1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 370 struct OffsetResult { 371 Value *BasePtr; 372 APInt ConstantOffset; 373 MapVector<Value *, APInt> VariableOffsets; 374 bool AllInbounds; 375 376 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 377 378 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 379 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 380 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 381 } 382 }; 383 } // namespace 384 385 // Try to collect variable and constant offsets for \p GEP, partly traversing 386 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 387 // the offset fails. 388 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 389 OffsetResult Result(GEP, DL); 390 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 391 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 392 Result.ConstantOffset)) 393 return {}; 394 395 // If we have a nested GEP, check if we can combine the constant offset of the 396 // inner GEP with the outer GEP. 397 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 398 MapVector<Value *, APInt> VariableOffsets2; 399 APInt ConstantOffset2(BitWidth, 0); 400 bool CanCollectInner = InnerGEP->collectOffset( 401 DL, BitWidth, VariableOffsets2, ConstantOffset2); 402 // TODO: Support cases with more than 1 variable offset. 403 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 404 VariableOffsets2.size() > 1 || 405 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 406 // More than 1 variable index, use outer result. 407 return Result; 408 } 409 Result.BasePtr = InnerGEP->getPointerOperand(); 410 Result.ConstantOffset += ConstantOffset2; 411 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 412 Result.VariableOffsets = VariableOffsets2; 413 Result.AllInbounds &= InnerGEP->isInBounds(); 414 } 415 return Result; 416 } 417 418 static Decomposition decompose(Value *V, 419 SmallVectorImpl<ConditionTy> &Preconditions, 420 bool IsSigned, const DataLayout &DL); 421 422 static bool canUseSExt(ConstantInt *CI) { 423 const APInt &Val = CI->getValue(); 424 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 425 } 426 427 static Decomposition decomposeGEP(GEPOperator &GEP, 428 SmallVectorImpl<ConditionTy> &Preconditions, 429 bool IsSigned, const DataLayout &DL) { 430 // Do not reason about pointers where the index size is larger than 64 bits, 431 // as the coefficients used to encode constraints are 64 bit integers. 432 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 433 return &GEP; 434 435 assert(!IsSigned && "The logic below only supports decomposition for " 436 "unsinged predicates at the moment."); 437 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 438 collectOffsets(GEP, DL); 439 if (!BasePtr || !AllInbounds) 440 return &GEP; 441 442 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 443 for (auto [Index, Scale] : VariableOffsets) { 444 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 445 IdxResult.mul(Scale.getSExtValue()); 446 Result.add(IdxResult); 447 448 // If Op0 is signed non-negative, the GEP is increasing monotonically and 449 // can be de-composed. 450 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 451 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 452 ConstantInt::get(Index->getType(), 0)); 453 } 454 return Result; 455 } 456 457 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 458 // Variable } where Coefficient * Variable. The sum of the constant offset and 459 // pairs equals \p V. 460 static Decomposition decompose(Value *V, 461 SmallVectorImpl<ConditionTy> &Preconditions, 462 bool IsSigned, const DataLayout &DL) { 463 464 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 465 bool IsSignedB) { 466 auto ResA = decompose(A, Preconditions, IsSigned, DL); 467 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 468 ResA.add(ResB); 469 return ResA; 470 }; 471 472 Type *Ty = V->getType()->getScalarType(); 473 if (Ty->isPointerTy() && !IsSigned) { 474 if (auto *GEP = dyn_cast<GEPOperator>(V)) 475 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 476 if (isa<ConstantPointerNull>(V)) 477 return int64_t(0); 478 479 return V; 480 } 481 482 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 483 // coefficient add/mul may wrap, while the operation in the full bit width 484 // would not. 485 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 486 return V; 487 488 // Decompose \p V used with a signed predicate. 489 if (IsSigned) { 490 if (auto *CI = dyn_cast<ConstantInt>(V)) { 491 if (canUseSExt(CI)) 492 return CI->getSExtValue(); 493 } 494 Value *Op0; 495 Value *Op1; 496 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 497 return MergeResults(Op0, Op1, IsSigned); 498 499 ConstantInt *CI; 500 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 501 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 502 Result.mul(CI->getSExtValue()); 503 return Result; 504 } 505 506 return V; 507 } 508 509 if (auto *CI = dyn_cast<ConstantInt>(V)) { 510 if (CI->uge(MaxConstraintValue)) 511 return V; 512 return int64_t(CI->getZExtValue()); 513 } 514 515 Value *Op0; 516 bool IsKnownNonNegative = false; 517 if (match(V, m_ZExt(m_Value(Op0)))) { 518 IsKnownNonNegative = true; 519 V = Op0; 520 } 521 522 Value *Op1; 523 ConstantInt *CI; 524 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 525 return MergeResults(Op0, Op1, IsSigned); 526 } 527 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 528 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 529 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 530 ConstantInt::get(Op0->getType(), 0)); 531 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 532 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 533 ConstantInt::get(Op1->getType(), 0)); 534 535 return MergeResults(Op0, Op1, IsSigned); 536 } 537 538 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 539 canUseSExt(CI)) { 540 Preconditions.emplace_back( 541 CmpInst::ICMP_UGE, Op0, 542 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 543 return MergeResults(Op0, CI, true); 544 } 545 546 // Decompose or as an add if there are no common bits between the operands. 547 if (match(V, m_DisjointOr(m_Value(Op0), m_ConstantInt(CI)))) 548 return MergeResults(Op0, CI, IsSigned); 549 550 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 551 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 552 return {V, IsKnownNonNegative}; 553 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 554 Result.mul(int64_t{1} << CI->getSExtValue()); 555 return Result; 556 } 557 558 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 559 (!CI->isNegative())) { 560 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 561 Result.mul(CI->getSExtValue()); 562 return Result; 563 } 564 565 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 566 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 567 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 568 return {0, {{1, Op0}, {-1, Op1}}}; 569 570 return {V, IsKnownNonNegative}; 571 } 572 573 ConstraintTy 574 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 575 SmallVectorImpl<Value *> &NewVariables) const { 576 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 577 bool IsEq = false; 578 bool IsNe = false; 579 580 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 581 switch (Pred) { 582 case CmpInst::ICMP_UGT: 583 case CmpInst::ICMP_UGE: 584 case CmpInst::ICMP_SGT: 585 case CmpInst::ICMP_SGE: { 586 Pred = CmpInst::getSwappedPredicate(Pred); 587 std::swap(Op0, Op1); 588 break; 589 } 590 case CmpInst::ICMP_EQ: 591 if (match(Op1, m_Zero())) { 592 Pred = CmpInst::ICMP_ULE; 593 } else { 594 IsEq = true; 595 Pred = CmpInst::ICMP_ULE; 596 } 597 break; 598 case CmpInst::ICMP_NE: 599 if (match(Op1, m_Zero())) { 600 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 601 std::swap(Op0, Op1); 602 } else { 603 IsNe = true; 604 Pred = CmpInst::ICMP_ULE; 605 } 606 break; 607 default: 608 break; 609 } 610 611 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 612 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 613 return {}; 614 615 SmallVector<ConditionTy, 4> Preconditions; 616 bool IsSigned = CmpInst::isSigned(Pred); 617 auto &Value2Index = getValue2Index(IsSigned); 618 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 619 Preconditions, IsSigned, DL); 620 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 621 Preconditions, IsSigned, DL); 622 int64_t Offset1 = ADec.Offset; 623 int64_t Offset2 = BDec.Offset; 624 Offset1 *= -1; 625 626 auto &VariablesA = ADec.Vars; 627 auto &VariablesB = BDec.Vars; 628 629 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 630 // new entry to NewVariables. 631 DenseMap<Value *, unsigned> NewIndexMap; 632 auto GetOrAddIndex = [&Value2Index, &NewVariables, 633 &NewIndexMap](Value *V) -> unsigned { 634 auto V2I = Value2Index.find(V); 635 if (V2I != Value2Index.end()) 636 return V2I->second; 637 auto Insert = 638 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 639 if (Insert.second) 640 NewVariables.push_back(V); 641 return Insert.first->second; 642 }; 643 644 // Make sure all variables have entries in Value2Index or NewVariables. 645 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 646 GetOrAddIndex(KV.Variable); 647 648 // Build result constraint, by first adding all coefficients from A and then 649 // subtracting all coefficients from B. 650 ConstraintTy Res( 651 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 652 IsSigned, IsEq, IsNe); 653 // Collect variables that are known to be positive in all uses in the 654 // constraint. 655 DenseMap<Value *, bool> KnownNonNegativeVariables; 656 auto &R = Res.Coefficients; 657 for (const auto &KV : VariablesA) { 658 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 659 auto I = 660 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 661 I.first->second &= KV.IsKnownNonNegative; 662 } 663 664 for (const auto &KV : VariablesB) { 665 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 666 R[GetOrAddIndex(KV.Variable)])) 667 return {}; 668 auto I = 669 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 670 I.first->second &= KV.IsKnownNonNegative; 671 } 672 673 int64_t OffsetSum; 674 if (AddOverflow(Offset1, Offset2, OffsetSum)) 675 return {}; 676 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 677 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 678 return {}; 679 R[0] = OffsetSum; 680 Res.Preconditions = std::move(Preconditions); 681 682 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 683 // variables. 684 while (!NewVariables.empty()) { 685 int64_t Last = R.back(); 686 if (Last != 0) 687 break; 688 R.pop_back(); 689 Value *RemovedV = NewVariables.pop_back_val(); 690 NewIndexMap.erase(RemovedV); 691 } 692 693 // Add extra constraints for variables that are known positive. 694 for (auto &KV : KnownNonNegativeVariables) { 695 if (!KV.second || 696 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 697 continue; 698 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 699 C[GetOrAddIndex(KV.first)] = -1; 700 Res.ExtraInfo.push_back(C); 701 } 702 return Res; 703 } 704 705 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 706 Value *Op0, 707 Value *Op1) const { 708 Constant *NullC = Constant::getNullValue(Op0->getType()); 709 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 710 // for all variables in the unsigned system. 711 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 712 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 713 auto &Value2Index = getValue2Index(false); 714 // Return constraint that's trivially true. 715 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 716 false, false); 717 } 718 719 // If both operands are known to be non-negative, change signed predicates to 720 // unsigned ones. This increases the reasoning effectiveness in combination 721 // with the signed <-> unsigned transfer logic. 722 if (CmpInst::isSigned(Pred) && 723 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 724 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 725 Pred = CmpInst::getUnsignedPredicate(Pred); 726 727 SmallVector<Value *> NewVariables; 728 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 729 if (!NewVariables.empty()) 730 return {}; 731 return R; 732 } 733 734 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 735 return Coefficients.size() > 0 && 736 all_of(Preconditions, [&Info](const ConditionTy &C) { 737 return Info.doesHold(C.Pred, C.Op0, C.Op1); 738 }); 739 } 740 741 std::optional<bool> 742 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 743 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 744 745 if (IsEq || IsNe) { 746 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 747 bool IsNegatedOrEqualImplied = 748 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 749 750 // In order to check that `%a == %b` is true (equality), both conditions `%a 751 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 752 // is true), we return true if they both hold, false in the other cases. 753 if (IsConditionImplied && IsNegatedOrEqualImplied) 754 return IsEq; 755 756 auto Negated = ConstraintSystem::negate(Coefficients); 757 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 758 759 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 760 bool IsStrictLessThanImplied = 761 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 762 763 // In order to check that `%a != %b` is true (non-equality), either 764 // condition `%a > %b` or `%a < %b` must hold true. When checking for 765 // non-equality (`IsNe` is true), we return true if one of the two holds, 766 // false in the other cases. 767 if (IsNegatedImplied || IsStrictLessThanImplied) 768 return IsNe; 769 770 return std::nullopt; 771 } 772 773 if (IsConditionImplied) 774 return true; 775 776 auto Negated = ConstraintSystem::negate(Coefficients); 777 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 778 if (IsNegatedImplied) 779 return false; 780 781 // Neither the condition nor its negated holds, did not prove anything. 782 return std::nullopt; 783 } 784 785 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 786 Value *B) const { 787 auto R = getConstraintForSolving(Pred, A, B); 788 return R.isValid(*this) && 789 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 790 } 791 792 void ConstraintInfo::transferToOtherSystem( 793 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 794 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 795 auto IsKnownNonNegative = [this](Value *V) { 796 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 797 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 798 }; 799 // Check if we can combine facts from the signed and unsigned systems to 800 // derive additional facts. 801 if (!A->getType()->isIntegerTy()) 802 return; 803 // FIXME: This currently depends on the order we add facts. Ideally we 804 // would first add all known facts and only then try to add additional 805 // facts. 806 switch (Pred) { 807 default: 808 break; 809 case CmpInst::ICMP_ULT: 810 case CmpInst::ICMP_ULE: 811 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 812 if (IsKnownNonNegative(B)) { 813 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 814 NumOut, DFSInStack); 815 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 816 DFSInStack); 817 } 818 break; 819 case CmpInst::ICMP_UGE: 820 case CmpInst::ICMP_UGT: 821 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 822 if (IsKnownNonNegative(A)) { 823 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 824 NumOut, DFSInStack); 825 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 826 DFSInStack); 827 } 828 break; 829 case CmpInst::ICMP_SLT: 830 if (IsKnownNonNegative(A)) 831 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 832 break; 833 case CmpInst::ICMP_SGT: { 834 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 835 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 836 NumOut, DFSInStack); 837 if (IsKnownNonNegative(B)) 838 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 839 840 break; 841 } 842 case CmpInst::ICMP_SGE: 843 if (IsKnownNonNegative(B)) 844 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 845 break; 846 } 847 } 848 849 #ifndef NDEBUG 850 851 static void dumpConstraint(ArrayRef<int64_t> C, 852 const DenseMap<Value *, unsigned> &Value2Index) { 853 ConstraintSystem CS(Value2Index); 854 CS.addVariableRowFill(C); 855 CS.dump(); 856 } 857 #endif 858 859 void State::addInfoForInductions(BasicBlock &BB) { 860 auto *L = LI.getLoopFor(&BB); 861 if (!L || L->getHeader() != &BB) 862 return; 863 864 Value *A; 865 Value *B; 866 CmpInst::Predicate Pred; 867 868 if (!match(BB.getTerminator(), 869 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 870 return; 871 PHINode *PN = dyn_cast<PHINode>(A); 872 if (!PN) { 873 Pred = CmpInst::getSwappedPredicate(Pred); 874 std::swap(A, B); 875 PN = dyn_cast<PHINode>(A); 876 } 877 878 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 879 !SE.isSCEVable(PN->getType())) 880 return; 881 882 BasicBlock *InLoopSucc = nullptr; 883 if (Pred == CmpInst::ICMP_NE) 884 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 885 else if (Pred == CmpInst::ICMP_EQ) 886 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 887 else 888 return; 889 890 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 891 return; 892 893 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 894 BasicBlock *LoopPred = L->getLoopPredecessor(); 895 if (!AR || AR->getLoop() != L || !LoopPred) 896 return; 897 898 const SCEV *StartSCEV = AR->getStart(); 899 Value *StartValue = nullptr; 900 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 901 StartValue = C->getValue(); 902 } else { 903 StartValue = PN->getIncomingValueForBlock(LoopPred); 904 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 905 } 906 907 DomTreeNode *DTN = DT.getNode(InLoopSucc); 908 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 909 bool MonotonicallyIncreasing = 910 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 911 if (MonotonicallyIncreasing) { 912 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 913 // unconditionally. 914 WorkList.push_back( 915 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 916 } 917 918 APInt StepOffset; 919 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 920 StepOffset = C->getAPInt(); 921 else 922 return; 923 924 // Make sure the bound B is loop-invariant. 925 if (!L->isLoopInvariant(B)) 926 return; 927 928 // Handle negative steps. 929 if (StepOffset.isNegative()) { 930 // TODO: Extend to allow steps > -1. 931 if (!(-StepOffset).isOne()) 932 return; 933 934 // AR may wrap. 935 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 936 // the loop exits before wrapping with a step of -1. 937 WorkList.push_back(FactOrCheck::getConditionFact( 938 DTN, CmpInst::ICMP_UGE, StartValue, PN, 939 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 940 // Add PN > B conditional on B <= StartValue which guarantees that the loop 941 // exits when reaching B with a step of -1. 942 WorkList.push_back(FactOrCheck::getConditionFact( 943 DTN, CmpInst::ICMP_UGT, PN, B, 944 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 945 return; 946 } 947 948 // Make sure AR either steps by 1 or that the value we compare against is a 949 // GEP based on the same start value and all offsets are a multiple of the 950 // step size, to guarantee that the induction will reach the value. 951 if (StepOffset.isZero() || StepOffset.isNegative()) 952 return; 953 954 if (!StepOffset.isOne()) { 955 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 956 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 957 !UpperGEP->isInBounds()) 958 return; 959 960 MapVector<Value *, APInt> UpperVariableOffsets; 961 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 962 const DataLayout &DL = BB.getModule()->getDataLayout(); 963 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 964 UpperVariableOffsets, UpperConstantOffset)) 965 return; 966 // All variable offsets and the constant offset have to be a multiple of the 967 // step. 968 if (!UpperConstantOffset.urem(StepOffset).isZero() || 969 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 970 return !P.second.urem(StepOffset).isZero(); 971 })) 972 return; 973 } 974 975 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 976 // guarantees that the loop exits before wrapping in combination with the 977 // restrictions on B and the step above. 978 if (!MonotonicallyIncreasing) { 979 WorkList.push_back(FactOrCheck::getConditionFact( 980 DTN, CmpInst::ICMP_UGE, PN, StartValue, 981 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 982 } 983 WorkList.push_back(FactOrCheck::getConditionFact( 984 DTN, CmpInst::ICMP_ULT, PN, B, 985 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 986 } 987 988 void State::addInfoFor(BasicBlock &BB) { 989 addInfoForInductions(BB); 990 991 // True as long as long as the current instruction is guaranteed to execute. 992 bool GuaranteedToExecute = true; 993 // Queue conditions and assumes. 994 for (Instruction &I : BB) { 995 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 996 for (Use &U : Cmp->uses()) { 997 auto *UserI = getContextInstForUse(U); 998 auto *DTN = DT.getNode(UserI->getParent()); 999 if (!DTN) 1000 continue; 1001 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1002 } 1003 continue; 1004 } 1005 1006 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 1007 WorkList.push_back( 1008 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1009 continue; 1010 } 1011 1012 if (isa<MinMaxIntrinsic>(&I)) { 1013 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1014 continue; 1015 } 1016 1017 Value *A, *B; 1018 CmpInst::Predicate Pred; 1019 // For now, just handle assumes with a single compare as condition. 1020 if (match(&I, m_Intrinsic<Intrinsic::assume>( 1021 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 1022 if (GuaranteedToExecute) { 1023 // The assume is guaranteed to execute when BB is entered, hence Cond 1024 // holds on entry to BB. 1025 WorkList.emplace_back(FactOrCheck::getConditionFact( 1026 DT.getNode(I.getParent()), Pred, A, B)); 1027 } else { 1028 WorkList.emplace_back( 1029 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1030 } 1031 } 1032 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1033 } 1034 1035 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1036 for (auto &Case : Switch->cases()) { 1037 BasicBlock *Succ = Case.getCaseSuccessor(); 1038 Value *V = Case.getCaseValue(); 1039 if (!canAddSuccessor(BB, Succ)) 1040 continue; 1041 WorkList.emplace_back(FactOrCheck::getConditionFact( 1042 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1043 } 1044 return; 1045 } 1046 1047 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1048 if (!Br || !Br->isConditional()) 1049 return; 1050 1051 Value *Cond = Br->getCondition(); 1052 1053 // If the condition is a chain of ORs/AND and the successor only has the 1054 // current block as predecessor, queue conditions for the successor. 1055 Value *Op0, *Op1; 1056 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1057 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1058 bool IsOr = match(Cond, m_LogicalOr()); 1059 bool IsAnd = match(Cond, m_LogicalAnd()); 1060 // If there's a select that matches both AND and OR, we need to commit to 1061 // one of the options. Arbitrarily pick OR. 1062 if (IsOr && IsAnd) 1063 IsAnd = false; 1064 1065 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1066 if (canAddSuccessor(BB, Successor)) { 1067 SmallVector<Value *> CondWorkList; 1068 SmallPtrSet<Value *, 8> SeenCond; 1069 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1070 if (SeenCond.insert(V).second) 1071 CondWorkList.push_back(V); 1072 }; 1073 QueueValue(Op1); 1074 QueueValue(Op0); 1075 while (!CondWorkList.empty()) { 1076 Value *Cur = CondWorkList.pop_back_val(); 1077 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1078 WorkList.emplace_back(FactOrCheck::getConditionFact( 1079 DT.getNode(Successor), 1080 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1081 : Cmp->getPredicate(), 1082 Cmp->getOperand(0), Cmp->getOperand(1))); 1083 continue; 1084 } 1085 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1086 QueueValue(Op1); 1087 QueueValue(Op0); 1088 continue; 1089 } 1090 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1091 QueueValue(Op1); 1092 QueueValue(Op0); 1093 continue; 1094 } 1095 } 1096 } 1097 return; 1098 } 1099 1100 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1101 if (!CmpI) 1102 return; 1103 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1104 WorkList.emplace_back(FactOrCheck::getConditionFact( 1105 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1106 CmpI->getOperand(0), CmpI->getOperand(1))); 1107 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1108 WorkList.emplace_back(FactOrCheck::getConditionFact( 1109 DT.getNode(Br->getSuccessor(1)), 1110 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1111 CmpI->getOperand(1))); 1112 } 1113 1114 namespace { 1115 /// Helper to keep track of a condition and if it should be treated as negated 1116 /// for reproducer construction. 1117 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1118 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1119 struct ReproducerEntry { 1120 ICmpInst::Predicate Pred; 1121 Value *LHS; 1122 Value *RHS; 1123 1124 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1125 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1126 }; 1127 } // namespace 1128 1129 /// Helper function to generate a reproducer function for simplifying \p Cond. 1130 /// The reproducer function contains a series of @llvm.assume calls, one for 1131 /// each condition in \p Stack. For each condition, the operand instruction are 1132 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1133 /// will then be added as function arguments. \p DT is used to order cloned 1134 /// instructions. The reproducer function will get added to \p M, if it is 1135 /// non-null. Otherwise no reproducer function is generated. 1136 static void generateReproducer(CmpInst *Cond, Module *M, 1137 ArrayRef<ReproducerEntry> Stack, 1138 ConstraintInfo &Info, DominatorTree &DT) { 1139 if (!M) 1140 return; 1141 1142 LLVMContext &Ctx = Cond->getContext(); 1143 1144 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1145 1146 ValueToValueMapTy Old2New; 1147 SmallVector<Value *> Args; 1148 SmallPtrSet<Value *, 8> Seen; 1149 // Traverse Cond and its operands recursively until we reach a value that's in 1150 // Value2Index or not an instruction, or not a operation that 1151 // ConstraintElimination can decompose. Such values will be considered as 1152 // external inputs to the reproducer, they are collected and added as function 1153 // arguments later. 1154 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1155 auto &Value2Index = Info.getValue2Index(IsSigned); 1156 SmallVector<Value *, 4> WorkList(Ops); 1157 while (!WorkList.empty()) { 1158 Value *V = WorkList.pop_back_val(); 1159 if (!Seen.insert(V).second) 1160 continue; 1161 if (Old2New.find(V) != Old2New.end()) 1162 continue; 1163 if (isa<Constant>(V)) 1164 continue; 1165 1166 auto *I = dyn_cast<Instruction>(V); 1167 if (Value2Index.contains(V) || !I || 1168 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1169 Old2New[V] = V; 1170 Args.push_back(V); 1171 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1172 } else { 1173 append_range(WorkList, I->operands()); 1174 } 1175 } 1176 }; 1177 1178 for (auto &Entry : Stack) 1179 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1180 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1181 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1182 1183 SmallVector<Type *> ParamTys; 1184 for (auto *P : Args) 1185 ParamTys.push_back(P->getType()); 1186 1187 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1188 /*isVarArg=*/false); 1189 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1190 Cond->getModule()->getName() + 1191 Cond->getFunction()->getName() + "repro", 1192 M); 1193 // Add arguments to the reproducer function for each external value collected. 1194 for (unsigned I = 0; I < Args.size(); ++I) { 1195 F->getArg(I)->setName(Args[I]->getName()); 1196 Old2New[Args[I]] = F->getArg(I); 1197 } 1198 1199 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1200 IRBuilder<> Builder(Entry); 1201 Builder.CreateRet(Builder.getTrue()); 1202 Builder.SetInsertPoint(Entry->getTerminator()); 1203 1204 // Clone instructions in \p Ops and their operands recursively until reaching 1205 // an value in Value2Index (external input to the reproducer). Update Old2New 1206 // mapping for the original and cloned instructions. Sort instructions to 1207 // clone by dominance, then insert the cloned instructions in the function. 1208 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1209 SmallVector<Value *, 4> WorkList(Ops); 1210 SmallVector<Instruction *> ToClone; 1211 auto &Value2Index = Info.getValue2Index(IsSigned); 1212 while (!WorkList.empty()) { 1213 Value *V = WorkList.pop_back_val(); 1214 if (Old2New.find(V) != Old2New.end()) 1215 continue; 1216 1217 auto *I = dyn_cast<Instruction>(V); 1218 if (!Value2Index.contains(V) && I) { 1219 Old2New[V] = nullptr; 1220 ToClone.push_back(I); 1221 append_range(WorkList, I->operands()); 1222 } 1223 } 1224 1225 sort(ToClone, 1226 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1227 for (Instruction *I : ToClone) { 1228 Instruction *Cloned = I->clone(); 1229 Old2New[I] = Cloned; 1230 Old2New[I]->setName(I->getName()); 1231 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1232 Cloned->dropUnknownNonDebugMetadata(); 1233 Cloned->setDebugLoc({}); 1234 } 1235 }; 1236 1237 // Materialize the assumptions for the reproducer using the entries in Stack. 1238 // That is, first clone the operands of the condition recursively until we 1239 // reach an external input to the reproducer and add them to the reproducer 1240 // function. Then add an ICmp for the condition (with the inverse predicate if 1241 // the entry is negated) and an assert using the ICmp. 1242 for (auto &Entry : Stack) { 1243 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1244 continue; 1245 1246 LLVM_DEBUG( 1247 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1248 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1249 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1250 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1251 1252 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1253 Builder.CreateAssumption(Cmp); 1254 } 1255 1256 // Finally, clone the condition to reproduce and remap instruction operands in 1257 // the reproducer using Old2New. 1258 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1259 Entry->getTerminator()->setOperand(0, Cond); 1260 remapInstructionsInBlocks({Entry}, Old2New); 1261 1262 assert(!verifyFunction(*F, &dbgs())); 1263 } 1264 1265 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1266 unsigned NumIn, unsigned NumOut, 1267 Instruction *ContextInst) { 1268 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1269 1270 CmpInst::Predicate Pred = Cmp->getPredicate(); 1271 Value *A = Cmp->getOperand(0); 1272 Value *B = Cmp->getOperand(1); 1273 1274 auto R = Info.getConstraintForSolving(Pred, A, B); 1275 if (R.empty() || !R.isValid(Info)){ 1276 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1277 return std::nullopt; 1278 } 1279 1280 auto &CSToUse = Info.getCS(R.IsSigned); 1281 1282 // If there was extra information collected during decomposition, apply 1283 // it now and remove it immediately once we are done with reasoning 1284 // about the constraint. 1285 for (auto &Row : R.ExtraInfo) 1286 CSToUse.addVariableRow(Row); 1287 auto InfoRestorer = make_scope_exit([&]() { 1288 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1289 CSToUse.popLastConstraint(); 1290 }); 1291 1292 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1293 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1294 return std::nullopt; 1295 1296 LLVM_DEBUG({ 1297 if (*ImpliedCondition) { 1298 dbgs() << "Condition " << *Cmp; 1299 } else { 1300 auto InversePred = Cmp->getInversePredicate(); 1301 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1302 << *A << ", " << *B; 1303 } 1304 dbgs() << " implied by dominating constraints\n"; 1305 CSToUse.dump(); 1306 }); 1307 return ImpliedCondition; 1308 } 1309 1310 return std::nullopt; 1311 } 1312 1313 static bool checkAndReplaceCondition( 1314 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1315 Instruction *ContextInst, Module *ReproducerModule, 1316 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1317 SmallVectorImpl<Instruction *> &ToRemove) { 1318 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1319 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1320 Constant *ConstantC = ConstantInt::getBool( 1321 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1322 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1323 ContextInst](Use &U) { 1324 auto *UserI = getContextInstForUse(U); 1325 auto *DTN = DT.getNode(UserI->getParent()); 1326 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1327 return false; 1328 if (UserI->getParent() == ContextInst->getParent() && 1329 UserI->comesBefore(ContextInst)) 1330 return false; 1331 1332 // Conditions in an assume trivially simplify to true. Skip uses 1333 // in assume calls to not destroy the available information. 1334 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1335 return !II || II->getIntrinsicID() != Intrinsic::assume; 1336 }); 1337 NumCondsRemoved++; 1338 if (Cmp->use_empty()) 1339 ToRemove.push_back(Cmp); 1340 return true; 1341 }; 1342 1343 if (auto ImpliedCondition = 1344 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1345 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1346 return false; 1347 } 1348 1349 static void 1350 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1351 Module *ReproducerModule, 1352 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1353 SmallVectorImpl<StackEntry> &DFSInStack) { 1354 Info.popLastConstraint(E.IsSigned); 1355 // Remove variables in the system that went out of scope. 1356 auto &Mapping = Info.getValue2Index(E.IsSigned); 1357 for (Value *V : E.ValuesToRelease) 1358 Mapping.erase(V); 1359 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1360 DFSInStack.pop_back(); 1361 if (ReproducerModule) 1362 ReproducerCondStack.pop_back(); 1363 } 1364 1365 /// Check if the first condition for an AND implies the second. 1366 static bool checkAndSecondOpImpliedByFirst( 1367 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1368 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1369 SmallVectorImpl<StackEntry> &DFSInStack) { 1370 1371 CmpInst::Predicate Pred; 1372 Value *A, *B; 1373 Instruction *And = CB.getContextInst(); 1374 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1375 return false; 1376 1377 // Optimistically add fact from first condition. 1378 unsigned OldSize = DFSInStack.size(); 1379 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1380 if (OldSize == DFSInStack.size()) 1381 return false; 1382 1383 bool Changed = false; 1384 // Check if the second condition can be simplified now. 1385 if (auto ImpliedCondition = 1386 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1387 CB.NumOut, CB.getContextInst())) { 1388 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1389 Changed = true; 1390 } 1391 1392 // Remove entries again. 1393 while (OldSize < DFSInStack.size()) { 1394 StackEntry E = DFSInStack.back(); 1395 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1396 DFSInStack); 1397 } 1398 return Changed; 1399 } 1400 1401 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1402 unsigned NumIn, unsigned NumOut, 1403 SmallVectorImpl<StackEntry> &DFSInStack) { 1404 // If the constraint has a pre-condition, skip the constraint if it does not 1405 // hold. 1406 SmallVector<Value *> NewVariables; 1407 auto R = getConstraint(Pred, A, B, NewVariables); 1408 1409 // TODO: Support non-equality for facts as well. 1410 if (!R.isValid(*this) || R.isNe()) 1411 return; 1412 1413 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1414 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1415 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1416 bool Added = false; 1417 auto &CSToUse = getCS(R.IsSigned); 1418 if (R.Coefficients.empty()) 1419 return; 1420 1421 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1422 1423 // If R has been added to the system, add the new variables and queue it for 1424 // removal once it goes out-of-scope. 1425 if (Added) { 1426 SmallVector<Value *, 2> ValuesToRelease; 1427 auto &Value2Index = getValue2Index(R.IsSigned); 1428 for (Value *V : NewVariables) { 1429 Value2Index.insert({V, Value2Index.size() + 1}); 1430 ValuesToRelease.push_back(V); 1431 } 1432 1433 LLVM_DEBUG({ 1434 dbgs() << " constraint: "; 1435 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1436 dbgs() << "\n"; 1437 }); 1438 1439 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1440 std::move(ValuesToRelease)); 1441 1442 if (R.isEq()) { 1443 // Also add the inverted constraint for equality constraints. 1444 for (auto &Coeff : R.Coefficients) 1445 Coeff *= -1; 1446 CSToUse.addVariableRowFill(R.Coefficients); 1447 1448 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1449 SmallVector<Value *, 2>()); 1450 } 1451 } 1452 } 1453 1454 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1455 SmallVectorImpl<Instruction *> &ToRemove) { 1456 bool Changed = false; 1457 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1458 Value *Sub = nullptr; 1459 for (User *U : make_early_inc_range(II->users())) { 1460 if (match(U, m_ExtractValue<0>(m_Value()))) { 1461 if (!Sub) 1462 Sub = Builder.CreateSub(A, B); 1463 U->replaceAllUsesWith(Sub); 1464 Changed = true; 1465 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1466 U->replaceAllUsesWith(Builder.getFalse()); 1467 Changed = true; 1468 } else 1469 continue; 1470 1471 if (U->use_empty()) { 1472 auto *I = cast<Instruction>(U); 1473 ToRemove.push_back(I); 1474 I->setOperand(0, PoisonValue::get(II->getType())); 1475 Changed = true; 1476 } 1477 } 1478 1479 if (II->use_empty()) { 1480 II->eraseFromParent(); 1481 Changed = true; 1482 } 1483 return Changed; 1484 } 1485 1486 static bool 1487 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1488 SmallVectorImpl<Instruction *> &ToRemove) { 1489 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1490 ConstraintInfo &Info) { 1491 auto R = Info.getConstraintForSolving(Pred, A, B); 1492 if (R.size() < 2 || !R.isValid(Info)) 1493 return false; 1494 1495 auto &CSToUse = Info.getCS(R.IsSigned); 1496 return CSToUse.isConditionImplied(R.Coefficients); 1497 }; 1498 1499 bool Changed = false; 1500 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1501 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1502 // can be simplified to a regular sub. 1503 Value *A = II->getArgOperand(0); 1504 Value *B = II->getArgOperand(1); 1505 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1506 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1507 ConstantInt::get(A->getType(), 0), Info)) 1508 return false; 1509 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1510 } 1511 return Changed; 1512 } 1513 1514 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1515 ScalarEvolution &SE, 1516 OptimizationRemarkEmitter &ORE) { 1517 bool Changed = false; 1518 DT.updateDFSNumbers(); 1519 SmallVector<Value *> FunctionArgs; 1520 for (Value &Arg : F.args()) 1521 FunctionArgs.push_back(&Arg); 1522 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1523 State S(DT, LI, SE); 1524 std::unique_ptr<Module> ReproducerModule( 1525 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1526 1527 // First, collect conditions implied by branches and blocks with their 1528 // Dominator DFS in and out numbers. 1529 for (BasicBlock &BB : F) { 1530 if (!DT.getNode(&BB)) 1531 continue; 1532 S.addInfoFor(BB); 1533 } 1534 1535 // Next, sort worklist by dominance, so that dominating conditions to check 1536 // and facts come before conditions and facts dominated by them. If a 1537 // condition to check and a fact have the same numbers, conditional facts come 1538 // first. Assume facts and checks are ordered according to their relative 1539 // order in the containing basic block. Also make sure conditions with 1540 // constant operands come before conditions without constant operands. This 1541 // increases the effectiveness of the current signed <-> unsigned fact 1542 // transfer logic. 1543 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1544 auto HasNoConstOp = [](const FactOrCheck &B) { 1545 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1546 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1547 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1548 }; 1549 // If both entries have the same In numbers, conditional facts come first. 1550 // Otherwise use the relative order in the basic block. 1551 if (A.NumIn == B.NumIn) { 1552 if (A.isConditionFact() && B.isConditionFact()) { 1553 bool NoConstOpA = HasNoConstOp(A); 1554 bool NoConstOpB = HasNoConstOp(B); 1555 return NoConstOpA < NoConstOpB; 1556 } 1557 if (A.isConditionFact()) 1558 return true; 1559 if (B.isConditionFact()) 1560 return false; 1561 auto *InstA = A.getContextInst(); 1562 auto *InstB = B.getContextInst(); 1563 return InstA->comesBefore(InstB); 1564 } 1565 return A.NumIn < B.NumIn; 1566 }); 1567 1568 SmallVector<Instruction *> ToRemove; 1569 1570 // Finally, process ordered worklist and eliminate implied conditions. 1571 SmallVector<StackEntry, 16> DFSInStack; 1572 SmallVector<ReproducerEntry> ReproducerCondStack; 1573 for (FactOrCheck &CB : S.WorkList) { 1574 // First, pop entries from the stack that are out-of-scope for CB. Remove 1575 // the corresponding entry from the constraint system. 1576 while (!DFSInStack.empty()) { 1577 auto &E = DFSInStack.back(); 1578 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1579 << "\n"); 1580 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1581 assert(E.NumIn <= CB.NumIn); 1582 if (CB.NumOut <= E.NumOut) 1583 break; 1584 LLVM_DEBUG({ 1585 dbgs() << "Removing "; 1586 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1587 Info.getValue2Index(E.IsSigned)); 1588 dbgs() << "\n"; 1589 }); 1590 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1591 DFSInStack); 1592 } 1593 1594 LLVM_DEBUG(dbgs() << "Processing "); 1595 1596 // For a block, check if any CmpInsts become known based on the current set 1597 // of constraints. 1598 if (CB.isCheck()) { 1599 Instruction *Inst = CB.getInstructionToSimplify(); 1600 if (!Inst) 1601 continue; 1602 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1603 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1604 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1605 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1606 bool Simplified = checkAndReplaceCondition( 1607 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1608 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1609 if (!Simplified && match(CB.getContextInst(), 1610 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1611 Simplified = 1612 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1613 ReproducerCondStack, DFSInStack); 1614 } 1615 Changed |= Simplified; 1616 } 1617 continue; 1618 } 1619 1620 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1621 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1622 << CmpInst::getPredicateName(Pred) << " "; 1623 A->printAsOperand(dbgs()); dbgs() << ", "; 1624 B->printAsOperand(dbgs(), false); dbgs() << "\n"); 1625 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1626 LLVM_DEBUG( 1627 dbgs() 1628 << "Skip adding constraint because system has too many rows.\n"); 1629 return; 1630 } 1631 1632 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1633 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1634 ReproducerCondStack.emplace_back(Pred, A, B); 1635 1636 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1637 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1638 // Add dummy entries to ReproducerCondStack to keep it in sync with 1639 // DFSInStack. 1640 for (unsigned I = 0, 1641 E = (DFSInStack.size() - ReproducerCondStack.size()); 1642 I < E; ++I) { 1643 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1644 nullptr, nullptr); 1645 } 1646 } 1647 }; 1648 1649 ICmpInst::Predicate Pred; 1650 if (!CB.isConditionFact()) { 1651 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1652 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1653 AddFact(Pred, MinMax, MinMax->getLHS()); 1654 AddFact(Pred, MinMax, MinMax->getRHS()); 1655 continue; 1656 } 1657 } 1658 1659 Value *A = nullptr, *B = nullptr; 1660 if (CB.isConditionFact()) { 1661 Pred = CB.Cond.Pred; 1662 A = CB.Cond.Op0; 1663 B = CB.Cond.Op1; 1664 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1665 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1666 continue; 1667 } else { 1668 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1669 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1670 (void)Matched; 1671 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1672 } 1673 AddFact(Pred, A, B); 1674 } 1675 1676 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1677 std::string S; 1678 raw_string_ostream StringS(S); 1679 ReproducerModule->print(StringS, nullptr); 1680 StringS.flush(); 1681 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1682 Rem << ore::NV("module") << S; 1683 ORE.emit(Rem); 1684 } 1685 1686 #ifndef NDEBUG 1687 unsigned SignedEntries = 1688 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1689 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1690 "updates to CS and DFSInStack are out of sync"); 1691 assert(Info.getCS(true).size() == SignedEntries && 1692 "updates to CS and DFSInStack are out of sync"); 1693 #endif 1694 1695 for (Instruction *I : ToRemove) 1696 I->eraseFromParent(); 1697 return Changed; 1698 } 1699 1700 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1701 FunctionAnalysisManager &AM) { 1702 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1703 auto &LI = AM.getResult<LoopAnalysis>(F); 1704 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1705 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1706 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1707 return PreservedAnalyses::all(); 1708 1709 PreservedAnalyses PA; 1710 PA.preserve<DominatorTreeAnalysis>(); 1711 PA.preserve<LoopAnalysis>(); 1712 PA.preserve<ScalarEvolutionAnalysis>(); 1713 PA.preserveSet<CFGAnalyses>(); 1714 return PA; 1715 } 1716