = true; 887 } 888 return Changed; 889 } 890 891 static bool 892 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 893 SmallVectorImpl<Instruction *> &ToRemove) { 894 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 895 ConstraintInfo &Info) { 896 auto R = Info.getConstraintForSolving(Pred, A, B); 897 if (R.size() < 2 || !R.isValid(Info)) 898 return false; 899 900 auto &CSToUse = Info.getCS(R.IsSigned); 901 return CSToUse.isConditionImplied(R.Coefficients); 902 }; 903 904 bool Changed = false; 905 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 906 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 907 // can be simplified to a regular sub. 908 Value *A = II->getArgOperand(0); 909 Value *B = II->getArgOperand(1); 910 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 911 !DoesConditionHold(CmpInst::ICMP_SGE, B, 912 ConstantInt::get(A->getType(), 0), Info)) 913 return false; 914 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 915 } 916 return Changed; 917 } 918 919 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 920 bool Changed = false; 921 DT.updateDFSNumbers(); 922 923 ConstraintInfo Info(F.getParent()->getDataLayout()); 924 State S(DT); 925 926 // First, collect conditions implied by branches and blocks with their 927 // Dominator DFS in and out numbers. 928 for (BasicBlock &BB : F) { 929 if (!DT.getNode(&BB)) 930 continue; 931 S.addInfoFor(BB); 932 } 933 934 // Next, sort worklist by dominance, so that dominating conditions to check 935 // and facts come before conditions and facts dominated by them. If a 936 // condition to check and a fact have the same numbers, conditional facts come 937 // first. Assume facts and checks are ordered according to their relative 938 // order in the containing basic block. Also make sure conditions with 939 // constant operands come before conditions without constant operands. This 940 // increases the effectiveness of the current signed <-> unsigned fact 941 // transfer logic. 942 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 943 auto HasNoConstOp = [](const FactOrCheck &B) { 944 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 945 !isa<ConstantInt>(B.Inst->getOperand(1)); 946 }; 947 // If both entries have the same In numbers, conditional facts come first. 948 // Otherwise use the relative order in the basic block. 949 if (A.NumIn == B.NumIn) { 950 if (A.isConditionFact() && B.isConditionFact()) { 951 bool NoConstOpA = HasNoConstOp(A); 952 bool NoConstOpB = HasNoConstOp(B); 953 return NoConstOpA < NoConstOpB; 954 } 955 if (A.isConditionFact()) 956 return true; 957 if (B.isConditionFact()) 958 return false; 959 return A.Inst->comesBefore(B.Inst); 960 } 961 return A.NumIn < B.NumIn; 962 }); 963 964 SmallVector<Instruction *> ToRemove; 965 966 // Finally, process ordered worklist and eliminate implied conditions. 967 SmallVector<StackEntry, 16> DFSInStack; 968 for (FactOrCheck &CB : S.WorkList) { 969 // First, pop entries from the stack that are out-of-scope for CB. Remove 970 // the corresponding entry from the constraint system. 971 while (!DFSInStack.empty()) { 972 auto &E = DFSInStack.back(); 973 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 974 << "\n"); 975 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 976 assert(E.NumIn <= CB.NumIn); 977 if (CB.NumOut <= E.NumOut) 978 break; 979 LLVM_DEBUG({ 980 dbgs() << "Removing "; 981 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 982 Info.getValue2Index(E.IsSigned)); 983 dbgs() << "\n"; 984 }); 985 986 Info.popLastConstraint(E.IsSigned); 987 // Remove variables in the system that went out of scope. 988 auto &Mapping = Info.getValue2Index(E.IsSigned); 989 for (Value *V : E.ValuesToRelease) 990 Mapping.erase(V); 991 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 992 DFSInStack.pop_back(); 993 } 994 995 LLVM_DEBUG({ 996 dbgs() << "Processing "; 997 if (CB.IsCheck) 998 dbgs() << "condition to simplify: " << *CB.Inst; 999 else 1000 dbgs() << "fact to add to the system: " << *CB.Inst; 1001 dbgs() << "\n"; 1002 }); 1003 1004 // For a block, check if any CmpInsts become known based on the current set 1005 // of constraints. 1006 if (CB.IsCheck) { 1007 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1008 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1009 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1010 Changed |= checkAndReplaceCondition(Cmp, Info); 1011 } 1012 continue; 1013 } 1014 1015 ICmpInst::Predicate Pred; 1016 Value *A, *B; 1017 Value *Cmp = CB.Inst; 1018 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1019 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1020 // Use the inverse predicate if required. 1021 if (CB.Not) 1022 Pred = CmpInst::getInversePredicate(Pred); 1023 1024 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1025 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1026 } 1027 } 1028 1029 #ifndef NDEBUG 1030 unsigned SignedEntries = 1031 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1032 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1033 "updates to CS and DFSInStack are out of sync"); 1034 assert(Info.getCS(true).size() == SignedEntries && 1035 "updates to CS and DFSInStack are out of sync"); 1036 #endif 1037 1038 for (Instruction *I : ToRemove) 1039 I->eraseFromParent(); 1040 return Changed; 1041 } 1042 1043 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1044 FunctionAnalysisManager &AM) { 1045 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1046 if (!eliminateConstraints(F, DT)) 1047 return PreservedAnalyses::all(); 1048 1049 PreservedAnalyses PA; 1050 PA.preserve<DominatorTreeAnalysis>(); 1051 PA.preserveSet<CFGAnalyses>(); 1052 return PA; 1053 } 1054