1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 } // namespace 370 371 static Decomposition decompose(Value *V, 372 SmallVectorImpl<ConditionTy> &Preconditions, 373 bool IsSigned, const DataLayout &DL); 374 375 static bool canUseSExt(ConstantInt *CI) { 376 const APInt &Val = CI->getValue(); 377 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 378 } 379 380 static Decomposition decomposeGEP(GEPOperator &GEP, 381 SmallVectorImpl<ConditionTy> &Preconditions, 382 bool IsSigned, const DataLayout &DL) { 383 // Do not reason about pointers where the index size is larger than 64 bits, 384 // as the coefficients used to encode constraints are 64 bit integers. 385 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 386 return &GEP; 387 388 if (!GEP.isInBounds()) 389 return &GEP; 390 391 assert(!IsSigned && "The logic below only supports decomposition for " 392 "unsinged predicates at the moment."); 393 Type *PtrTy = GEP.getType()->getScalarType(); 394 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 395 MapVector<Value *, APInt> VariableOffsets; 396 APInt ConstantOffset(BitWidth, 0); 397 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 398 return &GEP; 399 400 // Handle the (gep (gep ....), C) case by incrementing the constant 401 // coefficient of the inner GEP, if C is a constant. 402 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 403 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 404 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 405 Result.add(ConstantOffset.getSExtValue()); 406 407 if (ConstantOffset.isNegative()) { 408 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 409 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 410 if (ConstantOffsetI % Scale != 0) 411 return &GEP; 412 // Add pre-condition ensuring the GEP is increasing monotonically and 413 // can be de-composed. 414 // Both sides are normalized by being divided by Scale. 415 Preconditions.emplace_back( 416 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 417 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 418 -1 * (ConstantOffsetI / Scale))); 419 } 420 return Result; 421 } 422 423 Decomposition Result(ConstantOffset.getSExtValue(), 424 DecompEntry(1, GEP.getPointerOperand())); 425 for (auto [Index, Scale] : VariableOffsets) { 426 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 427 IdxResult.mul(Scale.getSExtValue()); 428 Result.add(IdxResult); 429 430 // If Op0 is signed non-negative, the GEP is increasing monotonically and 431 // can be de-composed. 432 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 433 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 434 ConstantInt::get(Index->getType(), 0)); 435 } 436 return Result; 437 } 438 439 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 440 // Variable } where Coefficient * Variable. The sum of the constant offset and 441 // pairs equals \p V. 442 static Decomposition decompose(Value *V, 443 SmallVectorImpl<ConditionTy> &Preconditions, 444 bool IsSigned, const DataLayout &DL) { 445 446 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 447 bool IsSignedB) { 448 auto ResA = decompose(A, Preconditions, IsSigned, DL); 449 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 450 ResA.add(ResB); 451 return ResA; 452 }; 453 454 // Decompose \p V used with a signed predicate. 455 if (IsSigned) { 456 if (auto *CI = dyn_cast<ConstantInt>(V)) { 457 if (canUseSExt(CI)) 458 return CI->getSExtValue(); 459 } 460 Value *Op0; 461 Value *Op1; 462 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 463 return MergeResults(Op0, Op1, IsSigned); 464 465 ConstantInt *CI; 466 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 467 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 468 Result.mul(CI->getSExtValue()); 469 return Result; 470 } 471 472 return V; 473 } 474 475 if (auto *CI = dyn_cast<ConstantInt>(V)) { 476 if (CI->uge(MaxConstraintValue)) 477 return V; 478 return int64_t(CI->getZExtValue()); 479 } 480 481 if (auto *GEP = dyn_cast<GEPOperator>(V)) 482 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 483 484 Value *Op0; 485 bool IsKnownNonNegative = false; 486 if (match(V, m_ZExt(m_Value(Op0)))) { 487 IsKnownNonNegative = true; 488 V = Op0; 489 } 490 491 Value *Op1; 492 ConstantInt *CI; 493 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 494 return MergeResults(Op0, Op1, IsSigned); 495 } 496 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 497 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 498 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 499 ConstantInt::get(Op0->getType(), 0)); 500 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 501 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 502 ConstantInt::get(Op1->getType(), 0)); 503 504 return MergeResults(Op0, Op1, IsSigned); 505 } 506 507 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 508 canUseSExt(CI)) { 509 Preconditions.emplace_back( 510 CmpInst::ICMP_UGE, Op0, 511 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 512 return MergeResults(Op0, CI, true); 513 } 514 515 // Decompose or as an add if there are no common bits between the operands. 516 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 517 haveNoCommonBitsSet(Op0, CI, DL)) { 518 return MergeResults(Op0, CI, IsSigned); 519 } 520 521 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 522 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 523 return {V, IsKnownNonNegative}; 524 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 525 Result.mul(int64_t{1} << CI->getSExtValue()); 526 return Result; 527 } 528 529 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 530 (!CI->isNegative())) { 531 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 532 Result.mul(CI->getSExtValue()); 533 return Result; 534 } 535 536 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 537 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 538 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 539 return {0, {{1, Op0}, {-1, Op1}}}; 540 541 return {V, IsKnownNonNegative}; 542 } 543 544 ConstraintTy 545 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 546 SmallVectorImpl<Value *> &NewVariables) const { 547 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 548 bool IsEq = false; 549 bool IsNe = false; 550 551 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 552 switch (Pred) { 553 case CmpInst::ICMP_UGT: 554 case CmpInst::ICMP_UGE: 555 case CmpInst::ICMP_SGT: 556 case CmpInst::ICMP_SGE: { 557 Pred = CmpInst::getSwappedPredicate(Pred); 558 std::swap(Op0, Op1); 559 break; 560 } 561 case CmpInst::ICMP_EQ: 562 if (match(Op1, m_Zero())) { 563 Pred = CmpInst::ICMP_ULE; 564 } else { 565 IsEq = true; 566 Pred = CmpInst::ICMP_ULE; 567 } 568 break; 569 case CmpInst::ICMP_NE: 570 if (match(Op1, m_Zero())) { 571 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 572 std::swap(Op0, Op1); 573 } else { 574 IsNe = true; 575 Pred = CmpInst::ICMP_ULE; 576 } 577 break; 578 default: 579 break; 580 } 581 582 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 583 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 584 return {}; 585 586 SmallVector<ConditionTy, 4> Preconditions; 587 bool IsSigned = CmpInst::isSigned(Pred); 588 auto &Value2Index = getValue2Index(IsSigned); 589 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 590 Preconditions, IsSigned, DL); 591 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 592 Preconditions, IsSigned, DL); 593 int64_t Offset1 = ADec.Offset; 594 int64_t Offset2 = BDec.Offset; 595 Offset1 *= -1; 596 597 auto &VariablesA = ADec.Vars; 598 auto &VariablesB = BDec.Vars; 599 600 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 601 // new entry to NewVariables. 602 DenseMap<Value *, unsigned> NewIndexMap; 603 auto GetOrAddIndex = [&Value2Index, &NewVariables, 604 &NewIndexMap](Value *V) -> unsigned { 605 auto V2I = Value2Index.find(V); 606 if (V2I != Value2Index.end()) 607 return V2I->second; 608 auto Insert = 609 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 610 if (Insert.second) 611 NewVariables.push_back(V); 612 return Insert.first->second; 613 }; 614 615 // Make sure all variables have entries in Value2Index or NewVariables. 616 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 617 GetOrAddIndex(KV.Variable); 618 619 // Build result constraint, by first adding all coefficients from A and then 620 // subtracting all coefficients from B. 621 ConstraintTy Res( 622 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 623 IsSigned, IsEq, IsNe); 624 // Collect variables that are known to be positive in all uses in the 625 // constraint. 626 DenseMap<Value *, bool> KnownNonNegativeVariables; 627 auto &R = Res.Coefficients; 628 for (const auto &KV : VariablesA) { 629 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 630 auto I = 631 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 632 I.first->second &= KV.IsKnownNonNegative; 633 } 634 635 for (const auto &KV : VariablesB) { 636 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 637 R[GetOrAddIndex(KV.Variable)])) 638 return {}; 639 auto I = 640 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 641 I.first->second &= KV.IsKnownNonNegative; 642 } 643 644 int64_t OffsetSum; 645 if (AddOverflow(Offset1, Offset2, OffsetSum)) 646 return {}; 647 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 648 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 649 return {}; 650 R[0] = OffsetSum; 651 Res.Preconditions = std::move(Preconditions); 652 653 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 654 // variables. 655 while (!NewVariables.empty()) { 656 int64_t Last = R.back(); 657 if (Last != 0) 658 break; 659 R.pop_back(); 660 Value *RemovedV = NewVariables.pop_back_val(); 661 NewIndexMap.erase(RemovedV); 662 } 663 664 // Add extra constraints for variables that are known positive. 665 for (auto &KV : KnownNonNegativeVariables) { 666 if (!KV.second || 667 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 668 continue; 669 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 670 C[GetOrAddIndex(KV.first)] = -1; 671 Res.ExtraInfo.push_back(C); 672 } 673 return Res; 674 } 675 676 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 677 Value *Op0, 678 Value *Op1) const { 679 // If both operands are known to be non-negative, change signed predicates to 680 // unsigned ones. This increases the reasoning effectiveness in combination 681 // with the signed <-> unsigned transfer logic. 682 if (CmpInst::isSigned(Pred) && 683 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 684 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 685 Pred = CmpInst::getUnsignedPredicate(Pred); 686 687 SmallVector<Value *> NewVariables; 688 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 689 if (!NewVariables.empty()) 690 return {}; 691 return R; 692 } 693 694 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 695 return Coefficients.size() > 0 && 696 all_of(Preconditions, [&Info](const ConditionTy &C) { 697 return Info.doesHold(C.Pred, C.Op0, C.Op1); 698 }); 699 } 700 701 std::optional<bool> 702 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 703 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 704 705 if (IsEq || IsNe) { 706 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 707 bool IsNegatedOrEqualImplied = 708 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 709 710 // In order to check that `%a == %b` is true (equality), both conditions `%a 711 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 712 // is true), we return true if they both hold, false in the other cases. 713 if (IsConditionImplied && IsNegatedOrEqualImplied) 714 return IsEq; 715 716 auto Negated = ConstraintSystem::negate(Coefficients); 717 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 718 719 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 720 bool IsStrictLessThanImplied = 721 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 722 723 // In order to check that `%a != %b` is true (non-equality), either 724 // condition `%a > %b` or `%a < %b` must hold true. When checking for 725 // non-equality (`IsNe` is true), we return true if one of the two holds, 726 // false in the other cases. 727 if (IsNegatedImplied || IsStrictLessThanImplied) 728 return IsNe; 729 730 return std::nullopt; 731 } 732 733 if (IsConditionImplied) 734 return true; 735 736 auto Negated = ConstraintSystem::negate(Coefficients); 737 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 738 if (IsNegatedImplied) 739 return false; 740 741 // Neither the condition nor its negated holds, did not prove anything. 742 return std::nullopt; 743 } 744 745 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 746 Value *B) const { 747 auto R = getConstraintForSolving(Pred, A, B); 748 return R.isValid(*this) && 749 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 750 } 751 752 void ConstraintInfo::transferToOtherSystem( 753 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 754 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 755 // Check if we can combine facts from the signed and unsigned systems to 756 // derive additional facts. 757 if (!A->getType()->isIntegerTy()) 758 return; 759 // FIXME: This currently depends on the order we add facts. Ideally we 760 // would first add all known facts and only then try to add additional 761 // facts. 762 switch (Pred) { 763 default: 764 break; 765 case CmpInst::ICMP_ULT: 766 case CmpInst::ICMP_ULE: 767 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 768 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 769 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 770 NumOut, DFSInStack); 771 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 772 DFSInStack); 773 } 774 break; 775 case CmpInst::ICMP_UGE: 776 case CmpInst::ICMP_UGT: 777 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 778 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) { 779 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 780 NumOut, DFSInStack); 781 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 782 DFSInStack); 783 } 784 break; 785 case CmpInst::ICMP_SLT: 786 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 787 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 788 break; 789 case CmpInst::ICMP_SGT: { 790 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 791 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 792 NumOut, DFSInStack); 793 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 794 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 795 796 break; 797 } 798 case CmpInst::ICMP_SGE: 799 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 800 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 801 } 802 break; 803 } 804 } 805 806 #ifndef NDEBUG 807 808 static void dumpConstraint(ArrayRef<int64_t> C, 809 const DenseMap<Value *, unsigned> &Value2Index) { 810 ConstraintSystem CS(Value2Index); 811 CS.addVariableRowFill(C); 812 CS.dump(); 813 } 814 #endif 815 816 void State::addInfoForInductions(BasicBlock &BB) { 817 auto *L = LI.getLoopFor(&BB); 818 if (!L || L->getHeader() != &BB) 819 return; 820 821 Value *A; 822 Value *B; 823 CmpInst::Predicate Pred; 824 825 if (!match(BB.getTerminator(), 826 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 827 return; 828 PHINode *PN = dyn_cast<PHINode>(A); 829 if (!PN) { 830 Pred = CmpInst::getSwappedPredicate(Pred); 831 std::swap(A, B); 832 PN = dyn_cast<PHINode>(A); 833 } 834 835 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 836 !SE.isSCEVable(PN->getType())) 837 return; 838 839 BasicBlock *InLoopSucc = nullptr; 840 if (Pred == CmpInst::ICMP_NE) 841 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 842 else if (Pred == CmpInst::ICMP_EQ) 843 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 844 else 845 return; 846 847 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 848 return; 849 850 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 851 if (!AR) 852 return; 853 854 const SCEV *StartSCEV = AR->getStart(); 855 Value *StartValue = nullptr; 856 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) 857 StartValue = C->getValue(); 858 else if (auto *U = dyn_cast<SCEVUnknown>(StartSCEV)) 859 StartValue = U->getValue(); 860 861 if (!StartValue) 862 return; 863 864 DomTreeNode *DTN = DT.getNode(InLoopSucc); 865 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 866 bool MonotonicallyIncreasing = 867 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 868 if (MonotonicallyIncreasing) { 869 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 870 // unconditionally. 871 WorkList.push_back( 872 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 873 } 874 875 APInt StepOffset; 876 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 877 StepOffset = C->getAPInt(); 878 else 879 return; 880 881 // Make sure AR either steps by 1 or that the value we compare against is a 882 // GEP based on the same start value and all offsets are a multiple of the 883 // step size, to guarantee that the induction will reach the value. 884 if (StepOffset.isZero() || StepOffset.isNegative()) 885 return; 886 887 if (!StepOffset.isOne()) { 888 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 889 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 890 !UpperGEP->isInBounds()) 891 return; 892 893 MapVector<Value *, APInt> UpperVariableOffsets; 894 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 895 const DataLayout &DL = BB.getModule()->getDataLayout(); 896 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 897 UpperVariableOffsets, UpperConstantOffset)) 898 return; 899 // All variable offsets and the constant offset have to be a multiple of the 900 // step. 901 if (!UpperConstantOffset.urem(StepOffset).isZero() || 902 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 903 return !P.second.urem(StepOffset).isZero(); 904 })) 905 return; 906 } 907 908 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 909 // guarantees that the loop exits before wrapping in combination with the 910 // restrictions on B and the step above. 911 if (!MonotonicallyIncreasing) { 912 WorkList.push_back(FactOrCheck::getConditionFact( 913 DTN, CmpInst::ICMP_UGE, PN, StartValue, 914 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 915 } 916 WorkList.push_back(FactOrCheck::getConditionFact( 917 DTN, CmpInst::ICMP_ULT, PN, B, 918 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 919 } 920 921 void State::addInfoFor(BasicBlock &BB) { 922 addInfoForInductions(BB); 923 924 // True as long as long as the current instruction is guaranteed to execute. 925 bool GuaranteedToExecute = true; 926 // Queue conditions and assumes. 927 for (Instruction &I : BB) { 928 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 929 for (Use &U : Cmp->uses()) { 930 auto *UserI = getContextInstForUse(U); 931 auto *DTN = DT.getNode(UserI->getParent()); 932 if (!DTN) 933 continue; 934 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 935 } 936 continue; 937 } 938 939 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 940 WorkList.push_back( 941 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 942 continue; 943 } 944 945 if (isa<MinMaxIntrinsic>(&I)) { 946 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 947 continue; 948 } 949 950 Value *A, *B; 951 CmpInst::Predicate Pred; 952 // For now, just handle assumes with a single compare as condition. 953 if (match(&I, m_Intrinsic<Intrinsic::assume>( 954 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 955 if (GuaranteedToExecute) { 956 // The assume is guaranteed to execute when BB is entered, hence Cond 957 // holds on entry to BB. 958 WorkList.emplace_back(FactOrCheck::getConditionFact( 959 DT.getNode(I.getParent()), Pred, A, B)); 960 } else { 961 WorkList.emplace_back( 962 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 963 } 964 } 965 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 966 } 967 968 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 969 for (auto &Case : Switch->cases()) { 970 BasicBlock *Succ = Case.getCaseSuccessor(); 971 Value *V = Case.getCaseValue(); 972 if (!canAddSuccessor(BB, Succ)) 973 continue; 974 WorkList.emplace_back(FactOrCheck::getConditionFact( 975 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 976 } 977 return; 978 } 979 980 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 981 if (!Br || !Br->isConditional()) 982 return; 983 984 Value *Cond = Br->getCondition(); 985 986 // If the condition is a chain of ORs/AND and the successor only has the 987 // current block as predecessor, queue conditions for the successor. 988 Value *Op0, *Op1; 989 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 990 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 991 bool IsOr = match(Cond, m_LogicalOr()); 992 bool IsAnd = match(Cond, m_LogicalAnd()); 993 // If there's a select that matches both AND and OR, we need to commit to 994 // one of the options. Arbitrarily pick OR. 995 if (IsOr && IsAnd) 996 IsAnd = false; 997 998 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 999 if (canAddSuccessor(BB, Successor)) { 1000 SmallVector<Value *> CondWorkList; 1001 SmallPtrSet<Value *, 8> SeenCond; 1002 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1003 if (SeenCond.insert(V).second) 1004 CondWorkList.push_back(V); 1005 }; 1006 QueueValue(Op1); 1007 QueueValue(Op0); 1008 while (!CondWorkList.empty()) { 1009 Value *Cur = CondWorkList.pop_back_val(); 1010 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1011 WorkList.emplace_back(FactOrCheck::getConditionFact( 1012 DT.getNode(Successor), 1013 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1014 : Cmp->getPredicate(), 1015 Cmp->getOperand(0), Cmp->getOperand(1))); 1016 continue; 1017 } 1018 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1019 QueueValue(Op1); 1020 QueueValue(Op0); 1021 continue; 1022 } 1023 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1024 QueueValue(Op1); 1025 QueueValue(Op0); 1026 continue; 1027 } 1028 } 1029 } 1030 return; 1031 } 1032 1033 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1034 if (!CmpI) 1035 return; 1036 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1037 WorkList.emplace_back(FactOrCheck::getConditionFact( 1038 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1039 CmpI->getOperand(0), CmpI->getOperand(1))); 1040 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1041 WorkList.emplace_back(FactOrCheck::getConditionFact( 1042 DT.getNode(Br->getSuccessor(1)), 1043 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1044 CmpI->getOperand(1))); 1045 } 1046 1047 namespace { 1048 /// Helper to keep track of a condition and if it should be treated as negated 1049 /// for reproducer construction. 1050 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1051 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1052 struct ReproducerEntry { 1053 ICmpInst::Predicate Pred; 1054 Value *LHS; 1055 Value *RHS; 1056 1057 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1058 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1059 }; 1060 } // namespace 1061 1062 /// Helper function to generate a reproducer function for simplifying \p Cond. 1063 /// The reproducer function contains a series of @llvm.assume calls, one for 1064 /// each condition in \p Stack. For each condition, the operand instruction are 1065 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1066 /// will then be added as function arguments. \p DT is used to order cloned 1067 /// instructions. The reproducer function will get added to \p M, if it is 1068 /// non-null. Otherwise no reproducer function is generated. 1069 static void generateReproducer(CmpInst *Cond, Module *M, 1070 ArrayRef<ReproducerEntry> Stack, 1071 ConstraintInfo &Info, DominatorTree &DT) { 1072 if (!M) 1073 return; 1074 1075 LLVMContext &Ctx = Cond->getContext(); 1076 1077 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1078 1079 ValueToValueMapTy Old2New; 1080 SmallVector<Value *> Args; 1081 SmallPtrSet<Value *, 8> Seen; 1082 // Traverse Cond and its operands recursively until we reach a value that's in 1083 // Value2Index or not an instruction, or not a operation that 1084 // ConstraintElimination can decompose. Such values will be considered as 1085 // external inputs to the reproducer, they are collected and added as function 1086 // arguments later. 1087 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1088 auto &Value2Index = Info.getValue2Index(IsSigned); 1089 SmallVector<Value *, 4> WorkList(Ops); 1090 while (!WorkList.empty()) { 1091 Value *V = WorkList.pop_back_val(); 1092 if (!Seen.insert(V).second) 1093 continue; 1094 if (Old2New.find(V) != Old2New.end()) 1095 continue; 1096 if (isa<Constant>(V)) 1097 continue; 1098 1099 auto *I = dyn_cast<Instruction>(V); 1100 if (Value2Index.contains(V) || !I || 1101 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1102 Old2New[V] = V; 1103 Args.push_back(V); 1104 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1105 } else { 1106 append_range(WorkList, I->operands()); 1107 } 1108 } 1109 }; 1110 1111 for (auto &Entry : Stack) 1112 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1113 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1114 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1115 1116 SmallVector<Type *> ParamTys; 1117 for (auto *P : Args) 1118 ParamTys.push_back(P->getType()); 1119 1120 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1121 /*isVarArg=*/false); 1122 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1123 Cond->getModule()->getName() + 1124 Cond->getFunction()->getName() + "repro", 1125 M); 1126 // Add arguments to the reproducer function for each external value collected. 1127 for (unsigned I = 0; I < Args.size(); ++I) { 1128 F->getArg(I)->setName(Args[I]->getName()); 1129 Old2New[Args[I]] = F->getArg(I); 1130 } 1131 1132 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1133 IRBuilder<> Builder(Entry); 1134 Builder.CreateRet(Builder.getTrue()); 1135 Builder.SetInsertPoint(Entry->getTerminator()); 1136 1137 // Clone instructions in \p Ops and their operands recursively until reaching 1138 // an value in Value2Index (external input to the reproducer). Update Old2New 1139 // mapping for the original and cloned instructions. Sort instructions to 1140 // clone by dominance, then insert the cloned instructions in the function. 1141 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1142 SmallVector<Value *, 4> WorkList(Ops); 1143 SmallVector<Instruction *> ToClone; 1144 auto &Value2Index = Info.getValue2Index(IsSigned); 1145 while (!WorkList.empty()) { 1146 Value *V = WorkList.pop_back_val(); 1147 if (Old2New.find(V) != Old2New.end()) 1148 continue; 1149 1150 auto *I = dyn_cast<Instruction>(V); 1151 if (!Value2Index.contains(V) && I) { 1152 Old2New[V] = nullptr; 1153 ToClone.push_back(I); 1154 append_range(WorkList, I->operands()); 1155 } 1156 } 1157 1158 sort(ToClone, 1159 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1160 for (Instruction *I : ToClone) { 1161 Instruction *Cloned = I->clone(); 1162 Old2New[I] = Cloned; 1163 Old2New[I]->setName(I->getName()); 1164 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1165 Cloned->dropUnknownNonDebugMetadata(); 1166 Cloned->setDebugLoc({}); 1167 } 1168 }; 1169 1170 // Materialize the assumptions for the reproducer using the entries in Stack. 1171 // That is, first clone the operands of the condition recursively until we 1172 // reach an external input to the reproducer and add them to the reproducer 1173 // function. Then add an ICmp for the condition (with the inverse predicate if 1174 // the entry is negated) and an assert using the ICmp. 1175 for (auto &Entry : Stack) { 1176 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1177 continue; 1178 1179 LLVM_DEBUG( 1180 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1181 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1182 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1183 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1184 1185 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1186 Builder.CreateAssumption(Cmp); 1187 } 1188 1189 // Finally, clone the condition to reproduce and remap instruction operands in 1190 // the reproducer using Old2New. 1191 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1192 Entry->getTerminator()->setOperand(0, Cond); 1193 remapInstructionsInBlocks({Entry}, Old2New); 1194 1195 assert(!verifyFunction(*F, &dbgs())); 1196 } 1197 1198 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1199 unsigned NumIn, unsigned NumOut, 1200 Instruction *ContextInst) { 1201 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1202 1203 CmpInst::Predicate Pred = Cmp->getPredicate(); 1204 Value *A = Cmp->getOperand(0); 1205 Value *B = Cmp->getOperand(1); 1206 1207 auto R = Info.getConstraintForSolving(Pred, A, B); 1208 if (R.empty() || !R.isValid(Info)){ 1209 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1210 return std::nullopt; 1211 } 1212 1213 auto &CSToUse = Info.getCS(R.IsSigned); 1214 1215 // If there was extra information collected during decomposition, apply 1216 // it now and remove it immediately once we are done with reasoning 1217 // about the constraint. 1218 for (auto &Row : R.ExtraInfo) 1219 CSToUse.addVariableRow(Row); 1220 auto InfoRestorer = make_scope_exit([&]() { 1221 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1222 CSToUse.popLastConstraint(); 1223 }); 1224 1225 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1226 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1227 return std::nullopt; 1228 1229 LLVM_DEBUG({ 1230 if (*ImpliedCondition) { 1231 dbgs() << "Condition " << *Cmp; 1232 } else { 1233 auto InversePred = Cmp->getInversePredicate(); 1234 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1235 << *A << ", " << *B; 1236 } 1237 dbgs() << " implied by dominating constraints\n"; 1238 CSToUse.dump(); 1239 }); 1240 return ImpliedCondition; 1241 } 1242 1243 return std::nullopt; 1244 } 1245 1246 static bool checkAndReplaceCondition( 1247 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1248 Instruction *ContextInst, Module *ReproducerModule, 1249 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1250 SmallVectorImpl<Instruction *> &ToRemove) { 1251 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1252 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1253 Constant *ConstantC = ConstantInt::getBool( 1254 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1255 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1256 ContextInst](Use &U) { 1257 auto *UserI = getContextInstForUse(U); 1258 auto *DTN = DT.getNode(UserI->getParent()); 1259 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1260 return false; 1261 if (UserI->getParent() == ContextInst->getParent() && 1262 UserI->comesBefore(ContextInst)) 1263 return false; 1264 1265 // Conditions in an assume trivially simplify to true. Skip uses 1266 // in assume calls to not destroy the available information. 1267 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1268 return !II || II->getIntrinsicID() != Intrinsic::assume; 1269 }); 1270 NumCondsRemoved++; 1271 if (Cmp->use_empty()) 1272 ToRemove.push_back(Cmp); 1273 return true; 1274 }; 1275 1276 if (auto ImpliedCondition = 1277 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1278 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1279 return false; 1280 } 1281 1282 static void 1283 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1284 Module *ReproducerModule, 1285 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1286 SmallVectorImpl<StackEntry> &DFSInStack) { 1287 Info.popLastConstraint(E.IsSigned); 1288 // Remove variables in the system that went out of scope. 1289 auto &Mapping = Info.getValue2Index(E.IsSigned); 1290 for (Value *V : E.ValuesToRelease) 1291 Mapping.erase(V); 1292 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1293 DFSInStack.pop_back(); 1294 if (ReproducerModule) 1295 ReproducerCondStack.pop_back(); 1296 } 1297 1298 /// Check if the first condition for an AND implies the second. 1299 static bool checkAndSecondOpImpliedByFirst( 1300 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1301 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1302 SmallVectorImpl<StackEntry> &DFSInStack) { 1303 1304 CmpInst::Predicate Pred; 1305 Value *A, *B; 1306 Instruction *And = CB.getContextInst(); 1307 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1308 return false; 1309 1310 // Optimistically add fact from first condition. 1311 unsigned OldSize = DFSInStack.size(); 1312 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1313 if (OldSize == DFSInStack.size()) 1314 return false; 1315 1316 bool Changed = false; 1317 // Check if the second condition can be simplified now. 1318 if (auto ImpliedCondition = 1319 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1320 CB.NumOut, CB.getContextInst())) { 1321 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1322 Changed = true; 1323 } 1324 1325 // Remove entries again. 1326 while (OldSize < DFSInStack.size()) { 1327 StackEntry E = DFSInStack.back(); 1328 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1329 DFSInStack); 1330 } 1331 return Changed; 1332 } 1333 1334 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1335 unsigned NumIn, unsigned NumOut, 1336 SmallVectorImpl<StackEntry> &DFSInStack) { 1337 // If the constraint has a pre-condition, skip the constraint if it does not 1338 // hold. 1339 SmallVector<Value *> NewVariables; 1340 auto R = getConstraint(Pred, A, B, NewVariables); 1341 1342 // TODO: Support non-equality for facts as well. 1343 if (!R.isValid(*this) || R.isNe()) 1344 return; 1345 1346 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1347 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1348 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1349 bool Added = false; 1350 auto &CSToUse = getCS(R.IsSigned); 1351 if (R.Coefficients.empty()) 1352 return; 1353 1354 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1355 1356 // If R has been added to the system, add the new variables and queue it for 1357 // removal once it goes out-of-scope. 1358 if (Added) { 1359 SmallVector<Value *, 2> ValuesToRelease; 1360 auto &Value2Index = getValue2Index(R.IsSigned); 1361 for (Value *V : NewVariables) { 1362 Value2Index.insert({V, Value2Index.size() + 1}); 1363 ValuesToRelease.push_back(V); 1364 } 1365 1366 LLVM_DEBUG({ 1367 dbgs() << " constraint: "; 1368 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1369 dbgs() << "\n"; 1370 }); 1371 1372 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1373 std::move(ValuesToRelease)); 1374 1375 if (R.isEq()) { 1376 // Also add the inverted constraint for equality constraints. 1377 for (auto &Coeff : R.Coefficients) 1378 Coeff *= -1; 1379 CSToUse.addVariableRowFill(R.Coefficients); 1380 1381 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1382 SmallVector<Value *, 2>()); 1383 } 1384 } 1385 } 1386 1387 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1388 SmallVectorImpl<Instruction *> &ToRemove) { 1389 bool Changed = false; 1390 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1391 Value *Sub = nullptr; 1392 for (User *U : make_early_inc_range(II->users())) { 1393 if (match(U, m_ExtractValue<0>(m_Value()))) { 1394 if (!Sub) 1395 Sub = Builder.CreateSub(A, B); 1396 U->replaceAllUsesWith(Sub); 1397 Changed = true; 1398 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1399 U->replaceAllUsesWith(Builder.getFalse()); 1400 Changed = true; 1401 } else 1402 continue; 1403 1404 if (U->use_empty()) { 1405 auto *I = cast<Instruction>(U); 1406 ToRemove.push_back(I); 1407 I->setOperand(0, PoisonValue::get(II->getType())); 1408 Changed = true; 1409 } 1410 } 1411 1412 if (II->use_empty()) { 1413 II->eraseFromParent(); 1414 Changed = true; 1415 } 1416 return Changed; 1417 } 1418 1419 static bool 1420 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1421 SmallVectorImpl<Instruction *> &ToRemove) { 1422 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1423 ConstraintInfo &Info) { 1424 auto R = Info.getConstraintForSolving(Pred, A, B); 1425 if (R.size() < 2 || !R.isValid(Info)) 1426 return false; 1427 1428 auto &CSToUse = Info.getCS(R.IsSigned); 1429 return CSToUse.isConditionImplied(R.Coefficients); 1430 }; 1431 1432 bool Changed = false; 1433 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1434 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1435 // can be simplified to a regular sub. 1436 Value *A = II->getArgOperand(0); 1437 Value *B = II->getArgOperand(1); 1438 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1439 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1440 ConstantInt::get(A->getType(), 0), Info)) 1441 return false; 1442 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1443 } 1444 return Changed; 1445 } 1446 1447 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1448 ScalarEvolution &SE, 1449 OptimizationRemarkEmitter &ORE) { 1450 bool Changed = false; 1451 DT.updateDFSNumbers(); 1452 SmallVector<Value *> FunctionArgs; 1453 for (Value &Arg : F.args()) 1454 FunctionArgs.push_back(&Arg); 1455 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1456 State S(DT, LI, SE); 1457 std::unique_ptr<Module> ReproducerModule( 1458 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1459 1460 // First, collect conditions implied by branches and blocks with their 1461 // Dominator DFS in and out numbers. 1462 for (BasicBlock &BB : F) { 1463 if (!DT.getNode(&BB)) 1464 continue; 1465 S.addInfoFor(BB); 1466 } 1467 1468 // Next, sort worklist by dominance, so that dominating conditions to check 1469 // and facts come before conditions and facts dominated by them. If a 1470 // condition to check and a fact have the same numbers, conditional facts come 1471 // first. Assume facts and checks are ordered according to their relative 1472 // order in the containing basic block. Also make sure conditions with 1473 // constant operands come before conditions without constant operands. This 1474 // increases the effectiveness of the current signed <-> unsigned fact 1475 // transfer logic. 1476 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1477 auto HasNoConstOp = [](const FactOrCheck &B) { 1478 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1479 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1480 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1481 }; 1482 // If both entries have the same In numbers, conditional facts come first. 1483 // Otherwise use the relative order in the basic block. 1484 if (A.NumIn == B.NumIn) { 1485 if (A.isConditionFact() && B.isConditionFact()) { 1486 bool NoConstOpA = HasNoConstOp(A); 1487 bool NoConstOpB = HasNoConstOp(B); 1488 return NoConstOpA < NoConstOpB; 1489 } 1490 if (A.isConditionFact()) 1491 return true; 1492 if (B.isConditionFact()) 1493 return false; 1494 auto *InstA = A.getContextInst(); 1495 auto *InstB = B.getContextInst(); 1496 return InstA->comesBefore(InstB); 1497 } 1498 return A.NumIn < B.NumIn; 1499 }); 1500 1501 SmallVector<Instruction *> ToRemove; 1502 1503 // Finally, process ordered worklist and eliminate implied conditions. 1504 SmallVector<StackEntry, 16> DFSInStack; 1505 SmallVector<ReproducerEntry> ReproducerCondStack; 1506 for (FactOrCheck &CB : S.WorkList) { 1507 // First, pop entries from the stack that are out-of-scope for CB. Remove 1508 // the corresponding entry from the constraint system. 1509 while (!DFSInStack.empty()) { 1510 auto &E = DFSInStack.back(); 1511 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1512 << "\n"); 1513 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1514 assert(E.NumIn <= CB.NumIn); 1515 if (CB.NumOut <= E.NumOut) 1516 break; 1517 LLVM_DEBUG({ 1518 dbgs() << "Removing "; 1519 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1520 Info.getValue2Index(E.IsSigned)); 1521 dbgs() << "\n"; 1522 }); 1523 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1524 DFSInStack); 1525 } 1526 1527 LLVM_DEBUG(dbgs() << "Processing "); 1528 1529 // For a block, check if any CmpInsts become known based on the current set 1530 // of constraints. 1531 if (CB.isCheck()) { 1532 Instruction *Inst = CB.getInstructionToSimplify(); 1533 if (!Inst) 1534 continue; 1535 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1536 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1537 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1538 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1539 bool Simplified = checkAndReplaceCondition( 1540 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1541 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1542 if (!Simplified && match(CB.getContextInst(), 1543 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1544 Simplified = 1545 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1546 ReproducerCondStack, DFSInStack); 1547 } 1548 Changed |= Simplified; 1549 } 1550 continue; 1551 } 1552 1553 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1554 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1555 << CmpInst::getPredicateName(Pred) << " "; 1556 A->printAsOperand(dbgs()); dbgs() << ", "; 1557 B->printAsOperand(dbgs()); dbgs() << "\n"); 1558 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1559 LLVM_DEBUG( 1560 dbgs() 1561 << "Skip adding constraint because system has too many rows.\n"); 1562 return; 1563 } 1564 1565 LLVM_DEBUG({ 1566 dbgs() << "Processing fact to add to the system: " << Pred << " "; 1567 A->printAsOperand(dbgs()); 1568 dbgs() << ", "; 1569 B->printAsOperand(dbgs(), false); 1570 dbgs() << "\n"; 1571 }); 1572 1573 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1574 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1575 ReproducerCondStack.emplace_back(Pred, A, B); 1576 1577 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1578 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1579 // Add dummy entries to ReproducerCondStack to keep it in sync with 1580 // DFSInStack. 1581 for (unsigned I = 0, 1582 E = (DFSInStack.size() - ReproducerCondStack.size()); 1583 I < E; ++I) { 1584 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1585 nullptr, nullptr); 1586 } 1587 } 1588 }; 1589 1590 ICmpInst::Predicate Pred; 1591 if (!CB.isConditionFact()) { 1592 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1593 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1594 AddFact(Pred, MinMax, MinMax->getLHS()); 1595 AddFact(Pred, MinMax, MinMax->getRHS()); 1596 continue; 1597 } 1598 } 1599 1600 Value *A = nullptr, *B = nullptr; 1601 if (CB.isConditionFact()) { 1602 Pred = CB.Cond.Pred; 1603 A = CB.Cond.Op0; 1604 B = CB.Cond.Op1; 1605 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1606 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1607 continue; 1608 } else { 1609 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1610 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1611 (void)Matched; 1612 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1613 } 1614 AddFact(Pred, A, B); 1615 } 1616 1617 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1618 std::string S; 1619 raw_string_ostream StringS(S); 1620 ReproducerModule->print(StringS, nullptr); 1621 StringS.flush(); 1622 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1623 Rem << ore::NV("module") << S; 1624 ORE.emit(Rem); 1625 } 1626 1627 #ifndef NDEBUG 1628 unsigned SignedEntries = 1629 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1630 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1631 "updates to CS and DFSInStack are out of sync"); 1632 assert(Info.getCS(true).size() == SignedEntries && 1633 "updates to CS and DFSInStack are out of sync"); 1634 #endif 1635 1636 for (Instruction *I : ToRemove) 1637 I->eraseFromParent(); 1638 return Changed; 1639 } 1640 1641 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1642 FunctionAnalysisManager &AM) { 1643 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1644 auto &LI = AM.getResult<LoopAnalysis>(F); 1645 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1646 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1647 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1648 return PreservedAnalyses::all(); 1649 1650 PreservedAnalyses PA; 1651 PA.preserve<DominatorTreeAnalysis>(); 1652 PA.preserve<LoopAnalysis>(); 1653 PA.preserve<ScalarEvolutionAnalysis>(); 1654 PA.preserveSet<CFGAnalyses>(); 1655 return PA; 1656 } 1657