1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <string> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "constraint-elimination" 40 41 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 43 "Controls which conditions are eliminated"); 44 45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 47 48 namespace { 49 50 class ConstraintInfo; 51 52 struct StackEntry { 53 unsigned NumIn; 54 unsigned NumOut; 55 bool IsNot; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 bool IsSigned = false; 82 bool IsEq = false; 83 84 ConstraintTy() = default; 85 86 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 87 : Coefficients(Coefficients), IsSigned(IsSigned) {} 88 89 unsigned size() const { return Coefficients.size(); } 90 91 unsigned empty() const { return Coefficients.empty(); } 92 93 /// Returns true if any constraint has a non-zero coefficient for any of the 94 /// newly added indices. Zero coefficients for new indices are removed. If it 95 /// returns true, no new variable need to be added to the system. 96 bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) { 97 for (unsigned I = 0; I < NewIndices.size(); ++I) { 98 int64_t Last = Coefficients.pop_back_val(); 99 if (Last != 0) 100 return true; 101 } 102 return false; 103 } 104 105 /// Returns true if all preconditions for this list of constraints are 106 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 107 bool isValid(const ConstraintInfo &Info) const; 108 }; 109 110 /// Wrapper encapsulating separate constraint systems and corresponding value 111 /// mappings for both unsigned and signed information. Facts are added to and 112 /// conditions are checked against the corresponding system depending on the 113 /// signed-ness of their predicates. While the information is kept separate 114 /// based on signed-ness, certain conditions can be transferred between the two 115 /// systems. 116 class ConstraintInfo { 117 DenseMap<Value *, unsigned> UnsignedValue2Index; 118 DenseMap<Value *, unsigned> SignedValue2Index; 119 120 ConstraintSystem UnsignedCS; 121 ConstraintSystem SignedCS; 122 123 public: 124 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 125 return Signed ? SignedValue2Index : UnsignedValue2Index; 126 } 127 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 128 return Signed ? SignedValue2Index : UnsignedValue2Index; 129 } 130 131 ConstraintSystem &getCS(bool Signed) { 132 return Signed ? SignedCS : UnsignedCS; 133 } 134 const ConstraintSystem &getCS(bool Signed) const { 135 return Signed ? SignedCS : UnsignedCS; 136 } 137 138 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 139 void popLastNVariables(bool Signed, unsigned N) { 140 getCS(Signed).popLastNVariables(N); 141 } 142 143 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 144 145 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, 146 unsigned NumIn, unsigned NumOut, 147 SmallVectorImpl<StackEntry> &DFSInStack); 148 149 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 150 /// constraints, using indices from the corresponding constraint system. 151 /// Additional indices for newly discovered values are added to \p NewIndices. 152 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 153 DenseMap<Value *, unsigned> &NewIndices) const; 154 155 /// Turn a condition \p CmpI into a vector of constraints, using indices from 156 /// the corresponding constraint system. Additional indices for newly 157 /// discovered values are added to \p NewIndices. 158 ConstraintTy getConstraint(CmpInst *Cmp, 159 DenseMap<Value *, unsigned> &NewIndices) const { 160 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 161 Cmp->getOperand(1), NewIndices); 162 } 163 164 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 165 /// system if \p Pred is signed/unsigned. 166 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 167 bool IsNegated, unsigned NumIn, unsigned NumOut, 168 SmallVectorImpl<StackEntry> &DFSInStack); 169 }; 170 171 /// Represents a (Coefficient * Variable) entry after IR decomposition. 172 struct DecompEntry { 173 int64_t Coefficient; 174 Value *Variable; 175 176 DecompEntry(int64_t Coefficient, Value *Variable) 177 : Coefficient(Coefficient), Variable(Variable) {} 178 }; 179 180 } // namespace 181 182 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 183 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 184 // pair is the constant-factor and X must be nullptr. If the expression cannot 185 // be decomposed, returns an empty vector. 186 static SmallVector<DecompEntry, 4> 187 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 188 bool IsSigned) { 189 190 auto CanUseSExt = [](ConstantInt *CI) { 191 const APInt &Val = CI->getValue(); 192 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 193 }; 194 // Decompose \p V used with a signed predicate. 195 if (IsSigned) { 196 if (auto *CI = dyn_cast<ConstantInt>(V)) { 197 if (CanUseSExt(CI)) 198 return {{CI->getSExtValue(), nullptr}}; 199 } 200 201 return {{0, nullptr}, {1, V}}; 202 } 203 204 if (auto *CI = dyn_cast<ConstantInt>(V)) { 205 if (CI->uge(MaxConstraintValue)) 206 return {}; 207 return {{int64_t(CI->getZExtValue()), nullptr}}; 208 } 209 auto *GEP = dyn_cast<GetElementPtrInst>(V); 210 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 211 Value *Op0, *Op1; 212 ConstantInt *CI; 213 214 // If the index is zero-extended, it is guaranteed to be positive. 215 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 216 m_ZExt(m_Value(Op0)))) { 217 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 218 CanUseSExt(CI)) 219 return {{0, nullptr}, 220 {1, GEP->getPointerOperand()}, 221 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 222 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 223 CanUseSExt(CI)) 224 return {{CI->getSExtValue(), nullptr}, 225 {1, GEP->getPointerOperand()}, 226 {1, Op1}}; 227 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 228 } 229 230 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 231 !CI->isNegative() && CanUseSExt(CI)) 232 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 233 234 SmallVector<DecompEntry, 4> Result; 235 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 236 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 237 CanUseSExt(CI)) 238 Result = {{0, nullptr}, 239 {1, GEP->getPointerOperand()}, 240 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 241 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 242 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 243 CanUseSExt(CI)) 244 Result = {{CI->getSExtValue(), nullptr}, 245 {1, GEP->getPointerOperand()}, 246 {1, Op0}}; 247 else { 248 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 249 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 250 } 251 // If Op0 is signed non-negative, the GEP is increasing monotonically and 252 // can be de-composed. 253 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 254 ConstantInt::get(Op0->getType(), 0)); 255 return Result; 256 } 257 258 Value *Op0; 259 if (match(V, m_ZExt(m_Value(Op0)))) 260 V = Op0; 261 262 Value *Op1; 263 ConstantInt *CI; 264 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && 265 !CI->uge(MaxConstraintValue)) { 266 auto Res = decompose(Op0, Preconditions, IsSigned); 267 Res[0].Coefficient += int(CI->getZExtValue()); 268 return Res; 269 } 270 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 271 CanUseSExt(CI)) { 272 Preconditions.emplace_back( 273 CmpInst::ICMP_UGE, Op0, 274 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 275 auto Res = decompose(Op0, Preconditions, IsSigned); 276 Res[0].Coefficient += int(CI->getSExtValue()); 277 return Res; 278 } 279 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 280 auto Res = decompose(Op0, Preconditions, IsSigned); 281 auto D1 = decompose(Op1, Preconditions, IsSigned); 282 Res[0].Coefficient += D1[0].Coefficient; 283 append_range(Res, drop_begin(D1)); 284 return Res; 285 } 286 287 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 288 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 289 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 290 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 291 292 return {{0, nullptr}, {1, V}}; 293 } 294 295 ConstraintTy 296 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 297 DenseMap<Value *, unsigned> &NewIndices) const { 298 bool IsEq = false; 299 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 300 switch (Pred) { 301 case CmpInst::ICMP_UGT: 302 case CmpInst::ICMP_UGE: 303 case CmpInst::ICMP_SGT: 304 case CmpInst::ICMP_SGE: { 305 Pred = CmpInst::getSwappedPredicate(Pred); 306 std::swap(Op0, Op1); 307 break; 308 } 309 case CmpInst::ICMP_EQ: 310 if (match(Op1, m_Zero())) { 311 Pred = CmpInst::ICMP_ULE; 312 } else { 313 IsEq = true; 314 Pred = CmpInst::ICMP_ULE; 315 } 316 break; 317 case CmpInst::ICMP_NE: 318 if (!match(Op1, m_Zero())) 319 return {}; 320 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 321 std::swap(Op0, Op1); 322 break; 323 default: 324 break; 325 } 326 327 // Only ULE and ULT predicates are supported at the moment. 328 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 329 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 330 return {}; 331 332 SmallVector<PreconditionTy, 4> Preconditions; 333 bool IsSigned = CmpInst::isSigned(Pred); 334 auto &Value2Index = getValue2Index(IsSigned); 335 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 336 Preconditions, IsSigned); 337 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 338 Preconditions, IsSigned); 339 // Skip if decomposing either of the values failed. 340 if (ADec.empty() || BDec.empty()) 341 return {}; 342 343 int64_t Offset1 = ADec[0].Coefficient; 344 int64_t Offset2 = BDec[0].Coefficient; 345 Offset1 *= -1; 346 347 // Create iterator ranges that skip the constant-factor. 348 auto VariablesA = llvm::drop_begin(ADec); 349 auto VariablesB = llvm::drop_begin(BDec); 350 351 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 352 // new entry to NewIndices. 353 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 354 auto V2I = Value2Index.find(V); 355 if (V2I != Value2Index.end()) 356 return V2I->second; 357 auto Insert = 358 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 359 return Insert.first->second; 360 }; 361 362 // Make sure all variables have entries in Value2Index or NewIndices. 363 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 364 GetOrAddIndex(KV.Variable); 365 366 // Build result constraint, by first adding all coefficients from A and then 367 // subtracting all coefficients from B. 368 ConstraintTy Res( 369 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 370 IsSigned); 371 Res.IsEq = IsEq; 372 auto &R = Res.Coefficients; 373 for (const auto &KV : VariablesA) 374 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 375 376 for (const auto &KV : VariablesB) 377 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 378 379 int64_t OffsetSum; 380 if (AddOverflow(Offset1, Offset2, OffsetSum)) 381 return {}; 382 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 383 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 384 return {}; 385 R[0] = OffsetSum; 386 Res.Preconditions = std::move(Preconditions); 387 return Res; 388 } 389 390 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 391 return Coefficients.size() > 0 && 392 all_of(Preconditions, [&Info](const PreconditionTy &C) { 393 return Info.doesHold(C.Pred, C.Op0, C.Op1); 394 }); 395 } 396 397 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 398 Value *B) const { 399 DenseMap<Value *, unsigned> NewIndices; 400 auto R = getConstraint(Pred, A, B, NewIndices); 401 402 if (!NewIndices.empty()) 403 return false; 404 405 // TODO: properly check NewIndices. 406 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 407 !R.empty() && 408 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 409 } 410 411 void ConstraintInfo::transferToOtherSystem( 412 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, 413 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 414 // Check if we can combine facts from the signed and unsigned systems to 415 // derive additional facts. 416 if (!A->getType()->isIntegerTy()) 417 return; 418 // FIXME: This currently depends on the order we add facts. Ideally we 419 // would first add all known facts and only then try to add additional 420 // facts. 421 switch (Pred) { 422 default: 423 break; 424 case CmpInst::ICMP_ULT: 425 // If B is a signed positive constant, A >=s 0 and A <s B. 426 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 427 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), 428 IsNegated, NumIn, NumOut, DFSInStack); 429 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 430 } 431 break; 432 case CmpInst::ICMP_SLT: 433 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 434 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 435 break; 436 case CmpInst::ICMP_SGT: 437 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 438 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), 439 IsNegated, NumIn, NumOut, DFSInStack); 440 break; 441 case CmpInst::ICMP_SGE: 442 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 443 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); 444 } 445 break; 446 } 447 } 448 449 namespace { 450 /// Represents either a condition that holds on entry to a block or a basic 451 /// block, with their respective Dominator DFS in and out numbers. 452 struct ConstraintOrBlock { 453 unsigned NumIn; 454 unsigned NumOut; 455 bool IsBlock; 456 bool Not; 457 union { 458 BasicBlock *BB; 459 CmpInst *Condition; 460 }; 461 462 ConstraintOrBlock(DomTreeNode *DTN) 463 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 464 BB(DTN->getBlock()) {} 465 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 466 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 467 Not(Not), Condition(Condition) {} 468 }; 469 470 /// Keep state required to build worklist. 471 struct State { 472 DominatorTree &DT; 473 SmallVector<ConstraintOrBlock, 64> WorkList; 474 475 State(DominatorTree &DT) : DT(DT) {} 476 477 /// Process block \p BB and add known facts to work-list. 478 void addInfoFor(BasicBlock &BB); 479 480 /// Returns true if we can add a known condition from BB to its successor 481 /// block Succ. Each predecessor of Succ can either be BB or be dominated 482 /// by Succ (e.g. the case when adding a condition from a pre-header to a 483 /// loop header). 484 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 485 if (BB.getSingleSuccessor()) { 486 assert(BB.getSingleSuccessor() == Succ); 487 return DT.properlyDominates(&BB, Succ); 488 } 489 return any_of(successors(&BB), 490 [Succ](const BasicBlock *S) { return S != Succ; }) && 491 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 492 return Pred == &BB || DT.dominates(Succ, Pred); 493 }); 494 } 495 }; 496 497 } // namespace 498 499 #ifndef NDEBUG 500 static void dumpWithNames(const ConstraintSystem &CS, 501 DenseMap<Value *, unsigned> &Value2Index) { 502 SmallVector<std::string> Names(Value2Index.size(), ""); 503 for (auto &KV : Value2Index) { 504 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 505 } 506 CS.dump(Names); 507 } 508 509 static void dumpWithNames(ArrayRef<int64_t> C, 510 DenseMap<Value *, unsigned> &Value2Index) { 511 ConstraintSystem CS; 512 CS.addVariableRowFill(C); 513 dumpWithNames(CS, Value2Index); 514 } 515 #endif 516 517 void State::addInfoFor(BasicBlock &BB) { 518 WorkList.emplace_back(DT.getNode(&BB)); 519 520 // True as long as long as the current instruction is guaranteed to execute. 521 bool GuaranteedToExecute = true; 522 // Scan BB for assume calls. 523 // TODO: also use this scan to queue conditions to simplify, so we can 524 // interleave facts from assumes and conditions to simplify in a single 525 // basic block. And to skip another traversal of each basic block when 526 // simplifying. 527 for (Instruction &I : BB) { 528 Value *Cond; 529 // For now, just handle assumes with a single compare as condition. 530 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 531 isa<ICmpInst>(Cond)) { 532 if (GuaranteedToExecute) { 533 // The assume is guaranteed to execute when BB is entered, hence Cond 534 // holds on entry to BB. 535 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 536 } else { 537 // Otherwise the condition only holds in the successors. 538 for (BasicBlock *Succ : successors(&BB)) { 539 if (!canAddSuccessor(BB, Succ)) 540 continue; 541 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 542 } 543 } 544 } 545 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 546 } 547 548 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 549 if (!Br || !Br->isConditional()) 550 return; 551 552 // If the condition is an OR of 2 compares and the false successor only has 553 // the current block as predecessor, queue both negated conditions for the 554 // false successor. 555 Value *Op0, *Op1; 556 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 557 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 558 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 559 if (canAddSuccessor(BB, FalseSuccessor)) { 560 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 561 true); 562 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 563 true); 564 } 565 return; 566 } 567 568 // If the condition is an AND of 2 compares and the true successor only has 569 // the current block as predecessor, queue both conditions for the true 570 // successor. 571 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 572 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 573 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 574 if (canAddSuccessor(BB, TrueSuccessor)) { 575 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 576 false); 577 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 578 false); 579 } 580 return; 581 } 582 583 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 584 if (!CmpI) 585 return; 586 if (canAddSuccessor(BB, Br->getSuccessor(0))) 587 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 588 if (canAddSuccessor(BB, Br->getSuccessor(1))) 589 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 590 } 591 592 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 593 bool IsNegated, unsigned NumIn, unsigned NumOut, 594 SmallVectorImpl<StackEntry> &DFSInStack) { 595 // If the constraint has a pre-condition, skip the constraint if it does not 596 // hold. 597 DenseMap<Value *, unsigned> NewIndices; 598 auto R = getConstraint(Pred, A, B, NewIndices); 599 if (!R.isValid(*this)) 600 return; 601 602 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); 603 bool Added = false; 604 assert(CmpInst::isSigned(Pred) == R.IsSigned && 605 "condition and constraint signs must match"); 606 auto &CSToUse = getCS(R.IsSigned); 607 if (R.Coefficients.empty()) 608 return; 609 610 Added |= CSToUse.addVariableRowFill(R.Coefficients); 611 612 // If R has been added to the system, queue it for removal once it goes 613 // out-of-scope. 614 if (Added) { 615 SmallVector<Value *, 2> ValuesToRelease; 616 for (auto &KV : NewIndices) { 617 getValue2Index(R.IsSigned).insert(KV); 618 ValuesToRelease.push_back(KV.first); 619 } 620 621 LLVM_DEBUG({ 622 dbgs() << " constraint: "; 623 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 624 }); 625 626 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 627 ValuesToRelease); 628 629 if (R.IsEq) { 630 // Also add the inverted constraint for equality constraints. 631 for (auto &Coeff : R.Coefficients) 632 Coeff *= -1; 633 CSToUse.addVariableRowFill(R.Coefficients); 634 635 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 636 SmallVector<Value *, 2>()); 637 } 638 } 639 } 640 641 static void 642 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 643 SmallVectorImpl<Instruction *> &ToRemove) { 644 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 645 ConstraintInfo &Info) { 646 DenseMap<Value *, unsigned> NewIndices; 647 auto R = Info.getConstraint(Pred, A, B, NewIndices); 648 if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info)) 649 return false; 650 651 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 652 return CSToUse.isConditionImplied(R.Coefficients); 653 }; 654 655 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 656 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 657 // can be simplified to a regular sub. 658 Value *A = II->getArgOperand(0); 659 Value *B = II->getArgOperand(1); 660 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 661 !DoesConditionHold(CmpInst::ICMP_SGE, B, 662 ConstantInt::get(A->getType(), 0), Info)) 663 return; 664 665 IRBuilder<> Builder(II->getParent(), II->getIterator()); 666 Value *Sub = nullptr; 667 for (User *U : make_early_inc_range(II->users())) { 668 if (match(U, m_ExtractValue<0>(m_Value()))) { 669 if (!Sub) 670 Sub = Builder.CreateSub(A, B); 671 U->replaceAllUsesWith(Sub); 672 } else if (match(U, m_ExtractValue<1>(m_Value()))) 673 U->replaceAllUsesWith(Builder.getFalse()); 674 else 675 continue; 676 677 if (U->use_empty()) { 678 auto *I = cast<Instruction>(U); 679 ToRemove.push_back(I); 680 I->setOperand(0, PoisonValue::get(II->getType())); 681 } 682 } 683 684 if (II->use_empty()) 685 II->eraseFromParent(); 686 } 687 } 688 689 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 690 bool Changed = false; 691 DT.updateDFSNumbers(); 692 693 ConstraintInfo Info; 694 State S(DT); 695 696 // First, collect conditions implied by branches and blocks with their 697 // Dominator DFS in and out numbers. 698 for (BasicBlock &BB : F) { 699 if (!DT.getNode(&BB)) 700 continue; 701 S.addInfoFor(BB); 702 } 703 704 // Next, sort worklist by dominance, so that dominating blocks and conditions 705 // come before blocks and conditions dominated by them. If a block and a 706 // condition have the same numbers, the condition comes before the block, as 707 // it holds on entry to the block. 708 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 709 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 710 }); 711 712 SmallVector<Instruction *> ToRemove; 713 714 // Finally, process ordered worklist and eliminate implied conditions. 715 SmallVector<StackEntry, 16> DFSInStack; 716 for (ConstraintOrBlock &CB : S.WorkList) { 717 // First, pop entries from the stack that are out-of-scope for CB. Remove 718 // the corresponding entry from the constraint system. 719 while (!DFSInStack.empty()) { 720 auto &E = DFSInStack.back(); 721 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 722 << "\n"); 723 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 724 assert(E.NumIn <= CB.NumIn); 725 if (CB.NumOut <= E.NumOut) 726 break; 727 LLVM_DEBUG({ 728 dbgs() << "Removing "; 729 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 730 Info.getValue2Index(E.IsSigned)); 731 dbgs() << "\n"; 732 }); 733 734 Info.popLastConstraint(E.IsSigned); 735 // Remove variables in the system that went out of scope. 736 auto &Mapping = Info.getValue2Index(E.IsSigned); 737 for (Value *V : E.ValuesToRelease) 738 Mapping.erase(V); 739 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 740 DFSInStack.pop_back(); 741 } 742 743 LLVM_DEBUG({ 744 dbgs() << "Processing "; 745 if (CB.IsBlock) 746 dbgs() << *CB.BB; 747 else 748 dbgs() << *CB.Condition; 749 dbgs() << "\n"; 750 }); 751 752 // For a block, check if any CmpInsts become known based on the current set 753 // of constraints. 754 if (CB.IsBlock) { 755 for (Instruction &I : make_early_inc_range(*CB.BB)) { 756 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 757 tryToSimplifyOverflowMath(II, Info, ToRemove); 758 continue; 759 } 760 auto *Cmp = dyn_cast<ICmpInst>(&I); 761 if (!Cmp) 762 continue; 763 764 DenseMap<Value *, unsigned> NewIndices; 765 auto R = Info.getConstraint(Cmp, NewIndices); 766 if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) || 767 !R.isValid(Info)) 768 continue; 769 770 auto &CSToUse = Info.getCS(R.IsSigned); 771 if (CSToUse.isConditionImplied(R.Coefficients)) { 772 if (!DebugCounter::shouldExecute(EliminatedCounter)) 773 continue; 774 775 LLVM_DEBUG({ 776 dbgs() << "Condition " << *Cmp 777 << " implied by dominating constraints\n"; 778 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 779 }); 780 Cmp->replaceUsesWithIf( 781 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 782 // Conditions in an assume trivially simplify to true. Skip uses 783 // in assume calls to not destroy the available information. 784 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 785 return !II || II->getIntrinsicID() != Intrinsic::assume; 786 }); 787 NumCondsRemoved++; 788 Changed = true; 789 } 790 if (CSToUse.isConditionImplied( 791 ConstraintSystem::negate(R.Coefficients))) { 792 if (!DebugCounter::shouldExecute(EliminatedCounter)) 793 continue; 794 795 LLVM_DEBUG({ 796 dbgs() << "Condition !" << *Cmp 797 << " implied by dominating constraints\n"; 798 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 799 }); 800 Cmp->replaceAllUsesWith( 801 ConstantInt::getFalse(F.getParent()->getContext())); 802 NumCondsRemoved++; 803 Changed = true; 804 } 805 } 806 continue; 807 } 808 809 // Set up a function to restore the predicate at the end of the scope if it 810 // has been negated. Negate the predicate in-place, if required. 811 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 812 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 813 if (CB.Not && CI) 814 CI->setPredicate(CI->getInversePredicate()); 815 }); 816 if (CB.Not) { 817 if (CI) { 818 CI->setPredicate(CI->getInversePredicate()); 819 } else { 820 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 821 continue; 822 } 823 } 824 825 ICmpInst::Predicate Pred; 826 Value *A, *B; 827 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 828 // Otherwise, add the condition to the system and stack, if we can 829 // transform it into a constraint. 830 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); 831 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, 832 DFSInStack); 833 } 834 } 835 836 #ifndef NDEBUG 837 unsigned SignedEntries = 838 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 839 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 840 "updates to CS and DFSInStack are out of sync"); 841 assert(Info.getCS(true).size() == SignedEntries && 842 "updates to CS and DFSInStack are out of sync"); 843 #endif 844 845 for (Instruction *I : ToRemove) 846 I->eraseFromParent(); 847 return Changed; 848 } 849 850 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 851 FunctionAnalysisManager &AM) { 852 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 853 if (!eliminateConstraints(F, DT)) 854 return PreservedAnalyses::all(); 855 856 PreservedAnalyses PA; 857 PA.preserve<DominatorTreeAnalysis>(); 858 PA.preserveSet<CFGAnalyses>(); 859 return PA; 860 } 861 862 namespace { 863 864 class ConstraintElimination : public FunctionPass { 865 public: 866 static char ID; 867 868 ConstraintElimination() : FunctionPass(ID) { 869 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 870 } 871 872 bool runOnFunction(Function &F) override { 873 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 874 return eliminateConstraints(F, DT); 875 } 876 877 void getAnalysisUsage(AnalysisUsage &AU) const override { 878 AU.setPreservesCFG(); 879 AU.addRequired<DominatorTreeWrapperPass>(); 880 AU.addPreserved<GlobalsAAWrapperPass>(); 881 AU.addPreserved<DominatorTreeWrapperPass>(); 882 } 883 }; 884 885 } // end anonymous namespace 886 887 char ConstraintElimination::ID = 0; 888 889 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 890 "Constraint Elimination", false, false) 891 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 892 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 893 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 894 "Constraint Elimination", false, false) 895 896 FunctionPass *llvm::createConstraintEliminationPass() { 897 return new ConstraintElimination(); 898 } 899