xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision ee605b0acccea92bb2375921955008e1d6ca22d2)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #include <cmath>
37 #include <string>
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 #define DEBUG_TYPE "constraint-elimination"
43 
44 STATISTIC(NumCondsRemoved, "Number of instructions removed");
45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
46               "Controls which conditions are eliminated");
47 
48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
50 
51 // A helper to multiply 2 signed integers where overflowing is allowed.
52 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
53   int64_t Result;
54   MulOverflow(A, B, Result);
55   return Result;
56 }
57 
58 // A helper to add 2 signed integers where overflowing is allowed.
59 static int64_t addWithOverflow(int64_t A, int64_t B) {
60   int64_t Result;
61   AddOverflow(A, B, Result);
62   return Result;
63 }
64 
65 namespace {
66 
67 class ConstraintInfo;
68 
69 struct StackEntry {
70   unsigned NumIn;
71   unsigned NumOut;
72   bool IsSigned = false;
73   /// Variables that can be removed from the system once the stack entry gets
74   /// removed.
75   SmallVector<Value *, 2> ValuesToRelease;
76 
77   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
78              SmallVector<Value *, 2> ValuesToRelease)
79       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
80         ValuesToRelease(ValuesToRelease) {}
81 };
82 
83 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
84 struct PreconditionTy {
85   CmpInst::Predicate Pred;
86   Value *Op0;
87   Value *Op1;
88 
89   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
90       : Pred(Pred), Op0(Op0), Op1(Op1) {}
91 };
92 
93 struct ConstraintTy {
94   SmallVector<int64_t, 8> Coefficients;
95   SmallVector<PreconditionTy, 2> Preconditions;
96 
97   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
98 
99   bool IsSigned = false;
100   bool IsEq = false;
101 
102   ConstraintTy() = default;
103 
104   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
105       : Coefficients(Coefficients), IsSigned(IsSigned) {}
106 
107   unsigned size() const { return Coefficients.size(); }
108 
109   unsigned empty() const { return Coefficients.empty(); }
110 
111   /// Returns true if all preconditions for this list of constraints are
112   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
113   bool isValid(const ConstraintInfo &Info) const;
114 };
115 
116 /// Wrapper encapsulating separate constraint systems and corresponding value
117 /// mappings for both unsigned and signed information. Facts are added to and
118 /// conditions are checked against the corresponding system depending on the
119 /// signed-ness of their predicates. While the information is kept separate
120 /// based on signed-ness, certain conditions can be transferred between the two
121 /// systems.
122 class ConstraintInfo {
123   DenseMap<Value *, unsigned> UnsignedValue2Index;
124   DenseMap<Value *, unsigned> SignedValue2Index;
125 
126   ConstraintSystem UnsignedCS;
127   ConstraintSystem SignedCS;
128 
129   const DataLayout &DL;
130 
131 public:
132   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
133 
134   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
135     return Signed ? SignedValue2Index : UnsignedValue2Index;
136   }
137   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
138     return Signed ? SignedValue2Index : UnsignedValue2Index;
139   }
140 
141   ConstraintSystem &getCS(bool Signed) {
142     return Signed ? SignedCS : UnsignedCS;
143   }
144   const ConstraintSystem &getCS(bool Signed) const {
145     return Signed ? SignedCS : UnsignedCS;
146   }
147 
148   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
149   void popLastNVariables(bool Signed, unsigned N) {
150     getCS(Signed).popLastNVariables(N);
151   }
152 
153   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
154 
155   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
156                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
157 
158   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
159   /// constraints, using indices from the corresponding constraint system.
160   /// New variables that need to be added to the system are collected in
161   /// \p NewVariables.
162   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
163                              SmallVectorImpl<Value *> &NewVariables) const;
164 
165   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
166   /// constraints using getConstraint. Returns an empty constraint if the result
167   /// cannot be used to query the existing constraint system, e.g. because it
168   /// would require adding new variables. Also tries to convert signed
169   /// predicates to unsigned ones if possible to allow using the unsigned system
170   /// which increases the effectiveness of the signed <-> unsigned transfer
171   /// logic.
172   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
173                                        Value *Op1) const;
174 
175   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
176   /// system if \p Pred is signed/unsigned.
177   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
178                              unsigned NumIn, unsigned NumOut,
179                              SmallVectorImpl<StackEntry> &DFSInStack);
180 };
181 
182 /// Represents a (Coefficient * Variable) entry after IR decomposition.
183 struct DecompEntry {
184   int64_t Coefficient;
185   Value *Variable;
186   /// True if the variable is known positive in the current constraint.
187   bool IsKnownPositive;
188 
189   DecompEntry(int64_t Coefficient, Value *Variable,
190               bool IsKnownPositive = false)
191       : Coefficient(Coefficient), Variable(Variable),
192         IsKnownPositive(IsKnownPositive) {}
193 };
194 
195 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
196 struct Decomposition {
197   int64_t Offset = 0;
198   SmallVector<DecompEntry, 3> Vars;
199 
200   Decomposition(int64_t Offset) : Offset(Offset) {}
201   Decomposition(Value *V, bool IsKnownPositive = false) {
202     Vars.emplace_back(1, V, IsKnownPositive);
203   }
204   Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
205       : Offset(Offset), Vars(Vars) {}
206 
207   void add(int64_t OtherOffset) {
208     Offset = addWithOverflow(Offset, OtherOffset);
209   }
210 
211   void add(const Decomposition &Other) {
212     add(Other.Offset);
213     append_range(Vars, Other.Vars);
214   }
215 
216   void mul(int64_t Factor) {
217     Offset = multiplyWithOverflow(Offset, Factor);
218     for (auto &Var : Vars)
219       Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
220   }
221 };
222 
223 } // namespace
224 
225 static Decomposition decompose(Value *V,
226                                SmallVectorImpl<PreconditionTy> &Preconditions,
227                                bool IsSigned, const DataLayout &DL);
228 
229 static bool canUseSExt(ConstantInt *CI) {
230   const APInt &Val = CI->getValue();
231   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
232 }
233 
234 static Decomposition
235 decomposeGEP(GetElementPtrInst &GEP,
236              SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
237              const DataLayout &DL) {
238   // Do not reason about pointers where the index size is larger than 64 bits,
239   // as the coefficients used to encode constraints are 64 bit integers.
240   if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
241     return &GEP;
242 
243   if (!GEP.isInBounds())
244     return &GEP;
245 
246   Type *PtrTy = GEP.getType()->getScalarType();
247   unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
248   MapVector<Value *, APInt> VariableOffsets;
249   APInt ConstantOffset(BitWidth, 0);
250   if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
251     return &GEP;
252 
253   // Handle the (gep (gep ....), C) case by incrementing the constant
254   // coefficient of the inner GEP, if C is a constant.
255   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
256   if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
257     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
258     Result.add(ConstantOffset.getSExtValue());
259 
260     if (ConstantOffset.isNegative()) {
261       unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
262       int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
263       if (ConstantOffsetI % Scale != 0)
264         return &GEP;
265       // Add pre-condition ensuring the GEP is increasing monotonically and
266       // can be de-composed.
267       // Both sides are normalized by being divided by Scale.
268       Preconditions.emplace_back(
269           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
270           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
271                            -1 * (ConstantOffsetI / Scale)));
272     }
273     return Result;
274   }
275 
276   Decomposition Result(ConstantOffset.getSExtValue(),
277                        DecompEntry(1, GEP.getPointerOperand()));
278   for (auto [Index, Scale] : VariableOffsets) {
279     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
280     IdxResult.mul(Scale.getSExtValue());
281     Result.add(IdxResult);
282 
283     // If Op0 is signed non-negative, the GEP is increasing monotonically and
284     // can be de-composed.
285     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
286       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
287                                  ConstantInt::get(Index->getType(), 0));
288   }
289   return Result;
290 }
291 
292 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
293 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
294 // pair is the constant-factor and X must be nullptr. If the expression cannot
295 // be decomposed, returns an empty vector.
296 static Decomposition decompose(Value *V,
297                                SmallVectorImpl<PreconditionTy> &Preconditions,
298                                bool IsSigned, const DataLayout &DL) {
299 
300   auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
301                                                       bool IsSignedB) {
302     auto ResA = decompose(A, Preconditions, IsSigned, DL);
303     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
304     ResA.add(ResB);
305     return ResA;
306   };
307 
308   // Decompose \p V used with a signed predicate.
309   if (IsSigned) {
310     if (auto *CI = dyn_cast<ConstantInt>(V)) {
311       if (canUseSExt(CI))
312         return CI->getSExtValue();
313     }
314     Value *Op0;
315     Value *Op1;
316     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
317       return MergeResults(Op0, Op1, IsSigned);
318 
319     return V;
320   }
321 
322   if (auto *CI = dyn_cast<ConstantInt>(V)) {
323     if (CI->uge(MaxConstraintValue))
324       return V;
325     return int64_t(CI->getZExtValue());
326   }
327 
328   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
329     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
330 
331   Value *Op0;
332   bool IsKnownPositive = false;
333   if (match(V, m_ZExt(m_Value(Op0)))) {
334     IsKnownPositive = true;
335     V = Op0;
336   }
337 
338   Value *Op1;
339   ConstantInt *CI;
340   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
341     return MergeResults(Op0, Op1, IsSigned);
342   }
343   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
344     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
345       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
346                                  ConstantInt::get(Op0->getType(), 0));
347     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
348       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
349                                  ConstantInt::get(Op1->getType(), 0));
350 
351     return MergeResults(Op0, Op1, IsSigned);
352   }
353 
354   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
355       canUseSExt(CI)) {
356     Preconditions.emplace_back(
357         CmpInst::ICMP_UGE, Op0,
358         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
359     return MergeResults(Op0, CI, true);
360   }
361 
362   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
363     int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
364     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
365     Result.mul(Mult);
366     return Result;
367   }
368 
369   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
370       (!CI->isNegative())) {
371     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
372     Result.mul(CI->getSExtValue());
373     return Result;
374   }
375 
376   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
377     return {-1 * CI->getSExtValue(), {{1, Op0}}};
378   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
379     return {0, {{1, Op0}, {-1, Op1}}};
380 
381   return {V, IsKnownPositive};
382 }
383 
384 ConstraintTy
385 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
386                               SmallVectorImpl<Value *> &NewVariables) const {
387   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
388   bool IsEq = false;
389   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
390   switch (Pred) {
391   case CmpInst::ICMP_UGT:
392   case CmpInst::ICMP_UGE:
393   case CmpInst::ICMP_SGT:
394   case CmpInst::ICMP_SGE: {
395     Pred = CmpInst::getSwappedPredicate(Pred);
396     std::swap(Op0, Op1);
397     break;
398   }
399   case CmpInst::ICMP_EQ:
400     if (match(Op1, m_Zero())) {
401       Pred = CmpInst::ICMP_ULE;
402     } else {
403       IsEq = true;
404       Pred = CmpInst::ICMP_ULE;
405     }
406     break;
407   case CmpInst::ICMP_NE:
408     if (!match(Op1, m_Zero()))
409       return {};
410     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
411     std::swap(Op0, Op1);
412     break;
413   default:
414     break;
415   }
416 
417   // Only ULE and ULT predicates are supported at the moment.
418   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
419       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
420     return {};
421 
422   SmallVector<PreconditionTy, 4> Preconditions;
423   bool IsSigned = CmpInst::isSigned(Pred);
424   auto &Value2Index = getValue2Index(IsSigned);
425   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
426                         Preconditions, IsSigned, DL);
427   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
428                         Preconditions, IsSigned, DL);
429   int64_t Offset1 = ADec.Offset;
430   int64_t Offset2 = BDec.Offset;
431   Offset1 *= -1;
432 
433   auto &VariablesA = ADec.Vars;
434   auto &VariablesB = BDec.Vars;
435 
436   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
437   // new entry to NewVariables.
438   DenseMap<Value *, unsigned> NewIndexMap;
439   auto GetOrAddIndex = [&Value2Index, &NewVariables,
440                         &NewIndexMap](Value *V) -> unsigned {
441     auto V2I = Value2Index.find(V);
442     if (V2I != Value2Index.end())
443       return V2I->second;
444     auto Insert =
445         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
446     if (Insert.second)
447       NewVariables.push_back(V);
448     return Insert.first->second;
449   };
450 
451   // Make sure all variables have entries in Value2Index or NewVariables.
452   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
453     GetOrAddIndex(KV.Variable);
454 
455   // Build result constraint, by first adding all coefficients from A and then
456   // subtracting all coefficients from B.
457   ConstraintTy Res(
458       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
459       IsSigned);
460   // Collect variables that are known to be positive in all uses in the
461   // constraint.
462   DenseMap<Value *, bool> KnownPositiveVariables;
463   Res.IsEq = IsEq;
464   auto &R = Res.Coefficients;
465   for (const auto &KV : VariablesA) {
466     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
467     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
468     I.first->second &= KV.IsKnownPositive;
469   }
470 
471   for (const auto &KV : VariablesB) {
472     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
473     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
474     I.first->second &= KV.IsKnownPositive;
475   }
476 
477   int64_t OffsetSum;
478   if (AddOverflow(Offset1, Offset2, OffsetSum))
479     return {};
480   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
481     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
482       return {};
483   R[0] = OffsetSum;
484   Res.Preconditions = std::move(Preconditions);
485 
486   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
487   // variables.
488   while (!NewVariables.empty()) {
489     int64_t Last = R.back();
490     if (Last != 0)
491       break;
492     R.pop_back();
493     Value *RemovedV = NewVariables.pop_back_val();
494     NewIndexMap.erase(RemovedV);
495   }
496 
497   // Add extra constraints for variables that are known positive.
498   for (auto &KV : KnownPositiveVariables) {
499     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
500                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
501       continue;
502     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
503     C[GetOrAddIndex(KV.first)] = -1;
504     Res.ExtraInfo.push_back(C);
505   }
506   return Res;
507 }
508 
509 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
510                                                      Value *Op0,
511                                                      Value *Op1) const {
512   // If both operands are known to be non-negative, change signed predicates to
513   // unsigned ones. This increases the reasoning effectiveness in combination
514   // with the signed <-> unsigned transfer logic.
515   if (CmpInst::isSigned(Pred) &&
516       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
517       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
518     Pred = CmpInst::getUnsignedPredicate(Pred);
519 
520   SmallVector<Value *> NewVariables;
521   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
522   if (R.IsEq || !NewVariables.empty())
523     return {};
524   return R;
525 }
526 
527 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
528   return Coefficients.size() > 0 &&
529          all_of(Preconditions, [&Info](const PreconditionTy &C) {
530            return Info.doesHold(C.Pred, C.Op0, C.Op1);
531          });
532 }
533 
534 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
535                               Value *B) const {
536   auto R = getConstraintForSolving(Pred, A, B);
537   return R.Preconditions.empty() && !R.empty() &&
538          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
539 }
540 
541 void ConstraintInfo::transferToOtherSystem(
542     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
543     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
544   // Check if we can combine facts from the signed and unsigned systems to
545   // derive additional facts.
546   if (!A->getType()->isIntegerTy())
547     return;
548   // FIXME: This currently depends on the order we add facts. Ideally we
549   // would first add all known facts and only then try to add additional
550   // facts.
551   switch (Pred) {
552   default:
553     break;
554   case CmpInst::ICMP_ULT:
555     //  If B is a signed positive constant, A >=s 0 and A <s B.
556     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
557       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
558               NumOut, DFSInStack);
559       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
560     }
561     break;
562   case CmpInst::ICMP_SLT:
563     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
564       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
565     break;
566   case CmpInst::ICMP_SGT:
567     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
568       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
569               NumOut, DFSInStack);
570     break;
571   case CmpInst::ICMP_SGE:
572     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
573       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
574     }
575     break;
576   }
577 }
578 
579 namespace {
580 /// Represents either a condition that holds on entry to a block or a basic
581 /// block, with their respective Dominator DFS in and out numbers.
582 struct ConstraintOrBlock {
583   unsigned NumIn;
584   unsigned NumOut;
585   bool IsBlock;
586   bool Not;
587   union {
588     BasicBlock *BB;
589     CmpInst *Condition;
590   };
591 
592   ConstraintOrBlock(DomTreeNode *DTN)
593       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
594         BB(DTN->getBlock()) {}
595   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
596       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
597         Not(Not), Condition(Condition) {}
598 };
599 
600 /// Keep state required to build worklist.
601 struct State {
602   DominatorTree &DT;
603   SmallVector<ConstraintOrBlock, 64> WorkList;
604 
605   State(DominatorTree &DT) : DT(DT) {}
606 
607   /// Process block \p BB and add known facts to work-list.
608   void addInfoFor(BasicBlock &BB);
609 
610   /// Returns true if we can add a known condition from BB to its successor
611   /// block Succ. Each predecessor of Succ can either be BB or be dominated
612   /// by Succ (e.g. the case when adding a condition from a pre-header to a
613   /// loop header).
614   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
615     if (BB.getSingleSuccessor()) {
616       assert(BB.getSingleSuccessor() == Succ);
617       return DT.properlyDominates(&BB, Succ);
618     }
619     return any_of(successors(&BB),
620                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
621            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
622              return Pred == &BB || DT.dominates(Succ, Pred);
623            });
624   }
625 };
626 
627 } // namespace
628 
629 #ifndef NDEBUG
630 static void dumpWithNames(const ConstraintSystem &CS,
631                           DenseMap<Value *, unsigned> &Value2Index) {
632   SmallVector<std::string> Names(Value2Index.size(), "");
633   for (auto &KV : Value2Index) {
634     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
635   }
636   CS.dump(Names);
637 }
638 
639 static void dumpWithNames(ArrayRef<int64_t> C,
640                           DenseMap<Value *, unsigned> &Value2Index) {
641   ConstraintSystem CS;
642   CS.addVariableRowFill(C);
643   dumpWithNames(CS, Value2Index);
644 }
645 #endif
646 
647 void State::addInfoFor(BasicBlock &BB) {
648   WorkList.emplace_back(DT.getNode(&BB));
649 
650   // True as long as long as the current instruction is guaranteed to execute.
651   bool GuaranteedToExecute = true;
652   // Scan BB for assume calls.
653   // TODO: also use this scan to queue conditions to simplify, so we can
654   // interleave facts from assumes and conditions to simplify in a single
655   // basic block. And to skip another traversal of each basic block when
656   // simplifying.
657   for (Instruction &I : BB) {
658     Value *Cond;
659     // For now, just handle assumes with a single compare as condition.
660     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
661         isa<ICmpInst>(Cond)) {
662       if (GuaranteedToExecute) {
663         // The assume is guaranteed to execute when BB is entered, hence Cond
664         // holds on entry to BB.
665         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
666       } else {
667         // Otherwise the condition only holds in the successors.
668         for (BasicBlock *Succ : successors(&BB)) {
669           if (!canAddSuccessor(BB, Succ))
670             continue;
671           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
672         }
673       }
674     }
675     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
676   }
677 
678   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
679   if (!Br || !Br->isConditional())
680     return;
681 
682   Value *Cond = Br->getCondition();
683 
684   // If the condition is a chain of ORs/AND and the successor only has the
685   // current block as predecessor, queue conditions for the successor.
686   Value *Op0, *Op1;
687   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
688       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
689     bool IsOr = match(Cond, m_LogicalOr());
690     bool IsAnd = match(Cond, m_LogicalAnd());
691     // If there's a select that matches both AND and OR, we need to commit to
692     // one of the options. Arbitrarily pick OR.
693     if (IsOr && IsAnd)
694       IsAnd = false;
695 
696     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
697     if (canAddSuccessor(BB, Successor)) {
698       SmallVector<Value *> CondWorkList;
699       SmallPtrSet<Value *, 8> SeenCond;
700       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
701         if (SeenCond.insert(V).second)
702           CondWorkList.push_back(V);
703       };
704       QueueValue(Op1);
705       QueueValue(Op0);
706       while (!CondWorkList.empty()) {
707         Value *Cur = CondWorkList.pop_back_val();
708         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
709           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
710           continue;
711         }
712         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
713           QueueValue(Op1);
714           QueueValue(Op0);
715           continue;
716         }
717         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
718           QueueValue(Op1);
719           QueueValue(Op0);
720           continue;
721         }
722       }
723     }
724     return;
725   }
726 
727   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
728   if (!CmpI)
729     return;
730   if (canAddSuccessor(BB, Br->getSuccessor(0)))
731     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
732   if (canAddSuccessor(BB, Br->getSuccessor(1)))
733     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
734 }
735 
736 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
737   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
738 
739   CmpInst::Predicate Pred = Cmp->getPredicate();
740   Value *A = Cmp->getOperand(0);
741   Value *B = Cmp->getOperand(1);
742 
743   auto R = Info.getConstraintForSolving(Pred, A, B);
744   if (R.empty() || !R.isValid(Info)){
745     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
746     return false;
747   }
748 
749   auto &CSToUse = Info.getCS(R.IsSigned);
750 
751   // If there was extra information collected during decomposition, apply
752   // it now and remove it immediately once we are done with reasoning
753   // about the constraint.
754   for (auto &Row : R.ExtraInfo)
755     CSToUse.addVariableRow(Row);
756   auto InfoRestorer = make_scope_exit([&]() {
757     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
758       CSToUse.popLastConstraint();
759   });
760 
761   bool Changed = false;
762   if (CSToUse.isConditionImplied(R.Coefficients)) {
763     if (!DebugCounter::shouldExecute(EliminatedCounter))
764       return false;
765 
766     LLVM_DEBUG({
767       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
768       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
769     });
770     Constant *TrueC =
771         ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
772     Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
773       // Conditions in an assume trivially simplify to true. Skip uses
774       // in assume calls to not destroy the available information.
775       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
776       return !II || II->getIntrinsicID() != Intrinsic::assume;
777     });
778     NumCondsRemoved++;
779     Changed = true;
780   }
781   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
782     if (!DebugCounter::shouldExecute(EliminatedCounter))
783       return false;
784 
785     LLVM_DEBUG({
786       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
787       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
788     });
789     Constant *FalseC =
790         ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
791     Cmp->replaceAllUsesWith(FalseC);
792     NumCondsRemoved++;
793     Changed = true;
794   }
795   return Changed;
796 }
797 
798 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
799                              unsigned NumIn, unsigned NumOut,
800                              SmallVectorImpl<StackEntry> &DFSInStack) {
801   // If the constraint has a pre-condition, skip the constraint if it does not
802   // hold.
803   SmallVector<Value *> NewVariables;
804   auto R = getConstraint(Pred, A, B, NewVariables);
805   if (!R.isValid(*this))
806     return;
807 
808   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
809              A->printAsOperand(dbgs(), false); dbgs() << ", ";
810              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
811   bool Added = false;
812   auto &CSToUse = getCS(R.IsSigned);
813   if (R.Coefficients.empty())
814     return;
815 
816   Added |= CSToUse.addVariableRowFill(R.Coefficients);
817 
818   // If R has been added to the system, add the new variables and queue it for
819   // removal once it goes out-of-scope.
820   if (Added) {
821     SmallVector<Value *, 2> ValuesToRelease;
822     auto &Value2Index = getValue2Index(R.IsSigned);
823     for (Value *V : NewVariables) {
824       Value2Index.insert({V, Value2Index.size() + 1});
825       ValuesToRelease.push_back(V);
826     }
827 
828     LLVM_DEBUG({
829       dbgs() << "  constraint: ";
830       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
831       dbgs() << "\n";
832     });
833 
834     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
835 
836     if (R.IsEq) {
837       // Also add the inverted constraint for equality constraints.
838       for (auto &Coeff : R.Coefficients)
839         Coeff *= -1;
840       CSToUse.addVariableRowFill(R.Coefficients);
841 
842       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
843                               SmallVector<Value *, 2>());
844     }
845   }
846 }
847 
848 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
849                                    SmallVectorImpl<Instruction *> &ToRemove) {
850   bool Changed = false;
851   IRBuilder<> Builder(II->getParent(), II->getIterator());
852   Value *Sub = nullptr;
853   for (User *U : make_early_inc_range(II->users())) {
854     if (match(U, m_ExtractValue<0>(m_Value()))) {
855       if (!Sub)
856         Sub = Builder.CreateSub(A, B);
857       U->replaceAllUsesWith(Sub);
858       Changed = true;
859     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
860       U->replaceAllUsesWith(Builder.getFalse());
861       Changed = true;
862     } else
863       continue;
864 
865     if (U->use_empty()) {
866       auto *I = cast<Instruction>(U);
867       ToRemove.push_back(I);
868       I->setOperand(0, PoisonValue::get(II->getType()));
869       Changed = true;
870     }
871   }
872 
873   if (II->use_empty()) {
874     II->eraseFromParent();
875     Changed = true;
876   }
877   return Changed;
878 }
879 
880 static bool
881 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
882                           SmallVectorImpl<Instruction *> &ToRemove) {
883   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
884                               ConstraintInfo &Info) {
885     auto R = Info.getConstraintForSolving(Pred, A, B);
886     if (R.size() < 2 || !R.isValid(Info))
887       return false;
888 
889     auto &CSToUse = Info.getCS(R.IsSigned);
890     return CSToUse.isConditionImplied(R.Coefficients);
891   };
892 
893   bool Changed = false;
894   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
895     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
896     // can be simplified to a regular sub.
897     Value *A = II->getArgOperand(0);
898     Value *B = II->getArgOperand(1);
899     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
900         !DoesConditionHold(CmpInst::ICMP_SGE, B,
901                            ConstantInt::get(A->getType(), 0), Info))
902       return false;
903     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
904   }
905   return Changed;
906 }
907 
908 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
909   bool Changed = false;
910   DT.updateDFSNumbers();
911 
912   ConstraintInfo Info(F.getParent()->getDataLayout());
913   State S(DT);
914 
915   // First, collect conditions implied by branches and blocks with their
916   // Dominator DFS in and out numbers.
917   for (BasicBlock &BB : F) {
918     if (!DT.getNode(&BB))
919       continue;
920     S.addInfoFor(BB);
921   }
922 
923   // Next, sort worklist by dominance, so that dominating blocks and conditions
924   // come before blocks and conditions dominated by them. If a block and a
925   // condition have the same numbers, the condition comes before the block, as
926   // it holds on entry to the block. Also make sure conditions with constant
927   // operands come before conditions without constant operands. This increases
928   // the effectiveness of the current signed <-> unsigned fact transfer logic.
929   stable_sort(
930       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
931         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
932           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
933                  !isa<ConstantInt>(B.Condition->getOperand(1));
934         };
935         bool NoConstOpA = HasNoConstOp(A);
936         bool NoConstOpB = HasNoConstOp(B);
937         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
938                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
939       });
940 
941   SmallVector<Instruction *> ToRemove;
942 
943   // Finally, process ordered worklist and eliminate implied conditions.
944   SmallVector<StackEntry, 16> DFSInStack;
945   for (ConstraintOrBlock &CB : S.WorkList) {
946     // First, pop entries from the stack that are out-of-scope for CB. Remove
947     // the corresponding entry from the constraint system.
948     while (!DFSInStack.empty()) {
949       auto &E = DFSInStack.back();
950       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
951                         << "\n");
952       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
953       assert(E.NumIn <= CB.NumIn);
954       if (CB.NumOut <= E.NumOut)
955         break;
956       LLVM_DEBUG({
957         dbgs() << "Removing ";
958         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
959                       Info.getValue2Index(E.IsSigned));
960         dbgs() << "\n";
961       });
962 
963       Info.popLastConstraint(E.IsSigned);
964       // Remove variables in the system that went out of scope.
965       auto &Mapping = Info.getValue2Index(E.IsSigned);
966       for (Value *V : E.ValuesToRelease)
967         Mapping.erase(V);
968       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
969       DFSInStack.pop_back();
970     }
971 
972     LLVM_DEBUG({
973       dbgs() << "Processing ";
974       if (CB.IsBlock)
975         dbgs() << *CB.BB;
976       else
977         dbgs() << *CB.Condition;
978       dbgs() << "\n";
979     });
980 
981     // For a block, check if any CmpInsts become known based on the current set
982     // of constraints.
983     if (CB.IsBlock) {
984       for (Instruction &I : make_early_inc_range(*CB.BB)) {
985         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
986           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
987           continue;
988         }
989         auto *Cmp = dyn_cast<ICmpInst>(&I);
990         if (!Cmp)
991           continue;
992 
993         Changed |= checkAndReplaceCondition(Cmp, Info);
994       }
995       continue;
996     }
997 
998     ICmpInst::Predicate Pred;
999     Value *A, *B;
1000     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1001       // Use the inverse predicate if required.
1002       if (CB.Not)
1003         Pred = CmpInst::getInversePredicate(Pred);
1004 
1005       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1006       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1007     }
1008   }
1009 
1010 #ifndef NDEBUG
1011   unsigned SignedEntries =
1012       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1013   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1014          "updates to CS and DFSInStack are out of sync");
1015   assert(Info.getCS(true).size() == SignedEntries &&
1016          "updates to CS and DFSInStack are out of sync");
1017 #endif
1018 
1019   for (Instruction *I : ToRemove)
1020     I->eraseFromParent();
1021   return Changed;
1022 }
1023 
1024 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1025                                                  FunctionAnalysisManager &AM) {
1026   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1027   if (!eliminateConstraints(F, DT))
1028     return PreservedAnalyses::all();
1029 
1030   PreservedAnalyses PA;
1031   PA.preserve<DominatorTreeAnalysis>();
1032   PA.preserveSet<CFGAnalyses>();
1033   return PA;
1034 }
1035 
1036 namespace {
1037 
1038 class ConstraintElimination : public FunctionPass {
1039 public:
1040   static char ID;
1041 
1042   ConstraintElimination() : FunctionPass(ID) {
1043     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
1044   }
1045 
1046   bool runOnFunction(Function &F) override {
1047     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1048     return eliminateConstraints(F, DT);
1049   }
1050 
1051   void getAnalysisUsage(AnalysisUsage &AU) const override {
1052     AU.setPreservesCFG();
1053     AU.addRequired<DominatorTreeWrapperPass>();
1054     AU.addPreserved<GlobalsAAWrapperPass>();
1055     AU.addPreserved<DominatorTreeWrapperPass>();
1056   }
1057 };
1058 
1059 } // end anonymous namespace
1060 
1061 char ConstraintElimination::ID = 0;
1062 
1063 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
1064                       "Constraint Elimination", false, false)
1065 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1066 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1067 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
1068                     "Constraint Elimination", false, false)
1069 
1070 FunctionPass *llvm::createConstraintEliminationPass() {
1071   return new ConstraintElimination();
1072 }
1073