1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/InitializePasses.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/Debug.h" 30 #include "llvm/Support/DebugCounter.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Scalar.h" 33 34 #include <string> 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "constraint-elimination" 40 41 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 43 "Controls which conditions are eliminated"); 44 45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 47 48 namespace { 49 50 class ConstraintInfo; 51 52 struct StackEntry { 53 unsigned NumIn; 54 unsigned NumOut; 55 bool IsNot; 56 bool IsSigned = false; 57 /// Variables that can be removed from the system once the stack entry gets 58 /// removed. 59 SmallVector<Value *, 2> ValuesToRelease; 60 61 StackEntry(unsigned NumIn, unsigned NumOut, bool IsNot, bool IsSigned, 62 SmallVector<Value *, 2> ValuesToRelease) 63 : NumIn(NumIn), NumOut(NumOut), IsNot(IsNot), IsSigned(IsSigned), 64 ValuesToRelease(ValuesToRelease) {} 65 }; 66 67 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 68 struct PreconditionTy { 69 CmpInst::Predicate Pred; 70 Value *Op0; 71 Value *Op1; 72 73 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 74 : Pred(Pred), Op0(Op0), Op1(Op1) {} 75 }; 76 77 struct ConstraintTy { 78 SmallVector<int64_t, 8> Coefficients; 79 SmallVector<PreconditionTy, 2> Preconditions; 80 81 bool IsSigned = false; 82 bool IsEq = false; 83 84 ConstraintTy() = default; 85 86 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 87 : Coefficients(Coefficients), IsSigned(IsSigned) {} 88 89 unsigned size() const { return Coefficients.size(); } 90 91 unsigned empty() const { return Coefficients.empty(); } 92 93 /// Returns true if all preconditions for this list of constraints are 94 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 95 bool isValid(const ConstraintInfo &Info) const; 96 }; 97 98 /// Wrapper encapsulating separate constraint systems and corresponding value 99 /// mappings for both unsigned and signed information. Facts are added to and 100 /// conditions are checked against the corresponding system depending on the 101 /// signed-ness of their predicates. While the information is kept separate 102 /// based on signed-ness, certain conditions can be transferred between the two 103 /// systems. 104 class ConstraintInfo { 105 DenseMap<Value *, unsigned> UnsignedValue2Index; 106 DenseMap<Value *, unsigned> SignedValue2Index; 107 108 ConstraintSystem UnsignedCS; 109 ConstraintSystem SignedCS; 110 111 public: 112 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 113 return Signed ? SignedValue2Index : UnsignedValue2Index; 114 } 115 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 116 return Signed ? SignedValue2Index : UnsignedValue2Index; 117 } 118 119 ConstraintSystem &getCS(bool Signed) { 120 return Signed ? SignedCS : UnsignedCS; 121 } 122 const ConstraintSystem &getCS(bool Signed) const { 123 return Signed ? SignedCS : UnsignedCS; 124 } 125 126 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 127 void popLastNVariables(bool Signed, unsigned N) { 128 getCS(Signed).popLastNVariables(N); 129 } 130 131 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 132 133 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, 134 unsigned NumIn, unsigned NumOut, 135 SmallVectorImpl<StackEntry> &DFSInStack); 136 137 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 138 /// constraints, using indices from the corresponding constraint system. 139 /// Additional indices for newly discovered values are added to \p NewIndices. 140 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 DenseMap<Value *, unsigned> &NewIndices) const; 142 143 /// Turn a condition \p CmpI into a vector of constraints, using indices from 144 /// the corresponding constraint system. Additional indices for newly 145 /// discovered values are added to \p NewIndices. 146 ConstraintTy getConstraint(CmpInst *Cmp, 147 DenseMap<Value *, unsigned> &NewIndices) const { 148 return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0), 149 Cmp->getOperand(1), NewIndices); 150 } 151 152 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 153 /// system if \p Pred is signed/unsigned. 154 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 155 bool IsNegated, unsigned NumIn, unsigned NumOut, 156 SmallVectorImpl<StackEntry> &DFSInStack); 157 }; 158 159 /// Represents a (Coefficient * Variable) entry after IR decomposition. 160 struct DecompEntry { 161 int64_t Coefficient; 162 Value *Variable; 163 164 DecompEntry(int64_t Coefficient, Value *Variable) 165 : Coefficient(Coefficient), Variable(Variable) {} 166 }; 167 168 } // namespace 169 170 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 171 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 172 // pair is the constant-factor and X must be nullptr. If the expression cannot 173 // be decomposed, returns an empty vector. 174 static SmallVector<DecompEntry, 4> 175 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 176 bool IsSigned) { 177 178 auto CanUseSExt = [](ConstantInt *CI) { 179 const APInt &Val = CI->getValue(); 180 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 181 }; 182 // Decompose \p V used with a signed predicate. 183 if (IsSigned) { 184 if (auto *CI = dyn_cast<ConstantInt>(V)) { 185 if (CanUseSExt(CI)) 186 return {{CI->getSExtValue(), nullptr}}; 187 } 188 189 return {{0, nullptr}, {1, V}}; 190 } 191 192 if (auto *CI = dyn_cast<ConstantInt>(V)) { 193 if (CI->uge(MaxConstraintValue)) 194 return {}; 195 return {{int64_t(CI->getZExtValue()), nullptr}}; 196 } 197 auto *GEP = dyn_cast<GetElementPtrInst>(V); 198 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 199 Value *Op0, *Op1; 200 ConstantInt *CI; 201 202 // If the index is zero-extended, it is guaranteed to be positive. 203 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 204 m_ZExt(m_Value(Op0)))) { 205 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 206 CanUseSExt(CI)) 207 return {{0, nullptr}, 208 {1, GEP->getPointerOperand()}, 209 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 210 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 211 CanUseSExt(CI)) 212 return {{CI->getSExtValue(), nullptr}, 213 {1, GEP->getPointerOperand()}, 214 {1, Op1}}; 215 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 216 } 217 218 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 219 !CI->isNegative() && CanUseSExt(CI)) 220 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 221 222 SmallVector<DecompEntry, 4> Result; 223 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 224 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 225 CanUseSExt(CI)) 226 Result = {{0, nullptr}, 227 {1, GEP->getPointerOperand()}, 228 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 229 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 230 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 231 CanUseSExt(CI)) 232 Result = {{CI->getSExtValue(), nullptr}, 233 {1, GEP->getPointerOperand()}, 234 {1, Op0}}; 235 else { 236 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 237 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 238 } 239 // If Op0 is signed non-negative, the GEP is increasing monotonically and 240 // can be de-composed. 241 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 242 ConstantInt::get(Op0->getType(), 0)); 243 return Result; 244 } 245 246 Value *Op0; 247 if (match(V, m_ZExt(m_Value(Op0)))) 248 V = Op0; 249 250 Value *Op1; 251 ConstantInt *CI; 252 if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) && 253 !CI->uge(MaxConstraintValue)) { 254 auto Res = decompose(Op0, Preconditions, IsSigned); 255 Res[0].Coefficient += int(CI->getZExtValue()); 256 return Res; 257 } 258 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 259 CanUseSExt(CI)) { 260 Preconditions.emplace_back( 261 CmpInst::ICMP_UGE, Op0, 262 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 263 auto Res = decompose(Op0, Preconditions, IsSigned); 264 Res[0].Coefficient += int(CI->getSExtValue()); 265 return Res; 266 } 267 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 268 auto Res = decompose(Op0, Preconditions, IsSigned); 269 auto D1 = decompose(Op1, Preconditions, IsSigned); 270 Res[0].Coefficient += D1[0].Coefficient; 271 append_range(Res, drop_begin(D1)); 272 return Res; 273 } 274 275 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 276 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 277 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 278 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 279 280 return {{0, nullptr}, {1, V}}; 281 } 282 283 ConstraintTy 284 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 285 DenseMap<Value *, unsigned> &NewIndices) const { 286 bool IsEq = false; 287 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 288 switch (Pred) { 289 case CmpInst::ICMP_UGT: 290 case CmpInst::ICMP_UGE: 291 case CmpInst::ICMP_SGT: 292 case CmpInst::ICMP_SGE: { 293 Pred = CmpInst::getSwappedPredicate(Pred); 294 std::swap(Op0, Op1); 295 break; 296 } 297 case CmpInst::ICMP_EQ: 298 if (match(Op1, m_Zero())) { 299 Pred = CmpInst::ICMP_ULE; 300 } else { 301 IsEq = true; 302 Pred = CmpInst::ICMP_ULE; 303 } 304 break; 305 case CmpInst::ICMP_NE: 306 if (!match(Op1, m_Zero())) 307 return {}; 308 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 309 std::swap(Op0, Op1); 310 break; 311 default: 312 break; 313 } 314 315 // Only ULE and ULT predicates are supported at the moment. 316 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 317 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 318 return {}; 319 320 SmallVector<PreconditionTy, 4> Preconditions; 321 bool IsSigned = CmpInst::isSigned(Pred); 322 auto &Value2Index = getValue2Index(IsSigned); 323 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 324 Preconditions, IsSigned); 325 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 326 Preconditions, IsSigned); 327 // Skip if decomposing either of the values failed. 328 if (ADec.empty() || BDec.empty()) 329 return {}; 330 331 int64_t Offset1 = ADec[0].Coefficient; 332 int64_t Offset2 = BDec[0].Coefficient; 333 Offset1 *= -1; 334 335 // Create iterator ranges that skip the constant-factor. 336 auto VariablesA = llvm::drop_begin(ADec); 337 auto VariablesB = llvm::drop_begin(BDec); 338 339 // First try to look up \p V in Value2Index and NewIndices. Otherwise add a 340 // new entry to NewIndices. 341 auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned { 342 auto V2I = Value2Index.find(V); 343 if (V2I != Value2Index.end()) 344 return V2I->second; 345 auto Insert = 346 NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1}); 347 return Insert.first->second; 348 }; 349 350 // Make sure all variables have entries in Value2Index or NewIndices. 351 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 352 GetOrAddIndex(KV.Variable); 353 354 // Build result constraint, by first adding all coefficients from A and then 355 // subtracting all coefficients from B. 356 ConstraintTy Res( 357 SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0), 358 IsSigned); 359 Res.IsEq = IsEq; 360 auto &R = Res.Coefficients; 361 for (const auto &KV : VariablesA) 362 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 363 364 for (const auto &KV : VariablesB) 365 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 366 367 int64_t OffsetSum; 368 if (AddOverflow(Offset1, Offset2, OffsetSum)) 369 return {}; 370 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 371 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 372 return {}; 373 R[0] = OffsetSum; 374 Res.Preconditions = std::move(Preconditions); 375 376 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for the 377 // new variables that need to be added to the system. Set NewIndexNeeded to 378 // true if any of the new variables has a non-zero coefficient. 379 bool NewIndexNeeded = false; 380 for (unsigned I = 0; I < NewIndices.size(); ++I) { 381 int64_t Last = R.back(); 382 if (Last != 0) { 383 NewIndexNeeded = true; 384 break; 385 } 386 R.pop_back(); 387 } 388 // All new variables had Coefficients of 0, so no new variables are needed. 389 if (!NewIndexNeeded) 390 NewIndices.clear(); 391 392 return Res; 393 } 394 395 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 396 return Coefficients.size() > 0 && 397 all_of(Preconditions, [&Info](const PreconditionTy &C) { 398 return Info.doesHold(C.Pred, C.Op0, C.Op1); 399 }); 400 } 401 402 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 403 Value *B) const { 404 DenseMap<Value *, unsigned> NewIndices; 405 auto R = getConstraint(Pred, A, B, NewIndices); 406 407 if (!NewIndices.empty()) 408 return false; 409 410 // TODO: properly check NewIndices. 411 return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq && 412 !R.empty() && 413 getCS(CmpInst::isSigned(Pred)).isConditionImplied(R.Coefficients); 414 } 415 416 void ConstraintInfo::transferToOtherSystem( 417 CmpInst::Predicate Pred, Value *A, Value *B, bool IsNegated, unsigned NumIn, 418 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 419 // Check if we can combine facts from the signed and unsigned systems to 420 // derive additional facts. 421 if (!A->getType()->isIntegerTy()) 422 return; 423 // FIXME: This currently depends on the order we add facts. Ideally we 424 // would first add all known facts and only then try to add additional 425 // facts. 426 switch (Pred) { 427 default: 428 break; 429 case CmpInst::ICMP_ULT: 430 // If B is a signed positive constant, A >=s 0 and A <s B. 431 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 432 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), 433 IsNegated, NumIn, NumOut, DFSInStack); 434 addFact(CmpInst::ICMP_SLT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 435 } 436 break; 437 case CmpInst::ICMP_SLT: 438 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 439 addFact(CmpInst::ICMP_ULT, A, B, IsNegated, NumIn, NumOut, DFSInStack); 440 break; 441 case CmpInst::ICMP_SGT: 442 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 443 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), 444 IsNegated, NumIn, NumOut, DFSInStack); 445 break; 446 case CmpInst::ICMP_SGE: 447 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 448 addFact(CmpInst::ICMP_UGE, A, B, IsNegated, NumIn, NumOut, DFSInStack); 449 } 450 break; 451 } 452 } 453 454 namespace { 455 /// Represents either a condition that holds on entry to a block or a basic 456 /// block, with their respective Dominator DFS in and out numbers. 457 struct ConstraintOrBlock { 458 unsigned NumIn; 459 unsigned NumOut; 460 bool IsBlock; 461 bool Not; 462 union { 463 BasicBlock *BB; 464 CmpInst *Condition; 465 }; 466 467 ConstraintOrBlock(DomTreeNode *DTN) 468 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 469 BB(DTN->getBlock()) {} 470 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 471 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 472 Not(Not), Condition(Condition) {} 473 }; 474 475 /// Keep state required to build worklist. 476 struct State { 477 DominatorTree &DT; 478 SmallVector<ConstraintOrBlock, 64> WorkList; 479 480 State(DominatorTree &DT) : DT(DT) {} 481 482 /// Process block \p BB and add known facts to work-list. 483 void addInfoFor(BasicBlock &BB); 484 485 /// Returns true if we can add a known condition from BB to its successor 486 /// block Succ. Each predecessor of Succ can either be BB or be dominated 487 /// by Succ (e.g. the case when adding a condition from a pre-header to a 488 /// loop header). 489 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 490 if (BB.getSingleSuccessor()) { 491 assert(BB.getSingleSuccessor() == Succ); 492 return DT.properlyDominates(&BB, Succ); 493 } 494 return any_of(successors(&BB), 495 [Succ](const BasicBlock *S) { return S != Succ; }) && 496 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 497 return Pred == &BB || DT.dominates(Succ, Pred); 498 }); 499 } 500 }; 501 502 } // namespace 503 504 #ifndef NDEBUG 505 static void dumpWithNames(const ConstraintSystem &CS, 506 DenseMap<Value *, unsigned> &Value2Index) { 507 SmallVector<std::string> Names(Value2Index.size(), ""); 508 for (auto &KV : Value2Index) { 509 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 510 } 511 CS.dump(Names); 512 } 513 514 static void dumpWithNames(ArrayRef<int64_t> C, 515 DenseMap<Value *, unsigned> &Value2Index) { 516 ConstraintSystem CS; 517 CS.addVariableRowFill(C); 518 dumpWithNames(CS, Value2Index); 519 } 520 #endif 521 522 void State::addInfoFor(BasicBlock &BB) { 523 WorkList.emplace_back(DT.getNode(&BB)); 524 525 // True as long as long as the current instruction is guaranteed to execute. 526 bool GuaranteedToExecute = true; 527 // Scan BB for assume calls. 528 // TODO: also use this scan to queue conditions to simplify, so we can 529 // interleave facts from assumes and conditions to simplify in a single 530 // basic block. And to skip another traversal of each basic block when 531 // simplifying. 532 for (Instruction &I : BB) { 533 Value *Cond; 534 // For now, just handle assumes with a single compare as condition. 535 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 536 isa<ICmpInst>(Cond)) { 537 if (GuaranteedToExecute) { 538 // The assume is guaranteed to execute when BB is entered, hence Cond 539 // holds on entry to BB. 540 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 541 } else { 542 // Otherwise the condition only holds in the successors. 543 for (BasicBlock *Succ : successors(&BB)) { 544 if (!canAddSuccessor(BB, Succ)) 545 continue; 546 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 547 } 548 } 549 } 550 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 551 } 552 553 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 554 if (!Br || !Br->isConditional()) 555 return; 556 557 // If the condition is an OR of 2 compares and the false successor only has 558 // the current block as predecessor, queue both negated conditions for the 559 // false successor. 560 Value *Op0, *Op1; 561 if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) && 562 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 563 BasicBlock *FalseSuccessor = Br->getSuccessor(1); 564 if (canAddSuccessor(BB, FalseSuccessor)) { 565 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0), 566 true); 567 WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1), 568 true); 569 } 570 return; 571 } 572 573 // If the condition is an AND of 2 compares and the true successor only has 574 // the current block as predecessor, queue both conditions for the true 575 // successor. 576 if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) && 577 isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) { 578 BasicBlock *TrueSuccessor = Br->getSuccessor(0); 579 if (canAddSuccessor(BB, TrueSuccessor)) { 580 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0), 581 false); 582 WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1), 583 false); 584 } 585 return; 586 } 587 588 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 589 if (!CmpI) 590 return; 591 if (canAddSuccessor(BB, Br->getSuccessor(0))) 592 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 593 if (canAddSuccessor(BB, Br->getSuccessor(1))) 594 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 595 } 596 597 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 598 bool IsNegated, unsigned NumIn, unsigned NumOut, 599 SmallVectorImpl<StackEntry> &DFSInStack) { 600 // If the constraint has a pre-condition, skip the constraint if it does not 601 // hold. 602 DenseMap<Value *, unsigned> NewIndices; 603 auto R = getConstraint(Pred, A, B, NewIndices); 604 if (!R.isValid(*this)) 605 return; 606 607 //LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n"); 608 bool Added = false; 609 assert(CmpInst::isSigned(Pred) == R.IsSigned && 610 "condition and constraint signs must match"); 611 auto &CSToUse = getCS(R.IsSigned); 612 if (R.Coefficients.empty()) 613 return; 614 615 Added |= CSToUse.addVariableRowFill(R.Coefficients); 616 617 // If R has been added to the system, queue it for removal once it goes 618 // out-of-scope. 619 if (Added) { 620 SmallVector<Value *, 2> ValuesToRelease; 621 for (auto &KV : NewIndices) { 622 getValue2Index(R.IsSigned).insert(KV); 623 ValuesToRelease.push_back(KV.first); 624 } 625 626 LLVM_DEBUG({ 627 dbgs() << " constraint: "; 628 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 629 }); 630 631 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 632 ValuesToRelease); 633 634 if (R.IsEq) { 635 // Also add the inverted constraint for equality constraints. 636 for (auto &Coeff : R.Coefficients) 637 Coeff *= -1; 638 CSToUse.addVariableRowFill(R.Coefficients); 639 640 DFSInStack.emplace_back(NumIn, NumOut, IsNegated, R.IsSigned, 641 SmallVector<Value *, 2>()); 642 } 643 } 644 } 645 646 static void 647 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 648 SmallVectorImpl<Instruction *> &ToRemove) { 649 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 650 ConstraintInfo &Info) { 651 DenseMap<Value *, unsigned> NewIndices; 652 auto R = Info.getConstraint(Pred, A, B, NewIndices); 653 if (R.size() < 2 || !NewIndices.empty() || !R.isValid(Info)) 654 return false; 655 656 auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred)); 657 return CSToUse.isConditionImplied(R.Coefficients); 658 }; 659 660 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 661 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 662 // can be simplified to a regular sub. 663 Value *A = II->getArgOperand(0); 664 Value *B = II->getArgOperand(1); 665 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 666 !DoesConditionHold(CmpInst::ICMP_SGE, B, 667 ConstantInt::get(A->getType(), 0), Info)) 668 return; 669 670 IRBuilder<> Builder(II->getParent(), II->getIterator()); 671 Value *Sub = nullptr; 672 for (User *U : make_early_inc_range(II->users())) { 673 if (match(U, m_ExtractValue<0>(m_Value()))) { 674 if (!Sub) 675 Sub = Builder.CreateSub(A, B); 676 U->replaceAllUsesWith(Sub); 677 } else if (match(U, m_ExtractValue<1>(m_Value()))) 678 U->replaceAllUsesWith(Builder.getFalse()); 679 else 680 continue; 681 682 if (U->use_empty()) { 683 auto *I = cast<Instruction>(U); 684 ToRemove.push_back(I); 685 I->setOperand(0, PoisonValue::get(II->getType())); 686 } 687 } 688 689 if (II->use_empty()) 690 II->eraseFromParent(); 691 } 692 } 693 694 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 695 bool Changed = false; 696 DT.updateDFSNumbers(); 697 698 ConstraintInfo Info; 699 State S(DT); 700 701 // First, collect conditions implied by branches and blocks with their 702 // Dominator DFS in and out numbers. 703 for (BasicBlock &BB : F) { 704 if (!DT.getNode(&BB)) 705 continue; 706 S.addInfoFor(BB); 707 } 708 709 // Next, sort worklist by dominance, so that dominating blocks and conditions 710 // come before blocks and conditions dominated by them. If a block and a 711 // condition have the same numbers, the condition comes before the block, as 712 // it holds on entry to the block. 713 stable_sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 714 return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock); 715 }); 716 717 SmallVector<Instruction *> ToRemove; 718 719 // Finally, process ordered worklist and eliminate implied conditions. 720 SmallVector<StackEntry, 16> DFSInStack; 721 for (ConstraintOrBlock &CB : S.WorkList) { 722 // First, pop entries from the stack that are out-of-scope for CB. Remove 723 // the corresponding entry from the constraint system. 724 while (!DFSInStack.empty()) { 725 auto &E = DFSInStack.back(); 726 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 727 << "\n"); 728 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 729 assert(E.NumIn <= CB.NumIn); 730 if (CB.NumOut <= E.NumOut) 731 break; 732 LLVM_DEBUG({ 733 dbgs() << "Removing "; 734 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 735 Info.getValue2Index(E.IsSigned)); 736 dbgs() << "\n"; 737 }); 738 739 Info.popLastConstraint(E.IsSigned); 740 // Remove variables in the system that went out of scope. 741 auto &Mapping = Info.getValue2Index(E.IsSigned); 742 for (Value *V : E.ValuesToRelease) 743 Mapping.erase(V); 744 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 745 DFSInStack.pop_back(); 746 } 747 748 LLVM_DEBUG({ 749 dbgs() << "Processing "; 750 if (CB.IsBlock) 751 dbgs() << *CB.BB; 752 else 753 dbgs() << *CB.Condition; 754 dbgs() << "\n"; 755 }); 756 757 // For a block, check if any CmpInsts become known based on the current set 758 // of constraints. 759 if (CB.IsBlock) { 760 for (Instruction &I : make_early_inc_range(*CB.BB)) { 761 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 762 tryToSimplifyOverflowMath(II, Info, ToRemove); 763 continue; 764 } 765 auto *Cmp = dyn_cast<ICmpInst>(&I); 766 if (!Cmp) 767 continue; 768 769 DenseMap<Value *, unsigned> NewIndices; 770 auto R = Info.getConstraint(Cmp, NewIndices); 771 if (R.IsEq || R.empty() || !NewIndices.empty() || !R.isValid(Info)) 772 continue; 773 774 auto &CSToUse = Info.getCS(R.IsSigned); 775 if (CSToUse.isConditionImplied(R.Coefficients)) { 776 if (!DebugCounter::shouldExecute(EliminatedCounter)) 777 continue; 778 779 LLVM_DEBUG({ 780 dbgs() << "Condition " << *Cmp 781 << " implied by dominating constraints\n"; 782 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 783 }); 784 Cmp->replaceUsesWithIf( 785 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 786 // Conditions in an assume trivially simplify to true. Skip uses 787 // in assume calls to not destroy the available information. 788 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 789 return !II || II->getIntrinsicID() != Intrinsic::assume; 790 }); 791 NumCondsRemoved++; 792 Changed = true; 793 } 794 if (CSToUse.isConditionImplied( 795 ConstraintSystem::negate(R.Coefficients))) { 796 if (!DebugCounter::shouldExecute(EliminatedCounter)) 797 continue; 798 799 LLVM_DEBUG({ 800 dbgs() << "Condition !" << *Cmp 801 << " implied by dominating constraints\n"; 802 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 803 }); 804 Cmp->replaceAllUsesWith( 805 ConstantInt::getFalse(F.getParent()->getContext())); 806 NumCondsRemoved++; 807 Changed = true; 808 } 809 } 810 continue; 811 } 812 813 // Set up a function to restore the predicate at the end of the scope if it 814 // has been negated. Negate the predicate in-place, if required. 815 auto *CI = dyn_cast<ICmpInst>(CB.Condition); 816 auto PredicateRestorer = make_scope_exit([CI, &CB]() { 817 if (CB.Not && CI) 818 CI->setPredicate(CI->getInversePredicate()); 819 }); 820 if (CB.Not) { 821 if (CI) { 822 CI->setPredicate(CI->getInversePredicate()); 823 } else { 824 LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n"); 825 continue; 826 } 827 } 828 829 ICmpInst::Predicate Pred; 830 Value *A, *B; 831 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 832 // Otherwise, add the condition to the system and stack, if we can 833 // transform it into a constraint. 834 Info.addFact(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, DFSInStack); 835 Info.transferToOtherSystem(Pred, A, B, CB.Not, CB.NumIn, CB.NumOut, 836 DFSInStack); 837 } 838 } 839 840 #ifndef NDEBUG 841 unsigned SignedEntries = 842 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 843 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 844 "updates to CS and DFSInStack are out of sync"); 845 assert(Info.getCS(true).size() == SignedEntries && 846 "updates to CS and DFSInStack are out of sync"); 847 #endif 848 849 for (Instruction *I : ToRemove) 850 I->eraseFromParent(); 851 return Changed; 852 } 853 854 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 855 FunctionAnalysisManager &AM) { 856 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 857 if (!eliminateConstraints(F, DT)) 858 return PreservedAnalyses::all(); 859 860 PreservedAnalyses PA; 861 PA.preserve<DominatorTreeAnalysis>(); 862 PA.preserveSet<CFGAnalyses>(); 863 return PA; 864 } 865 866 namespace { 867 868 class ConstraintElimination : public FunctionPass { 869 public: 870 static char ID; 871 872 ConstraintElimination() : FunctionPass(ID) { 873 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 874 } 875 876 bool runOnFunction(Function &F) override { 877 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 878 return eliminateConstraints(F, DT); 879 } 880 881 void getAnalysisUsage(AnalysisUsage &AU) const override { 882 AU.setPreservesCFG(); 883 AU.addRequired<DominatorTreeWrapperPass>(); 884 AU.addPreserved<GlobalsAAWrapperPass>(); 885 AU.addPreserved<DominatorTreeWrapperPass>(); 886 } 887 }; 888 889 } // end anonymous namespace 890 891 char ConstraintElimination::ID = 0; 892 893 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 894 "Constraint Elimination", false, false) 895 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 896 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 897 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 898 "Constraint Elimination", false, false) 899 900 FunctionPass *llvm::createConstraintEliminationPass() { 901 return new ConstraintElimination(); 902 } 903