1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 #include "llvm/Transforms/Utils/ValueMapper.h" 38 39 #include <cmath> 40 #include <string> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 #define DEBUG_TYPE "constraint-elimination" 46 47 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 48 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 49 "Controls which conditions are eliminated"); 50 51 static cl::opt<unsigned> 52 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 53 cl::desc("Maximum number of rows to keep in constraint system")); 54 55 static cl::opt<bool> DumpReproducers( 56 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 57 cl::desc("Dump IR to reproduce successful transformations.")); 58 59 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 60 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 61 62 // A helper to multiply 2 signed integers where overflowing is allowed. 63 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 64 int64_t Result; 65 MulOverflow(A, B, Result); 66 return Result; 67 } 68 69 // A helper to add 2 signed integers where overflowing is allowed. 70 static int64_t addWithOverflow(int64_t A, int64_t B) { 71 int64_t Result; 72 AddOverflow(A, B, Result); 73 return Result; 74 } 75 76 namespace { 77 78 class ConstraintInfo; 79 80 struct StackEntry { 81 unsigned NumIn; 82 unsigned NumOut; 83 bool IsSigned = false; 84 /// Variables that can be removed from the system once the stack entry gets 85 /// removed. 86 SmallVector<Value *, 2> ValuesToRelease; 87 88 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 89 SmallVector<Value *, 2> ValuesToRelease) 90 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 91 ValuesToRelease(ValuesToRelease) {} 92 }; 93 94 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 95 struct PreconditionTy { 96 CmpInst::Predicate Pred; 97 Value *Op0; 98 Value *Op1; 99 100 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 101 : Pred(Pred), Op0(Op0), Op1(Op1) {} 102 }; 103 104 struct ConstraintTy { 105 SmallVector<int64_t, 8> Coefficients; 106 SmallVector<PreconditionTy, 2> Preconditions; 107 108 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 109 110 bool IsSigned = false; 111 bool IsEq = false; 112 113 ConstraintTy() = default; 114 115 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 116 : Coefficients(Coefficients), IsSigned(IsSigned) {} 117 118 unsigned size() const { return Coefficients.size(); } 119 120 unsigned empty() const { return Coefficients.empty(); } 121 122 /// Returns true if all preconditions for this list of constraints are 123 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 124 bool isValid(const ConstraintInfo &Info) const; 125 }; 126 127 /// Wrapper encapsulating separate constraint systems and corresponding value 128 /// mappings for both unsigned and signed information. Facts are added to and 129 /// conditions are checked against the corresponding system depending on the 130 /// signed-ness of their predicates. While the information is kept separate 131 /// based on signed-ness, certain conditions can be transferred between the two 132 /// systems. 133 class ConstraintInfo { 134 135 ConstraintSystem UnsignedCS; 136 ConstraintSystem SignedCS; 137 138 const DataLayout &DL; 139 140 public: 141 ConstraintInfo(const DataLayout &DL) : DL(DL) {} 142 143 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 144 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 145 } 146 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 147 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 148 } 149 150 ConstraintSystem &getCS(bool Signed) { 151 return Signed ? SignedCS : UnsignedCS; 152 } 153 const ConstraintSystem &getCS(bool Signed) const { 154 return Signed ? SignedCS : UnsignedCS; 155 } 156 157 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 158 void popLastNVariables(bool Signed, unsigned N) { 159 getCS(Signed).popLastNVariables(N); 160 } 161 162 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 163 164 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 165 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 166 167 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 168 /// constraints, using indices from the corresponding constraint system. 169 /// New variables that need to be added to the system are collected in 170 /// \p NewVariables. 171 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 172 SmallVectorImpl<Value *> &NewVariables) const; 173 174 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 175 /// constraints using getConstraint. Returns an empty constraint if the result 176 /// cannot be used to query the existing constraint system, e.g. because it 177 /// would require adding new variables. Also tries to convert signed 178 /// predicates to unsigned ones if possible to allow using the unsigned system 179 /// which increases the effectiveness of the signed <-> unsigned transfer 180 /// logic. 181 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 182 Value *Op1) const; 183 184 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 185 /// system if \p Pred is signed/unsigned. 186 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 187 unsigned NumIn, unsigned NumOut, 188 SmallVectorImpl<StackEntry> &DFSInStack); 189 }; 190 191 /// Represents a (Coefficient * Variable) entry after IR decomposition. 192 struct DecompEntry { 193 int64_t Coefficient; 194 Value *Variable; 195 /// True if the variable is known positive in the current constraint. 196 bool IsKnownNonNegative; 197 198 DecompEntry(int64_t Coefficient, Value *Variable, 199 bool IsKnownNonNegative = false) 200 : Coefficient(Coefficient), Variable(Variable), 201 IsKnownNonNegative(IsKnownNonNegative) {} 202 }; 203 204 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 205 struct Decomposition { 206 int64_t Offset = 0; 207 SmallVector<DecompEntry, 3> Vars; 208 209 Decomposition(int64_t Offset) : Offset(Offset) {} 210 Decomposition(Value *V, bool IsKnownNonNegative = false) { 211 Vars.emplace_back(1, V, IsKnownNonNegative); 212 } 213 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 214 : Offset(Offset), Vars(Vars) {} 215 216 void add(int64_t OtherOffset) { 217 Offset = addWithOverflow(Offset, OtherOffset); 218 } 219 220 void add(const Decomposition &Other) { 221 add(Other.Offset); 222 append_range(Vars, Other.Vars); 223 } 224 225 void mul(int64_t Factor) { 226 Offset = multiplyWithOverflow(Offset, Factor); 227 for (auto &Var : Vars) 228 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 229 } 230 }; 231 232 } // namespace 233 234 static Decomposition decompose(Value *V, 235 SmallVectorImpl<PreconditionTy> &Preconditions, 236 bool IsSigned, const DataLayout &DL); 237 238 static bool canUseSExt(ConstantInt *CI) { 239 const APInt &Val = CI->getValue(); 240 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 241 } 242 243 static Decomposition 244 decomposeGEP(GetElementPtrInst &GEP, 245 SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned, 246 const DataLayout &DL) { 247 // Do not reason about pointers where the index size is larger than 64 bits, 248 // as the coefficients used to encode constraints are 64 bit integers. 249 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 250 return &GEP; 251 252 if (!GEP.isInBounds()) 253 return &GEP; 254 255 assert(!IsSigned && "The logic below only supports decomposition for " 256 "unsinged predicates at the moment."); 257 Type *PtrTy = GEP.getType()->getScalarType(); 258 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 259 MapVector<Value *, APInt> VariableOffsets; 260 APInt ConstantOffset(BitWidth, 0); 261 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 262 return &GEP; 263 264 // Handle the (gep (gep ....), C) case by incrementing the constant 265 // coefficient of the inner GEP, if C is a constant. 266 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand()); 267 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 268 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 269 Result.add(ConstantOffset.getSExtValue()); 270 271 if (ConstantOffset.isNegative()) { 272 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 273 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 274 if (ConstantOffsetI % Scale != 0) 275 return &GEP; 276 // Add pre-condition ensuring the GEP is increasing monotonically and 277 // can be de-composed. 278 // Both sides are normalized by being divided by Scale. 279 Preconditions.emplace_back( 280 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 281 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 282 -1 * (ConstantOffsetI / Scale))); 283 } 284 return Result; 285 } 286 287 Decomposition Result(ConstantOffset.getSExtValue(), 288 DecompEntry(1, GEP.getPointerOperand())); 289 for (auto [Index, Scale] : VariableOffsets) { 290 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 291 IdxResult.mul(Scale.getSExtValue()); 292 Result.add(IdxResult); 293 294 // If Op0 is signed non-negative, the GEP is increasing monotonically and 295 // can be de-composed. 296 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 297 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 298 ConstantInt::get(Index->getType(), 0)); 299 } 300 return Result; 301 } 302 303 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 304 // Variable } where Coefficient * Variable. The sum of the constant offset and 305 // pairs equals \p V. 306 static Decomposition decompose(Value *V, 307 SmallVectorImpl<PreconditionTy> &Preconditions, 308 bool IsSigned, const DataLayout &DL) { 309 310 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 311 bool IsSignedB) { 312 auto ResA = decompose(A, Preconditions, IsSigned, DL); 313 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 314 ResA.add(ResB); 315 return ResA; 316 }; 317 318 // Decompose \p V used with a signed predicate. 319 if (IsSigned) { 320 if (auto *CI = dyn_cast<ConstantInt>(V)) { 321 if (canUseSExt(CI)) 322 return CI->getSExtValue(); 323 } 324 Value *Op0; 325 Value *Op1; 326 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 327 return MergeResults(Op0, Op1, IsSigned); 328 329 return V; 330 } 331 332 if (auto *CI = dyn_cast<ConstantInt>(V)) { 333 if (CI->uge(MaxConstraintValue)) 334 return V; 335 return int64_t(CI->getZExtValue()); 336 } 337 338 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 339 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 340 341 Value *Op0; 342 bool IsKnownNonNegative = false; 343 if (match(V, m_ZExt(m_Value(Op0)))) { 344 IsKnownNonNegative = true; 345 V = Op0; 346 } 347 348 Value *Op1; 349 ConstantInt *CI; 350 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 351 return MergeResults(Op0, Op1, IsSigned); 352 } 353 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 354 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 355 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 356 ConstantInt::get(Op0->getType(), 0)); 357 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 358 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 359 ConstantInt::get(Op1->getType(), 0)); 360 361 return MergeResults(Op0, Op1, IsSigned); 362 } 363 364 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 365 canUseSExt(CI)) { 366 Preconditions.emplace_back( 367 CmpInst::ICMP_UGE, Op0, 368 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 369 return MergeResults(Op0, CI, true); 370 } 371 372 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 373 int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue())); 374 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 375 Result.mul(Mult); 376 return Result; 377 } 378 379 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 380 (!CI->isNegative())) { 381 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 382 Result.mul(CI->getSExtValue()); 383 return Result; 384 } 385 386 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 387 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 388 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 389 return {0, {{1, Op0}, {-1, Op1}}}; 390 391 return {V, IsKnownNonNegative}; 392 } 393 394 ConstraintTy 395 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 396 SmallVectorImpl<Value *> &NewVariables) const { 397 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 398 bool IsEq = false; 399 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 400 switch (Pred) { 401 case CmpInst::ICMP_UGT: 402 case CmpInst::ICMP_UGE: 403 case CmpInst::ICMP_SGT: 404 case CmpInst::ICMP_SGE: { 405 Pred = CmpInst::getSwappedPredicate(Pred); 406 std::swap(Op0, Op1); 407 break; 408 } 409 case CmpInst::ICMP_EQ: 410 if (match(Op1, m_Zero())) { 411 Pred = CmpInst::ICMP_ULE; 412 } else { 413 IsEq = true; 414 Pred = CmpInst::ICMP_ULE; 415 } 416 break; 417 case CmpInst::ICMP_NE: 418 if (!match(Op1, m_Zero())) 419 return {}; 420 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 421 std::swap(Op0, Op1); 422 break; 423 default: 424 break; 425 } 426 427 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 428 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 429 return {}; 430 431 SmallVector<PreconditionTy, 4> Preconditions; 432 bool IsSigned = CmpInst::isSigned(Pred); 433 auto &Value2Index = getValue2Index(IsSigned); 434 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 435 Preconditions, IsSigned, DL); 436 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 437 Preconditions, IsSigned, DL); 438 int64_t Offset1 = ADec.Offset; 439 int64_t Offset2 = BDec.Offset; 440 Offset1 *= -1; 441 442 auto &VariablesA = ADec.Vars; 443 auto &VariablesB = BDec.Vars; 444 445 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 446 // new entry to NewVariables. 447 DenseMap<Value *, unsigned> NewIndexMap; 448 auto GetOrAddIndex = [&Value2Index, &NewVariables, 449 &NewIndexMap](Value *V) -> unsigned { 450 auto V2I = Value2Index.find(V); 451 if (V2I != Value2Index.end()) 452 return V2I->second; 453 auto Insert = 454 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 455 if (Insert.second) 456 NewVariables.push_back(V); 457 return Insert.first->second; 458 }; 459 460 // Make sure all variables have entries in Value2Index or NewVariables. 461 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 462 GetOrAddIndex(KV.Variable); 463 464 // Build result constraint, by first adding all coefficients from A and then 465 // subtracting all coefficients from B. 466 ConstraintTy Res( 467 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 468 IsSigned); 469 // Collect variables that are known to be positive in all uses in the 470 // constraint. 471 DenseMap<Value *, bool> KnownNonNegativeVariables; 472 Res.IsEq = IsEq; 473 auto &R = Res.Coefficients; 474 for (const auto &KV : VariablesA) { 475 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 476 auto I = 477 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 478 I.first->second &= KV.IsKnownNonNegative; 479 } 480 481 for (const auto &KV : VariablesB) { 482 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 483 auto I = 484 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 485 I.first->second &= KV.IsKnownNonNegative; 486 } 487 488 int64_t OffsetSum; 489 if (AddOverflow(Offset1, Offset2, OffsetSum)) 490 return {}; 491 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 492 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 493 return {}; 494 R[0] = OffsetSum; 495 Res.Preconditions = std::move(Preconditions); 496 497 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 498 // variables. 499 while (!NewVariables.empty()) { 500 int64_t Last = R.back(); 501 if (Last != 0) 502 break; 503 R.pop_back(); 504 Value *RemovedV = NewVariables.pop_back_val(); 505 NewIndexMap.erase(RemovedV); 506 } 507 508 // Add extra constraints for variables that are known positive. 509 for (auto &KV : KnownNonNegativeVariables) { 510 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 511 NewIndexMap.find(KV.first) == NewIndexMap.end())) 512 continue; 513 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 514 C[GetOrAddIndex(KV.first)] = -1; 515 Res.ExtraInfo.push_back(C); 516 } 517 return Res; 518 } 519 520 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 521 Value *Op0, 522 Value *Op1) const { 523 // If both operands are known to be non-negative, change signed predicates to 524 // unsigned ones. This increases the reasoning effectiveness in combination 525 // with the signed <-> unsigned transfer logic. 526 if (CmpInst::isSigned(Pred) && 527 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 528 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 529 Pred = CmpInst::getUnsignedPredicate(Pred); 530 531 SmallVector<Value *> NewVariables; 532 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 533 if (R.IsEq || !NewVariables.empty()) 534 return {}; 535 return R; 536 } 537 538 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 539 return Coefficients.size() > 0 && 540 all_of(Preconditions, [&Info](const PreconditionTy &C) { 541 return Info.doesHold(C.Pred, C.Op0, C.Op1); 542 }); 543 } 544 545 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 546 Value *B) const { 547 auto R = getConstraintForSolving(Pred, A, B); 548 return R.Preconditions.empty() && !R.empty() && 549 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 550 } 551 552 void ConstraintInfo::transferToOtherSystem( 553 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 554 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 555 // Check if we can combine facts from the signed and unsigned systems to 556 // derive additional facts. 557 if (!A->getType()->isIntegerTy()) 558 return; 559 // FIXME: This currently depends on the order we add facts. Ideally we 560 // would first add all known facts and only then try to add additional 561 // facts. 562 switch (Pred) { 563 default: 564 break; 565 case CmpInst::ICMP_ULT: 566 // If B is a signed positive constant, A >=s 0 and A <s B. 567 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 568 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 569 NumOut, DFSInStack); 570 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 571 } 572 break; 573 case CmpInst::ICMP_SLT: 574 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 575 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 576 break; 577 case CmpInst::ICMP_SGT: 578 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 579 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 580 NumOut, DFSInStack); 581 break; 582 case CmpInst::ICMP_SGE: 583 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 584 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 585 } 586 break; 587 } 588 } 589 590 namespace { 591 /// Represents either 592 /// * a condition that holds on entry to a block (=conditional fact) 593 /// * an assume (=assume fact) 594 /// * an instruction to simplify. 595 /// It also tracks the Dominator DFS in and out numbers for each entry. 596 struct FactOrCheck { 597 Instruction *Inst; 598 unsigned NumIn; 599 unsigned NumOut; 600 bool IsCheck; 601 bool Not; 602 603 FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not) 604 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 605 IsCheck(IsCheck), Not(Not) {} 606 607 static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst, 608 bool Not = false) { 609 return FactOrCheck(DTN, Inst, false, Not); 610 } 611 612 static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) { 613 return FactOrCheck(DTN, Inst, true, false); 614 } 615 616 bool isAssumeFact() const { 617 if (!IsCheck && isa<IntrinsicInst>(Inst)) { 618 assert(match(Inst, m_Intrinsic<Intrinsic::assume>())); 619 return true; 620 } 621 return false; 622 } 623 624 bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); } 625 }; 626 627 /// Keep state required to build worklist. 628 struct State { 629 DominatorTree &DT; 630 SmallVector<FactOrCheck, 64> WorkList; 631 632 State(DominatorTree &DT) : DT(DT) {} 633 634 /// Process block \p BB and add known facts to work-list. 635 void addInfoFor(BasicBlock &BB); 636 637 /// Returns true if we can add a known condition from BB to its successor 638 /// block Succ. 639 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 640 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 641 } 642 }; 643 644 } // namespace 645 646 #ifndef NDEBUG 647 static void dumpWithNames(const ConstraintSystem &CS, 648 DenseMap<Value *, unsigned> &Value2Index) { 649 SmallVector<std::string> Names(Value2Index.size(), ""); 650 for (auto &KV : Value2Index) { 651 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 652 } 653 CS.dump(Names); 654 } 655 656 static void dumpWithNames(ArrayRef<int64_t> C, 657 DenseMap<Value *, unsigned> &Value2Index) { 658 ConstraintSystem CS; 659 CS.addVariableRowFill(C); 660 dumpWithNames(CS, Value2Index); 661 } 662 #endif 663 664 void State::addInfoFor(BasicBlock &BB) { 665 // True as long as long as the current instruction is guaranteed to execute. 666 bool GuaranteedToExecute = true; 667 // Queue conditions and assumes. 668 for (Instruction &I : BB) { 669 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 670 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp)); 671 continue; 672 } 673 674 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 675 WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I)); 676 continue; 677 } 678 679 Value *Cond; 680 // For now, just handle assumes with a single compare as condition. 681 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 682 isa<ICmpInst>(Cond)) { 683 if (GuaranteedToExecute) { 684 // The assume is guaranteed to execute when BB is entered, hence Cond 685 // holds on entry to BB. 686 WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()), 687 cast<Instruction>(Cond))); 688 } else { 689 WorkList.emplace_back( 690 FactOrCheck::getFact(DT.getNode(I.getParent()), &I)); 691 } 692 } 693 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 694 } 695 696 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 697 if (!Br || !Br->isConditional()) 698 return; 699 700 Value *Cond = Br->getCondition(); 701 702 // If the condition is a chain of ORs/AND and the successor only has the 703 // current block as predecessor, queue conditions for the successor. 704 Value *Op0, *Op1; 705 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 706 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 707 bool IsOr = match(Cond, m_LogicalOr()); 708 bool IsAnd = match(Cond, m_LogicalAnd()); 709 // If there's a select that matches both AND and OR, we need to commit to 710 // one of the options. Arbitrarily pick OR. 711 if (IsOr && IsAnd) 712 IsAnd = false; 713 714 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 715 if (canAddSuccessor(BB, Successor)) { 716 SmallVector<Value *> CondWorkList; 717 SmallPtrSet<Value *, 8> SeenCond; 718 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 719 if (SeenCond.insert(V).second) 720 CondWorkList.push_back(V); 721 }; 722 QueueValue(Op1); 723 QueueValue(Op0); 724 while (!CondWorkList.empty()) { 725 Value *Cur = CondWorkList.pop_back_val(); 726 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 727 WorkList.emplace_back( 728 FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr)); 729 continue; 730 } 731 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 732 QueueValue(Op1); 733 QueueValue(Op0); 734 continue; 735 } 736 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 737 QueueValue(Op1); 738 QueueValue(Op0); 739 continue; 740 } 741 } 742 } 743 return; 744 } 745 746 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 747 if (!CmpI) 748 return; 749 if (canAddSuccessor(BB, Br->getSuccessor(0))) 750 WorkList.emplace_back( 751 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 752 if (canAddSuccessor(BB, Br->getSuccessor(1))) 753 WorkList.emplace_back( 754 FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true)); 755 } 756 757 namespace { 758 /// Helper to keep track of a condition and if it should be treated as negated 759 /// for reproducer construction. 760 struct ReproducerEntry { 761 CmpInst *Cond; 762 bool IsNot; 763 764 ReproducerEntry(CmpInst *Cond, bool IsNot) : Cond(Cond), IsNot(IsNot) {} 765 }; 766 } // namespace 767 768 /// Helper function to generate a reproducer function for simplifying \p Cond. 769 /// The reproducer function contains a series of @llvm.assume calls, one for 770 /// each condition in \p Stack. For each condition, the operand instruction are 771 /// cloned until we reach operands that have an entry in \p Value2Index. Those 772 /// will then be added as function arguments. \p DT is used to order cloned 773 /// instructions. The reproducer function will get added to \p M, if it is 774 /// non-null. Otherwise no reproducer function is generated. 775 static void generateReproducer(CmpInst *Cond, Module *M, 776 ArrayRef<ReproducerEntry> Stack, 777 ConstraintInfo &Info, DominatorTree &DT) { 778 if (!M) 779 return; 780 781 LLVMContext &Ctx = Cond->getContext(); 782 783 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 784 785 ValueToValueMapTy Old2New; 786 SmallVector<Value *> Args; 787 SmallPtrSet<Value *, 8> Seen; 788 // Traverse Cond and its operands recursively until we reach a value that's in 789 // Value2Index or not an instruction, or not a operation that 790 // ConstraintElimination can decompose. Such values will be considered as 791 // external inputs to the reproducer, they are collected and added as function 792 // arguments later. 793 auto CollectArguments = [&](CmpInst *Cond) { 794 if (!Cond) 795 return; 796 auto &Value2Index = 797 Info.getValue2Index(CmpInst::isSigned(Cond->getPredicate())); 798 SmallVector<Value *, 4> WorkList; 799 WorkList.push_back(Cond); 800 while (!WorkList.empty()) { 801 Value *V = WorkList.pop_back_val(); 802 if (!Seen.insert(V).second) 803 continue; 804 if (Old2New.find(V) != Old2New.end()) 805 continue; 806 if (isa<Constant>(V)) 807 continue; 808 809 auto *I = dyn_cast<Instruction>(V); 810 if (Value2Index.find(V) != Value2Index.end() || !I || 811 !isa<CmpInst, BinaryOperator, GetElementPtrInst, CastInst>(V)) { 812 Old2New[V] = V; 813 Args.push_back(V); 814 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 815 } else { 816 append_range(WorkList, I->operands()); 817 } 818 } 819 }; 820 821 for (auto &Entry : Stack) 822 CollectArguments(Entry.Cond); 823 CollectArguments(Cond); 824 825 SmallVector<Type *> ParamTys; 826 for (auto *P : Args) 827 ParamTys.push_back(P->getType()); 828 829 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 830 /*isVarArg=*/false); 831 Function *F = Function::Create(FTy, Function::ExternalLinkage, 832 Cond->getModule()->getName() + 833 Cond->getFunction()->getName() + "repro", 834 M); 835 // Add arguments to the reproducer function for each external value collected. 836 for (unsigned I = 0; I < Args.size(); ++I) { 837 F->getArg(I)->setName(Args[I]->getName()); 838 Old2New[Args[I]] = F->getArg(I); 839 } 840 841 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 842 IRBuilder<> Builder(Entry); 843 Builder.CreateRet(Builder.getTrue()); 844 Builder.SetInsertPoint(Entry->getTerminator()); 845 846 // Clone instructions in \p Ops and their operands recursively until reaching 847 // an value in Value2Index (external input to the reproducer). Update Old2New 848 // mapping for the original and cloned instructions. Sort instructions to 849 // clone by dominance, then insert the cloned instructions in the function. 850 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 851 SmallVector<Value *, 4> WorkList(Ops); 852 SmallVector<Instruction *> ToClone; 853 auto &Value2Index = Info.getValue2Index(IsSigned); 854 while (!WorkList.empty()) { 855 Value *V = WorkList.pop_back_val(); 856 if (Old2New.find(V) != Old2New.end()) 857 continue; 858 859 auto *I = dyn_cast<Instruction>(V); 860 if (Value2Index.find(V) == Value2Index.end() && I) { 861 Old2New[V] = nullptr; 862 ToClone.push_back(I); 863 append_range(WorkList, I->operands()); 864 } 865 } 866 867 sort(ToClone, 868 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 869 for (Instruction *I : ToClone) { 870 Instruction *Cloned = I->clone(); 871 Old2New[I] = Cloned; 872 Old2New[I]->setName(I->getName()); 873 Cloned->insertBefore(&*Builder.GetInsertPoint()); 874 Cloned->dropUnknownNonDebugMetadata(); 875 Cloned->setDebugLoc({}); 876 } 877 }; 878 879 // Materialize the assumptions for the reproducer using the entries in Stack. 880 // That is, first clone the operands of the condition recursively until we 881 // reach an external input to the reproducer and add them to the reproducer 882 // function. Then add an ICmp for the condition (with the inverse predicate if 883 // the entry is negated) and an assert using the ICmp. 884 for (auto &Entry : Stack) { 885 if (!Entry.Cond) 886 continue; 887 888 LLVM_DEBUG(dbgs() << " Materializing assumption " << *Entry.Cond << "\n"); 889 CmpInst::Predicate Pred = Entry.Cond->getPredicate(); 890 if (Entry.IsNot) 891 Pred = CmpInst::getInversePredicate(Pred); 892 893 CloneInstructions({Entry.Cond->getOperand(0), Entry.Cond->getOperand(1)}, 894 CmpInst::isSigned(Entry.Cond->getPredicate())); 895 896 auto *Cmp = Builder.CreateICmp(Pred, Entry.Cond->getOperand(0), 897 Entry.Cond->getOperand(1)); 898 Builder.CreateAssumption(Cmp); 899 } 900 901 // Finally, clone the condition to reproduce and remap instruction operands in 902 // the reproducer using Old2New. 903 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 904 Entry->getTerminator()->setOperand(0, Cond); 905 remapInstructionsInBlocks({Entry}, Old2New); 906 907 assert(!verifyFunction(*F, &dbgs())); 908 } 909 910 static bool checkAndReplaceCondition( 911 CmpInst *Cmp, ConstraintInfo &Info, Module *ReproducerModule, 912 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT) { 913 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 914 915 CmpInst::Predicate Pred = Cmp->getPredicate(); 916 Value *A = Cmp->getOperand(0); 917 Value *B = Cmp->getOperand(1); 918 919 auto R = Info.getConstraintForSolving(Pred, A, B); 920 if (R.empty() || !R.isValid(Info)){ 921 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 922 return false; 923 } 924 925 auto &CSToUse = Info.getCS(R.IsSigned); 926 927 // If there was extra information collected during decomposition, apply 928 // it now and remove it immediately once we are done with reasoning 929 // about the constraint. 930 for (auto &Row : R.ExtraInfo) 931 CSToUse.addVariableRow(Row); 932 auto InfoRestorer = make_scope_exit([&]() { 933 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 934 CSToUse.popLastConstraint(); 935 }); 936 937 bool Changed = false; 938 if (CSToUse.isConditionImplied(R.Coefficients)) { 939 if (!DebugCounter::shouldExecute(EliminatedCounter)) 940 return false; 941 942 LLVM_DEBUG({ 943 dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n"; 944 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 945 }); 946 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 947 Constant *TrueC = 948 ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType())); 949 Cmp->replaceUsesWithIf(TrueC, [](Use &U) { 950 // Conditions in an assume trivially simplify to true. Skip uses 951 // in assume calls to not destroy the available information. 952 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 953 return !II || II->getIntrinsicID() != Intrinsic::assume; 954 }); 955 NumCondsRemoved++; 956 Changed = true; 957 } 958 if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) { 959 if (!DebugCounter::shouldExecute(EliminatedCounter)) 960 return false; 961 962 LLVM_DEBUG({ 963 dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n"; 964 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 965 }); 966 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 967 Constant *FalseC = 968 ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType())); 969 Cmp->replaceAllUsesWith(FalseC); 970 NumCondsRemoved++; 971 Changed = true; 972 } 973 return Changed; 974 } 975 976 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 977 unsigned NumIn, unsigned NumOut, 978 SmallVectorImpl<StackEntry> &DFSInStack) { 979 // If the constraint has a pre-condition, skip the constraint if it does not 980 // hold. 981 SmallVector<Value *> NewVariables; 982 auto R = getConstraint(Pred, A, B, NewVariables); 983 if (!R.isValid(*this)) 984 return; 985 986 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 987 A->printAsOperand(dbgs(), false); dbgs() << ", "; 988 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 989 bool Added = false; 990 auto &CSToUse = getCS(R.IsSigned); 991 if (R.Coefficients.empty()) 992 return; 993 994 Added |= CSToUse.addVariableRowFill(R.Coefficients); 995 996 // If R has been added to the system, add the new variables and queue it for 997 // removal once it goes out-of-scope. 998 if (Added) { 999 SmallVector<Value *, 2> ValuesToRelease; 1000 auto &Value2Index = getValue2Index(R.IsSigned); 1001 for (Value *V : NewVariables) { 1002 Value2Index.insert({V, Value2Index.size() + 1}); 1003 ValuesToRelease.push_back(V); 1004 } 1005 1006 LLVM_DEBUG({ 1007 dbgs() << " constraint: "; 1008 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 1009 dbgs() << "\n"; 1010 }); 1011 1012 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1013 std::move(ValuesToRelease)); 1014 1015 if (R.IsEq) { 1016 // Also add the inverted constraint for equality constraints. 1017 for (auto &Coeff : R.Coefficients) 1018 Coeff *= -1; 1019 CSToUse.addVariableRowFill(R.Coefficients); 1020 1021 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1022 SmallVector<Value *, 2>()); 1023 } 1024 } 1025 } 1026 1027 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1028 SmallVectorImpl<Instruction *> &ToRemove) { 1029 bool Changed = false; 1030 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1031 Value *Sub = nullptr; 1032 for (User *U : make_early_inc_range(II->users())) { 1033 if (match(U, m_ExtractValue<0>(m_Value()))) { 1034 if (!Sub) 1035 Sub = Builder.CreateSub(A, B); 1036 U->replaceAllUsesWith(Sub); 1037 Changed = true; 1038 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1039 U->replaceAllUsesWith(Builder.getFalse()); 1040 Changed = true; 1041 } else 1042 continue; 1043 1044 if (U->use_empty()) { 1045 auto *I = cast<Instruction>(U); 1046 ToRemove.push_back(I); 1047 I->setOperand(0, PoisonValue::get(II->getType())); 1048 Changed = true; 1049 } 1050 } 1051 1052 if (II->use_empty()) { 1053 II->eraseFromParent(); 1054 Changed = true; 1055 } 1056 return Changed; 1057 } 1058 1059 static bool 1060 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1061 SmallVectorImpl<Instruction *> &ToRemove) { 1062 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1063 ConstraintInfo &Info) { 1064 auto R = Info.getConstraintForSolving(Pred, A, B); 1065 if (R.size() < 2 || !R.isValid(Info)) 1066 return false; 1067 1068 auto &CSToUse = Info.getCS(R.IsSigned); 1069 return CSToUse.isConditionImplied(R.Coefficients); 1070 }; 1071 1072 bool Changed = false; 1073 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1074 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1075 // can be simplified to a regular sub. 1076 Value *A = II->getArgOperand(0); 1077 Value *B = II->getArgOperand(1); 1078 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1079 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1080 ConstantInt::get(A->getType(), 0), Info)) 1081 return false; 1082 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1083 } 1084 return Changed; 1085 } 1086 1087 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1088 OptimizationRemarkEmitter &ORE) { 1089 bool Changed = false; 1090 DT.updateDFSNumbers(); 1091 1092 ConstraintInfo Info(F.getParent()->getDataLayout()); 1093 State S(DT); 1094 std::unique_ptr<Module> ReproducerModule( 1095 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1096 1097 // First, collect conditions implied by branches and blocks with their 1098 // Dominator DFS in and out numbers. 1099 for (BasicBlock &BB : F) { 1100 if (!DT.getNode(&BB)) 1101 continue; 1102 S.addInfoFor(BB); 1103 } 1104 1105 // Next, sort worklist by dominance, so that dominating conditions to check 1106 // and facts come before conditions and facts dominated by them. If a 1107 // condition to check and a fact have the same numbers, conditional facts come 1108 // first. Assume facts and checks are ordered according to their relative 1109 // order in the containing basic block. Also make sure conditions with 1110 // constant operands come before conditions without constant operands. This 1111 // increases the effectiveness of the current signed <-> unsigned fact 1112 // transfer logic. 1113 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1114 auto HasNoConstOp = [](const FactOrCheck &B) { 1115 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1116 !isa<ConstantInt>(B.Inst->getOperand(1)); 1117 }; 1118 // If both entries have the same In numbers, conditional facts come first. 1119 // Otherwise use the relative order in the basic block. 1120 if (A.NumIn == B.NumIn) { 1121 if (A.isConditionFact() && B.isConditionFact()) { 1122 bool NoConstOpA = HasNoConstOp(A); 1123 bool NoConstOpB = HasNoConstOp(B); 1124 return NoConstOpA < NoConstOpB; 1125 } 1126 if (A.isConditionFact()) 1127 return true; 1128 if (B.isConditionFact()) 1129 return false; 1130 return A.Inst->comesBefore(B.Inst); 1131 } 1132 return A.NumIn < B.NumIn; 1133 }); 1134 1135 SmallVector<Instruction *> ToRemove; 1136 1137 // Finally, process ordered worklist and eliminate implied conditions. 1138 SmallVector<StackEntry, 16> DFSInStack; 1139 SmallVector<ReproducerEntry> ReproducerCondStack; 1140 for (FactOrCheck &CB : S.WorkList) { 1141 // First, pop entries from the stack that are out-of-scope for CB. Remove 1142 // the corresponding entry from the constraint system. 1143 while (!DFSInStack.empty()) { 1144 auto &E = DFSInStack.back(); 1145 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1146 << "\n"); 1147 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1148 assert(E.NumIn <= CB.NumIn); 1149 if (CB.NumOut <= E.NumOut) 1150 break; 1151 LLVM_DEBUG({ 1152 dbgs() << "Removing "; 1153 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 1154 Info.getValue2Index(E.IsSigned)); 1155 dbgs() << "\n"; 1156 }); 1157 1158 Info.popLastConstraint(E.IsSigned); 1159 // Remove variables in the system that went out of scope. 1160 auto &Mapping = Info.getValue2Index(E.IsSigned); 1161 for (Value *V : E.ValuesToRelease) 1162 Mapping.erase(V); 1163 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1164 DFSInStack.pop_back(); 1165 if (ReproducerModule) 1166 ReproducerCondStack.pop_back(); 1167 } 1168 1169 LLVM_DEBUG({ 1170 dbgs() << "Processing "; 1171 if (CB.IsCheck) 1172 dbgs() << "condition to simplify: " << *CB.Inst; 1173 else 1174 dbgs() << "fact to add to the system: " << *CB.Inst; 1175 dbgs() << "\n"; 1176 }); 1177 1178 // For a block, check if any CmpInsts become known based on the current set 1179 // of constraints. 1180 if (CB.IsCheck) { 1181 if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) { 1182 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1183 } else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) { 1184 Changed |= checkAndReplaceCondition(Cmp, Info, ReproducerModule.get(), 1185 ReproducerCondStack, S.DT); 1186 } 1187 continue; 1188 } 1189 1190 ICmpInst::Predicate Pred; 1191 Value *A, *B; 1192 Value *Cmp = CB.Inst; 1193 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1194 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1195 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1196 LLVM_DEBUG( 1197 dbgs() 1198 << "Skip adding constraint because system has too many rows.\n"); 1199 continue; 1200 } 1201 1202 // Use the inverse predicate if required. 1203 if (CB.Not) 1204 Pred = CmpInst::getInversePredicate(Pred); 1205 1206 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1207 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1208 ReproducerCondStack.emplace_back(cast<CmpInst>(Cmp), CB.Not); 1209 1210 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1211 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1212 // Add dummy entries to ReproducerCondStack to keep it in sync with 1213 // DFSInStack. 1214 for (unsigned I = 0, 1215 E = (DFSInStack.size() - ReproducerCondStack.size()); 1216 I < E; ++I) { 1217 ReproducerCondStack.emplace_back(nullptr, false); 1218 } 1219 } 1220 } 1221 } 1222 1223 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1224 std::string S; 1225 raw_string_ostream StringS(S); 1226 ReproducerModule->print(StringS, nullptr); 1227 StringS.flush(); 1228 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1229 Rem << ore::NV("module") << S; 1230 ORE.emit(Rem); 1231 } 1232 1233 #ifndef NDEBUG 1234 unsigned SignedEntries = 1235 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1236 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1237 "updates to CS and DFSInStack are out of sync"); 1238 assert(Info.getCS(true).size() == SignedEntries && 1239 "updates to CS and DFSInStack are out of sync"); 1240 #endif 1241 1242 for (Instruction *I : ToRemove) 1243 I->eraseFromParent(); 1244 return Changed; 1245 } 1246 1247 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1248 FunctionAnalysisManager &AM) { 1249 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1250 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1251 if (!eliminateConstraints(F, DT, ORE)) 1252 return PreservedAnalyses::all(); 1253 1254 PreservedAnalyses PA; 1255 PA.preserve<DominatorTreeAnalysis>(); 1256 PA.preserveSet<CFGAnalyses>(); 1257 return PA; 1258 } 1259