1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/Pass.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/DebugCounter.h" 35 #include "llvm/Support/KnownBits.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Transforms/Utils/Cloning.h" 38 #include "llvm/Transforms/Utils/ValueMapper.h" 39 40 #include <cmath> 41 #include <optional> 42 #include <string> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "constraint-elimination" 48 49 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 50 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 51 "Controls which conditions are eliminated"); 52 53 static cl::opt<unsigned> 54 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 55 cl::desc("Maximum number of rows to keep in constraint system")); 56 57 static cl::opt<bool> DumpReproducers( 58 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 59 cl::desc("Dump IR to reproduce successful transformations.")); 60 61 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 62 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 63 64 // A helper to multiply 2 signed integers where overflowing is allowed. 65 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 66 int64_t Result; 67 MulOverflow(A, B, Result); 68 return Result; 69 } 70 71 // A helper to add 2 signed integers where overflowing is allowed. 72 static int64_t addWithOverflow(int64_t A, int64_t B) { 73 int64_t Result; 74 AddOverflow(A, B, Result); 75 return Result; 76 } 77 78 static Instruction *getContextInstForUse(Use &U) { 79 Instruction *UserI = cast<Instruction>(U.getUser()); 80 if (auto *Phi = dyn_cast<PHINode>(UserI)) 81 UserI = Phi->getIncomingBlock(U)->getTerminator(); 82 return UserI; 83 } 84 85 namespace { 86 /// Represents either 87 /// * a condition that holds on entry to a block (=condition fact) 88 /// * an assume (=assume fact) 89 /// * a use of a compare instruction to simplify. 90 /// It also tracks the Dominator DFS in and out numbers for each entry. 91 struct FactOrCheck { 92 enum class EntryTy { 93 ConditionFact, /// A condition that holds on entry to a block. 94 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 95 /// min/mix intrinsic. 96 InstCheck, /// An instruction to simplify (e.g. an overflow math 97 /// intrinsics). 98 UseCheck /// An use of a compare instruction to simplify. 99 }; 100 101 union { 102 Instruction *Inst; 103 Use *U; 104 }; 105 106 unsigned NumIn; 107 unsigned NumOut; 108 EntryTy Ty; 109 bool Not; 110 111 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst, bool Not) 112 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 113 Ty(Ty), Not(Not) {} 114 115 FactOrCheck(DomTreeNode *DTN, Use *U) 116 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 117 Ty(EntryTy::UseCheck), Not(false) {} 118 119 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst *Inst, 120 bool Not = false) { 121 return FactOrCheck(EntryTy::ConditionFact, DTN, Inst, Not); 122 } 123 124 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst, 125 bool Not = false) { 126 return FactOrCheck(EntryTy::InstFact, DTN, Inst, Not); 127 } 128 129 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 130 return FactOrCheck(DTN, U); 131 } 132 133 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 134 return FactOrCheck(EntryTy::InstCheck, DTN, CI, false); 135 } 136 137 bool isCheck() const { 138 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 139 } 140 141 Instruction *getContextInst() const { 142 if (Ty == EntryTy::UseCheck) 143 return getContextInstForUse(*U); 144 return Inst; 145 } 146 147 Instruction *getInstructionToSimplify() const { 148 assert(isCheck()); 149 if (Ty == EntryTy::InstCheck) 150 return Inst; 151 // The use may have been simplified to a constant already. 152 return dyn_cast<Instruction>(*U); 153 } 154 155 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 156 }; 157 158 /// Keep state required to build worklist. 159 struct State { 160 DominatorTree &DT; 161 SmallVector<FactOrCheck, 64> WorkList; 162 163 State(DominatorTree &DT) : DT(DT) {} 164 165 /// Process block \p BB and add known facts to work-list. 166 void addInfoFor(BasicBlock &BB); 167 168 /// Returns true if we can add a known condition from BB to its successor 169 /// block Succ. 170 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 171 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 172 } 173 }; 174 175 class ConstraintInfo; 176 177 struct StackEntry { 178 unsigned NumIn; 179 unsigned NumOut; 180 bool IsSigned = false; 181 /// Variables that can be removed from the system once the stack entry gets 182 /// removed. 183 SmallVector<Value *, 2> ValuesToRelease; 184 185 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 186 SmallVector<Value *, 2> ValuesToRelease) 187 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 188 ValuesToRelease(ValuesToRelease) {} 189 }; 190 191 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 192 struct PreconditionTy { 193 CmpInst::Predicate Pred; 194 Value *Op0; 195 Value *Op1; 196 197 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 198 : Pred(Pred), Op0(Op0), Op1(Op1) {} 199 }; 200 201 struct ConstraintTy { 202 SmallVector<int64_t, 8> Coefficients; 203 SmallVector<PreconditionTy, 2> Preconditions; 204 205 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 206 207 bool IsSigned = false; 208 209 ConstraintTy() = default; 210 211 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 212 bool IsNe) 213 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 214 } 215 216 unsigned size() const { return Coefficients.size(); } 217 218 unsigned empty() const { return Coefficients.empty(); } 219 220 /// Returns true if all preconditions for this list of constraints are 221 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 222 bool isValid(const ConstraintInfo &Info) const; 223 224 bool isEq() const { return IsEq; } 225 226 bool isNe() const { return IsNe; } 227 228 /// Check if the current constraint is implied by the given ConstraintSystem. 229 /// 230 /// \return true or false if the constraint is proven to be respectively true, 231 /// or false. When the constraint cannot be proven to be either true or false, 232 /// std::nullopt is returned. 233 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 234 235 private: 236 bool IsEq = false; 237 bool IsNe = false; 238 }; 239 240 /// Wrapper encapsulating separate constraint systems and corresponding value 241 /// mappings for both unsigned and signed information. Facts are added to and 242 /// conditions are checked against the corresponding system depending on the 243 /// signed-ness of their predicates. While the information is kept separate 244 /// based on signed-ness, certain conditions can be transferred between the two 245 /// systems. 246 class ConstraintInfo { 247 248 ConstraintSystem UnsignedCS; 249 ConstraintSystem SignedCS; 250 251 const DataLayout &DL; 252 253 public: 254 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 255 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 256 257 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 258 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 259 } 260 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 261 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 262 } 263 264 ConstraintSystem &getCS(bool Signed) { 265 return Signed ? SignedCS : UnsignedCS; 266 } 267 const ConstraintSystem &getCS(bool Signed) const { 268 return Signed ? SignedCS : UnsignedCS; 269 } 270 271 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 272 void popLastNVariables(bool Signed, unsigned N) { 273 getCS(Signed).popLastNVariables(N); 274 } 275 276 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 277 278 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 279 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 280 281 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 282 /// constraints, using indices from the corresponding constraint system. 283 /// New variables that need to be added to the system are collected in 284 /// \p NewVariables. 285 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 286 SmallVectorImpl<Value *> &NewVariables) const; 287 288 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 289 /// constraints using getConstraint. Returns an empty constraint if the result 290 /// cannot be used to query the existing constraint system, e.g. because it 291 /// would require adding new variables. Also tries to convert signed 292 /// predicates to unsigned ones if possible to allow using the unsigned system 293 /// which increases the effectiveness of the signed <-> unsigned transfer 294 /// logic. 295 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 296 Value *Op1) const; 297 298 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 299 /// system if \p Pred is signed/unsigned. 300 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 301 unsigned NumIn, unsigned NumOut, 302 SmallVectorImpl<StackEntry> &DFSInStack); 303 }; 304 305 /// Represents a (Coefficient * Variable) entry after IR decomposition. 306 struct DecompEntry { 307 int64_t Coefficient; 308 Value *Variable; 309 /// True if the variable is known positive in the current constraint. 310 bool IsKnownNonNegative; 311 312 DecompEntry(int64_t Coefficient, Value *Variable, 313 bool IsKnownNonNegative = false) 314 : Coefficient(Coefficient), Variable(Variable), 315 IsKnownNonNegative(IsKnownNonNegative) {} 316 }; 317 318 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 319 struct Decomposition { 320 int64_t Offset = 0; 321 SmallVector<DecompEntry, 3> Vars; 322 323 Decomposition(int64_t Offset) : Offset(Offset) {} 324 Decomposition(Value *V, bool IsKnownNonNegative = false) { 325 Vars.emplace_back(1, V, IsKnownNonNegative); 326 } 327 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 328 : Offset(Offset), Vars(Vars) {} 329 330 void add(int64_t OtherOffset) { 331 Offset = addWithOverflow(Offset, OtherOffset); 332 } 333 334 void add(const Decomposition &Other) { 335 add(Other.Offset); 336 append_range(Vars, Other.Vars); 337 } 338 339 void mul(int64_t Factor) { 340 Offset = multiplyWithOverflow(Offset, Factor); 341 for (auto &Var : Vars) 342 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 343 } 344 }; 345 346 } // namespace 347 348 static Decomposition decompose(Value *V, 349 SmallVectorImpl<PreconditionTy> &Preconditions, 350 bool IsSigned, const DataLayout &DL); 351 352 static bool canUseSExt(ConstantInt *CI) { 353 const APInt &Val = CI->getValue(); 354 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 355 } 356 357 static Decomposition 358 decomposeGEP(GEPOperator &GEP, SmallVectorImpl<PreconditionTy> &Preconditions, 359 bool IsSigned, const DataLayout &DL) { 360 // Do not reason about pointers where the index size is larger than 64 bits, 361 // as the coefficients used to encode constraints are 64 bit integers. 362 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 363 return &GEP; 364 365 if (!GEP.isInBounds()) 366 return &GEP; 367 368 assert(!IsSigned && "The logic below only supports decomposition for " 369 "unsinged predicates at the moment."); 370 Type *PtrTy = GEP.getType()->getScalarType(); 371 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy); 372 MapVector<Value *, APInt> VariableOffsets; 373 APInt ConstantOffset(BitWidth, 0); 374 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 375 return &GEP; 376 377 // Handle the (gep (gep ....), C) case by incrementing the constant 378 // coefficient of the inner GEP, if C is a constant. 379 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand()); 380 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) { 381 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL); 382 Result.add(ConstantOffset.getSExtValue()); 383 384 if (ConstantOffset.isNegative()) { 385 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType()); 386 int64_t ConstantOffsetI = ConstantOffset.getSExtValue(); 387 if (ConstantOffsetI % Scale != 0) 388 return &GEP; 389 // Add pre-condition ensuring the GEP is increasing monotonically and 390 // can be de-composed. 391 // Both sides are normalized by being divided by Scale. 392 Preconditions.emplace_back( 393 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 394 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 395 -1 * (ConstantOffsetI / Scale))); 396 } 397 return Result; 398 } 399 400 Decomposition Result(ConstantOffset.getSExtValue(), 401 DecompEntry(1, GEP.getPointerOperand())); 402 for (auto [Index, Scale] : VariableOffsets) { 403 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 404 IdxResult.mul(Scale.getSExtValue()); 405 Result.add(IdxResult); 406 407 // If Op0 is signed non-negative, the GEP is increasing monotonically and 408 // can be de-composed. 409 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 410 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 411 ConstantInt::get(Index->getType(), 0)); 412 } 413 return Result; 414 } 415 416 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 417 // Variable } where Coefficient * Variable. The sum of the constant offset and 418 // pairs equals \p V. 419 static Decomposition decompose(Value *V, 420 SmallVectorImpl<PreconditionTy> &Preconditions, 421 bool IsSigned, const DataLayout &DL) { 422 423 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 424 bool IsSignedB) { 425 auto ResA = decompose(A, Preconditions, IsSigned, DL); 426 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 427 ResA.add(ResB); 428 return ResA; 429 }; 430 431 // Decompose \p V used with a signed predicate. 432 if (IsSigned) { 433 if (auto *CI = dyn_cast<ConstantInt>(V)) { 434 if (canUseSExt(CI)) 435 return CI->getSExtValue(); 436 } 437 Value *Op0; 438 Value *Op1; 439 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 440 return MergeResults(Op0, Op1, IsSigned); 441 442 ConstantInt *CI; 443 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 444 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 445 Result.mul(CI->getSExtValue()); 446 return Result; 447 } 448 449 return V; 450 } 451 452 if (auto *CI = dyn_cast<ConstantInt>(V)) { 453 if (CI->uge(MaxConstraintValue)) 454 return V; 455 return int64_t(CI->getZExtValue()); 456 } 457 458 if (auto *GEP = dyn_cast<GEPOperator>(V)) 459 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 460 461 Value *Op0; 462 bool IsKnownNonNegative = false; 463 if (match(V, m_ZExt(m_Value(Op0)))) { 464 IsKnownNonNegative = true; 465 V = Op0; 466 } 467 468 Value *Op1; 469 ConstantInt *CI; 470 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 471 return MergeResults(Op0, Op1, IsSigned); 472 } 473 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 474 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 475 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 476 ConstantInt::get(Op0->getType(), 0)); 477 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 478 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 479 ConstantInt::get(Op1->getType(), 0)); 480 481 return MergeResults(Op0, Op1, IsSigned); 482 } 483 484 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 485 canUseSExt(CI)) { 486 Preconditions.emplace_back( 487 CmpInst::ICMP_UGE, Op0, 488 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 489 return MergeResults(Op0, CI, true); 490 } 491 492 // Decompose or as an add if there are no common bits between the operands. 493 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 494 haveNoCommonBitsSet(Op0, CI, DL)) { 495 return MergeResults(Op0, CI, IsSigned); 496 } 497 498 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 499 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 500 return {V, IsKnownNonNegative}; 501 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 502 Result.mul(int64_t{1} << CI->getSExtValue()); 503 return Result; 504 } 505 506 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 507 (!CI->isNegative())) { 508 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 509 Result.mul(CI->getSExtValue()); 510 return Result; 511 } 512 513 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 514 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 515 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 516 return {0, {{1, Op0}, {-1, Op1}}}; 517 518 return {V, IsKnownNonNegative}; 519 } 520 521 ConstraintTy 522 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 523 SmallVectorImpl<Value *> &NewVariables) const { 524 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 525 bool IsEq = false; 526 bool IsNe = false; 527 528 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 529 switch (Pred) { 530 case CmpInst::ICMP_UGT: 531 case CmpInst::ICMP_UGE: 532 case CmpInst::ICMP_SGT: 533 case CmpInst::ICMP_SGE: { 534 Pred = CmpInst::getSwappedPredicate(Pred); 535 std::swap(Op0, Op1); 536 break; 537 } 538 case CmpInst::ICMP_EQ: 539 if (match(Op1, m_Zero())) { 540 Pred = CmpInst::ICMP_ULE; 541 } else { 542 IsEq = true; 543 Pred = CmpInst::ICMP_ULE; 544 } 545 break; 546 case CmpInst::ICMP_NE: 547 if (match(Op1, m_Zero())) { 548 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 549 std::swap(Op0, Op1); 550 } else { 551 IsNe = true; 552 Pred = CmpInst::ICMP_ULE; 553 } 554 break; 555 default: 556 break; 557 } 558 559 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 560 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 561 return {}; 562 563 SmallVector<PreconditionTy, 4> Preconditions; 564 bool IsSigned = CmpInst::isSigned(Pred); 565 auto &Value2Index = getValue2Index(IsSigned); 566 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 567 Preconditions, IsSigned, DL); 568 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 569 Preconditions, IsSigned, DL); 570 int64_t Offset1 = ADec.Offset; 571 int64_t Offset2 = BDec.Offset; 572 Offset1 *= -1; 573 574 auto &VariablesA = ADec.Vars; 575 auto &VariablesB = BDec.Vars; 576 577 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 578 // new entry to NewVariables. 579 DenseMap<Value *, unsigned> NewIndexMap; 580 auto GetOrAddIndex = [&Value2Index, &NewVariables, 581 &NewIndexMap](Value *V) -> unsigned { 582 auto V2I = Value2Index.find(V); 583 if (V2I != Value2Index.end()) 584 return V2I->second; 585 auto Insert = 586 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 587 if (Insert.second) 588 NewVariables.push_back(V); 589 return Insert.first->second; 590 }; 591 592 // Make sure all variables have entries in Value2Index or NewVariables. 593 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 594 GetOrAddIndex(KV.Variable); 595 596 // Build result constraint, by first adding all coefficients from A and then 597 // subtracting all coefficients from B. 598 ConstraintTy Res( 599 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 600 IsSigned, IsEq, IsNe); 601 // Collect variables that are known to be positive in all uses in the 602 // constraint. 603 DenseMap<Value *, bool> KnownNonNegativeVariables; 604 auto &R = Res.Coefficients; 605 for (const auto &KV : VariablesA) { 606 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 607 auto I = 608 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 609 I.first->second &= KV.IsKnownNonNegative; 610 } 611 612 for (const auto &KV : VariablesB) { 613 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 614 R[GetOrAddIndex(KV.Variable)])) 615 return {}; 616 auto I = 617 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 618 I.first->second &= KV.IsKnownNonNegative; 619 } 620 621 int64_t OffsetSum; 622 if (AddOverflow(Offset1, Offset2, OffsetSum)) 623 return {}; 624 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 625 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 626 return {}; 627 R[0] = OffsetSum; 628 Res.Preconditions = std::move(Preconditions); 629 630 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 631 // variables. 632 while (!NewVariables.empty()) { 633 int64_t Last = R.back(); 634 if (Last != 0) 635 break; 636 R.pop_back(); 637 Value *RemovedV = NewVariables.pop_back_val(); 638 NewIndexMap.erase(RemovedV); 639 } 640 641 // Add extra constraints for variables that are known positive. 642 for (auto &KV : KnownNonNegativeVariables) { 643 if (!KV.second || 644 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 645 continue; 646 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 647 C[GetOrAddIndex(KV.first)] = -1; 648 Res.ExtraInfo.push_back(C); 649 } 650 return Res; 651 } 652 653 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 654 Value *Op0, 655 Value *Op1) const { 656 // If both operands are known to be non-negative, change signed predicates to 657 // unsigned ones. This increases the reasoning effectiveness in combination 658 // with the signed <-> unsigned transfer logic. 659 if (CmpInst::isSigned(Pred) && 660 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 661 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 662 Pred = CmpInst::getUnsignedPredicate(Pred); 663 664 SmallVector<Value *> NewVariables; 665 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 666 if (!NewVariables.empty()) 667 return {}; 668 return R; 669 } 670 671 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 672 return Coefficients.size() > 0 && 673 all_of(Preconditions, [&Info](const PreconditionTy &C) { 674 return Info.doesHold(C.Pred, C.Op0, C.Op1); 675 }); 676 } 677 678 std::optional<bool> 679 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 680 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 681 682 if (IsEq || IsNe) { 683 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 684 bool IsNegatedOrEqualImplied = 685 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 686 687 // In order to check that `%a == %b` is true (equality), both conditions `%a 688 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 689 // is true), we return true if they both hold, false in the other cases. 690 if (IsConditionImplied && IsNegatedOrEqualImplied) 691 return IsEq; 692 693 auto Negated = ConstraintSystem::negate(Coefficients); 694 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 695 696 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 697 bool IsStrictLessThanImplied = 698 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 699 700 // In order to check that `%a != %b` is true (non-equality), either 701 // condition `%a > %b` or `%a < %b` must hold true. When checking for 702 // non-equality (`IsNe` is true), we return true if one of the two holds, 703 // false in the other cases. 704 if (IsNegatedImplied || IsStrictLessThanImplied) 705 return IsNe; 706 707 return std::nullopt; 708 } 709 710 if (IsConditionImplied) 711 return true; 712 713 auto Negated = ConstraintSystem::negate(Coefficients); 714 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 715 if (IsNegatedImplied) 716 return false; 717 718 // Neither the condition nor its negated holds, did not prove anything. 719 return std::nullopt; 720 } 721 722 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 723 Value *B) const { 724 auto R = getConstraintForSolving(Pred, A, B); 725 return R.isValid(*this) && 726 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 727 } 728 729 void ConstraintInfo::transferToOtherSystem( 730 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 731 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 732 // Check if we can combine facts from the signed and unsigned systems to 733 // derive additional facts. 734 if (!A->getType()->isIntegerTy()) 735 return; 736 // FIXME: This currently depends on the order we add facts. Ideally we 737 // would first add all known facts and only then try to add additional 738 // facts. 739 switch (Pred) { 740 default: 741 break; 742 case CmpInst::ICMP_ULT: 743 // If B is a signed positive constant, A >=s 0 and A <s B. 744 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 745 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 746 NumOut, DFSInStack); 747 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 748 } 749 break; 750 case CmpInst::ICMP_SLT: 751 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 752 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 753 break; 754 case CmpInst::ICMP_SGT: { 755 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 756 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 757 NumOut, DFSInStack); 758 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) 759 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 760 761 break; 762 } 763 case CmpInst::ICMP_SGE: 764 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 765 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 766 } 767 break; 768 } 769 } 770 771 #ifndef NDEBUG 772 773 static void dumpConstraint(ArrayRef<int64_t> C, 774 const DenseMap<Value *, unsigned> &Value2Index) { 775 ConstraintSystem CS(Value2Index); 776 CS.addVariableRowFill(C); 777 CS.dump(); 778 } 779 #endif 780 781 void State::addInfoFor(BasicBlock &BB) { 782 // True as long as long as the current instruction is guaranteed to execute. 783 bool GuaranteedToExecute = true; 784 // Queue conditions and assumes. 785 for (Instruction &I : BB) { 786 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 787 for (Use &U : Cmp->uses()) { 788 auto *UserI = getContextInstForUse(U); 789 auto *DTN = DT.getNode(UserI->getParent()); 790 if (!DTN) 791 continue; 792 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 793 } 794 continue; 795 } 796 797 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 798 WorkList.push_back( 799 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 800 continue; 801 } 802 803 if (isa<MinMaxIntrinsic>(&I)) { 804 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 805 continue; 806 } 807 808 Value *Cond; 809 // For now, just handle assumes with a single compare as condition. 810 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 811 isa<ICmpInst>(Cond)) { 812 if (GuaranteedToExecute) { 813 // The assume is guaranteed to execute when BB is entered, hence Cond 814 // holds on entry to BB. 815 WorkList.emplace_back(FactOrCheck::getConditionFact( 816 DT.getNode(I.getParent()), cast<CmpInst>(Cond))); 817 } else { 818 WorkList.emplace_back( 819 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 820 } 821 } 822 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 823 } 824 825 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 826 if (!Br || !Br->isConditional()) 827 return; 828 829 Value *Cond = Br->getCondition(); 830 831 // If the condition is a chain of ORs/AND and the successor only has the 832 // current block as predecessor, queue conditions for the successor. 833 Value *Op0, *Op1; 834 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 835 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 836 bool IsOr = match(Cond, m_LogicalOr()); 837 bool IsAnd = match(Cond, m_LogicalAnd()); 838 // If there's a select that matches both AND and OR, we need to commit to 839 // one of the options. Arbitrarily pick OR. 840 if (IsOr && IsAnd) 841 IsAnd = false; 842 843 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 844 if (canAddSuccessor(BB, Successor)) { 845 SmallVector<Value *> CondWorkList; 846 SmallPtrSet<Value *, 8> SeenCond; 847 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 848 if (SeenCond.insert(V).second) 849 CondWorkList.push_back(V); 850 }; 851 QueueValue(Op1); 852 QueueValue(Op0); 853 while (!CondWorkList.empty()) { 854 Value *Cur = CondWorkList.pop_back_val(); 855 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 856 WorkList.emplace_back( 857 FactOrCheck::getConditionFact(DT.getNode(Successor), Cmp, IsOr)); 858 continue; 859 } 860 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 861 QueueValue(Op1); 862 QueueValue(Op0); 863 continue; 864 } 865 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 866 QueueValue(Op1); 867 QueueValue(Op0); 868 continue; 869 } 870 } 871 } 872 return; 873 } 874 875 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 876 if (!CmpI) 877 return; 878 if (canAddSuccessor(BB, Br->getSuccessor(0))) 879 WorkList.emplace_back( 880 FactOrCheck::getConditionFact(DT.getNode(Br->getSuccessor(0)), CmpI)); 881 if (canAddSuccessor(BB, Br->getSuccessor(1))) 882 WorkList.emplace_back(FactOrCheck::getConditionFact( 883 DT.getNode(Br->getSuccessor(1)), CmpI, true)); 884 } 885 886 namespace { 887 /// Helper to keep track of a condition and if it should be treated as negated 888 /// for reproducer construction. 889 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 890 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 891 struct ReproducerEntry { 892 ICmpInst::Predicate Pred; 893 Value *LHS; 894 Value *RHS; 895 896 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 897 : Pred(Pred), LHS(LHS), RHS(RHS) {} 898 }; 899 } // namespace 900 901 /// Helper function to generate a reproducer function for simplifying \p Cond. 902 /// The reproducer function contains a series of @llvm.assume calls, one for 903 /// each condition in \p Stack. For each condition, the operand instruction are 904 /// cloned until we reach operands that have an entry in \p Value2Index. Those 905 /// will then be added as function arguments. \p DT is used to order cloned 906 /// instructions. The reproducer function will get added to \p M, if it is 907 /// non-null. Otherwise no reproducer function is generated. 908 static void generateReproducer(CmpInst *Cond, Module *M, 909 ArrayRef<ReproducerEntry> Stack, 910 ConstraintInfo &Info, DominatorTree &DT) { 911 if (!M) 912 return; 913 914 LLVMContext &Ctx = Cond->getContext(); 915 916 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 917 918 ValueToValueMapTy Old2New; 919 SmallVector<Value *> Args; 920 SmallPtrSet<Value *, 8> Seen; 921 // Traverse Cond and its operands recursively until we reach a value that's in 922 // Value2Index or not an instruction, or not a operation that 923 // ConstraintElimination can decompose. Such values will be considered as 924 // external inputs to the reproducer, they are collected and added as function 925 // arguments later. 926 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 927 auto &Value2Index = Info.getValue2Index(IsSigned); 928 SmallVector<Value *, 4> WorkList(Ops); 929 while (!WorkList.empty()) { 930 Value *V = WorkList.pop_back_val(); 931 if (!Seen.insert(V).second) 932 continue; 933 if (Old2New.find(V) != Old2New.end()) 934 continue; 935 if (isa<Constant>(V)) 936 continue; 937 938 auto *I = dyn_cast<Instruction>(V); 939 if (Value2Index.contains(V) || !I || 940 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 941 Old2New[V] = V; 942 Args.push_back(V); 943 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 944 } else { 945 append_range(WorkList, I->operands()); 946 } 947 } 948 }; 949 950 for (auto &Entry : Stack) 951 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 952 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 953 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 954 955 SmallVector<Type *> ParamTys; 956 for (auto *P : Args) 957 ParamTys.push_back(P->getType()); 958 959 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 960 /*isVarArg=*/false); 961 Function *F = Function::Create(FTy, Function::ExternalLinkage, 962 Cond->getModule()->getName() + 963 Cond->getFunction()->getName() + "repro", 964 M); 965 // Add arguments to the reproducer function for each external value collected. 966 for (unsigned I = 0; I < Args.size(); ++I) { 967 F->getArg(I)->setName(Args[I]->getName()); 968 Old2New[Args[I]] = F->getArg(I); 969 } 970 971 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 972 IRBuilder<> Builder(Entry); 973 Builder.CreateRet(Builder.getTrue()); 974 Builder.SetInsertPoint(Entry->getTerminator()); 975 976 // Clone instructions in \p Ops and their operands recursively until reaching 977 // an value in Value2Index (external input to the reproducer). Update Old2New 978 // mapping for the original and cloned instructions. Sort instructions to 979 // clone by dominance, then insert the cloned instructions in the function. 980 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 981 SmallVector<Value *, 4> WorkList(Ops); 982 SmallVector<Instruction *> ToClone; 983 auto &Value2Index = Info.getValue2Index(IsSigned); 984 while (!WorkList.empty()) { 985 Value *V = WorkList.pop_back_val(); 986 if (Old2New.find(V) != Old2New.end()) 987 continue; 988 989 auto *I = dyn_cast<Instruction>(V); 990 if (!Value2Index.contains(V) && I) { 991 Old2New[V] = nullptr; 992 ToClone.push_back(I); 993 append_range(WorkList, I->operands()); 994 } 995 } 996 997 sort(ToClone, 998 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 999 for (Instruction *I : ToClone) { 1000 Instruction *Cloned = I->clone(); 1001 Old2New[I] = Cloned; 1002 Old2New[I]->setName(I->getName()); 1003 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1004 Cloned->dropUnknownNonDebugMetadata(); 1005 Cloned->setDebugLoc({}); 1006 } 1007 }; 1008 1009 // Materialize the assumptions for the reproducer using the entries in Stack. 1010 // That is, first clone the operands of the condition recursively until we 1011 // reach an external input to the reproducer and add them to the reproducer 1012 // function. Then add an ICmp for the condition (with the inverse predicate if 1013 // the entry is negated) and an assert using the ICmp. 1014 for (auto &Entry : Stack) { 1015 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1016 continue; 1017 1018 LLVM_DEBUG( 1019 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1020 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1021 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1022 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1023 1024 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1025 Builder.CreateAssumption(Cmp); 1026 } 1027 1028 // Finally, clone the condition to reproduce and remap instruction operands in 1029 // the reproducer using Old2New. 1030 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1031 Entry->getTerminator()->setOperand(0, Cond); 1032 remapInstructionsInBlocks({Entry}, Old2New); 1033 1034 assert(!verifyFunction(*F, &dbgs())); 1035 } 1036 1037 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1038 unsigned NumIn, unsigned NumOut, 1039 Instruction *ContextInst) { 1040 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1041 1042 CmpInst::Predicate Pred = Cmp->getPredicate(); 1043 Value *A = Cmp->getOperand(0); 1044 Value *B = Cmp->getOperand(1); 1045 1046 auto R = Info.getConstraintForSolving(Pred, A, B); 1047 if (R.empty() || !R.isValid(Info)){ 1048 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1049 return std::nullopt; 1050 } 1051 1052 auto &CSToUse = Info.getCS(R.IsSigned); 1053 1054 // If there was extra information collected during decomposition, apply 1055 // it now and remove it immediately once we are done with reasoning 1056 // about the constraint. 1057 for (auto &Row : R.ExtraInfo) 1058 CSToUse.addVariableRow(Row); 1059 auto InfoRestorer = make_scope_exit([&]() { 1060 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1061 CSToUse.popLastConstraint(); 1062 }); 1063 1064 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1065 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1066 return std::nullopt; 1067 1068 LLVM_DEBUG({ 1069 if (*ImpliedCondition) { 1070 dbgs() << "Condition " << *Cmp; 1071 } else { 1072 auto InversePred = Cmp->getInversePredicate(); 1073 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1074 << *A << ", " << *B; 1075 } 1076 dbgs() << " implied by dominating constraints\n"; 1077 CSToUse.dump(); 1078 }); 1079 return ImpliedCondition; 1080 } 1081 1082 return std::nullopt; 1083 } 1084 1085 static bool checkAndReplaceCondition( 1086 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1087 Instruction *ContextInst, Module *ReproducerModule, 1088 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1089 SmallVectorImpl<Instruction *> &ToRemove) { 1090 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1091 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1092 Constant *ConstantC = ConstantInt::getBool( 1093 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1094 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1095 ContextInst](Use &U) { 1096 auto *UserI = getContextInstForUse(U); 1097 auto *DTN = DT.getNode(UserI->getParent()); 1098 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1099 return false; 1100 if (UserI->getParent() == ContextInst->getParent() && 1101 UserI->comesBefore(ContextInst)) 1102 return false; 1103 1104 // Conditions in an assume trivially simplify to true. Skip uses 1105 // in assume calls to not destroy the available information. 1106 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1107 return !II || II->getIntrinsicID() != Intrinsic::assume; 1108 }); 1109 NumCondsRemoved++; 1110 if (Cmp->use_empty()) 1111 ToRemove.push_back(Cmp); 1112 return true; 1113 }; 1114 1115 if (auto ImpliedCondition = 1116 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1117 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1118 return false; 1119 } 1120 1121 static void 1122 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1123 Module *ReproducerModule, 1124 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1125 SmallVectorImpl<StackEntry> &DFSInStack) { 1126 Info.popLastConstraint(E.IsSigned); 1127 // Remove variables in the system that went out of scope. 1128 auto &Mapping = Info.getValue2Index(E.IsSigned); 1129 for (Value *V : E.ValuesToRelease) 1130 Mapping.erase(V); 1131 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1132 DFSInStack.pop_back(); 1133 if (ReproducerModule) 1134 ReproducerCondStack.pop_back(); 1135 } 1136 1137 /// Check if the first condition for an AND implies the second. 1138 static bool checkAndSecondOpImpliedByFirst( 1139 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1140 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1141 SmallVectorImpl<StackEntry> &DFSInStack) { 1142 CmpInst::Predicate Pred; 1143 Value *A, *B; 1144 Instruction *And = CB.getContextInst(); 1145 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1146 return false; 1147 1148 // Optimistically add fact from first condition. 1149 unsigned OldSize = DFSInStack.size(); 1150 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1151 if (OldSize == DFSInStack.size()) 1152 return false; 1153 1154 bool Changed = false; 1155 // Check if the second condition can be simplified now. 1156 if (auto ImpliedCondition = 1157 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1158 CB.NumOut, CB.getContextInst())) { 1159 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1160 Changed = true; 1161 } 1162 1163 // Remove entries again. 1164 while (OldSize < DFSInStack.size()) { 1165 StackEntry E = DFSInStack.back(); 1166 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1167 DFSInStack); 1168 } 1169 return Changed; 1170 } 1171 1172 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1173 unsigned NumIn, unsigned NumOut, 1174 SmallVectorImpl<StackEntry> &DFSInStack) { 1175 // If the constraint has a pre-condition, skip the constraint if it does not 1176 // hold. 1177 SmallVector<Value *> NewVariables; 1178 auto R = getConstraint(Pred, A, B, NewVariables); 1179 1180 // TODO: Support non-equality for facts as well. 1181 if (!R.isValid(*this) || R.isNe()) 1182 return; 1183 1184 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1185 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1186 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1187 bool Added = false; 1188 auto &CSToUse = getCS(R.IsSigned); 1189 if (R.Coefficients.empty()) 1190 return; 1191 1192 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1193 1194 // If R has been added to the system, add the new variables and queue it for 1195 // removal once it goes out-of-scope. 1196 if (Added) { 1197 SmallVector<Value *, 2> ValuesToRelease; 1198 auto &Value2Index = getValue2Index(R.IsSigned); 1199 for (Value *V : NewVariables) { 1200 Value2Index.insert({V, Value2Index.size() + 1}); 1201 ValuesToRelease.push_back(V); 1202 } 1203 1204 LLVM_DEBUG({ 1205 dbgs() << " constraint: "; 1206 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1207 dbgs() << "\n"; 1208 }); 1209 1210 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1211 std::move(ValuesToRelease)); 1212 1213 if (R.isEq()) { 1214 // Also add the inverted constraint for equality constraints. 1215 for (auto &Coeff : R.Coefficients) 1216 Coeff *= -1; 1217 CSToUse.addVariableRowFill(R.Coefficients); 1218 1219 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1220 SmallVector<Value *, 2>()); 1221 } 1222 } 1223 } 1224 1225 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1226 SmallVectorImpl<Instruction *> &ToRemove) { 1227 bool Changed = false; 1228 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1229 Value *Sub = nullptr; 1230 for (User *U : make_early_inc_range(II->users())) { 1231 if (match(U, m_ExtractValue<0>(m_Value()))) { 1232 if (!Sub) 1233 Sub = Builder.CreateSub(A, B); 1234 U->replaceAllUsesWith(Sub); 1235 Changed = true; 1236 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1237 U->replaceAllUsesWith(Builder.getFalse()); 1238 Changed = true; 1239 } else 1240 continue; 1241 1242 if (U->use_empty()) { 1243 auto *I = cast<Instruction>(U); 1244 ToRemove.push_back(I); 1245 I->setOperand(0, PoisonValue::get(II->getType())); 1246 Changed = true; 1247 } 1248 } 1249 1250 if (II->use_empty()) { 1251 II->eraseFromParent(); 1252 Changed = true; 1253 } 1254 return Changed; 1255 } 1256 1257 static bool 1258 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1259 SmallVectorImpl<Instruction *> &ToRemove) { 1260 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1261 ConstraintInfo &Info) { 1262 auto R = Info.getConstraintForSolving(Pred, A, B); 1263 if (R.size() < 2 || !R.isValid(Info)) 1264 return false; 1265 1266 auto &CSToUse = Info.getCS(R.IsSigned); 1267 return CSToUse.isConditionImplied(R.Coefficients); 1268 }; 1269 1270 bool Changed = false; 1271 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1272 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1273 // can be simplified to a regular sub. 1274 Value *A = II->getArgOperand(0); 1275 Value *B = II->getArgOperand(1); 1276 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1277 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1278 ConstantInt::get(A->getType(), 0), Info)) 1279 return false; 1280 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1281 } 1282 return Changed; 1283 } 1284 1285 static bool eliminateConstraints(Function &F, DominatorTree &DT, 1286 OptimizationRemarkEmitter &ORE) { 1287 bool Changed = false; 1288 DT.updateDFSNumbers(); 1289 SmallVector<Value *> FunctionArgs; 1290 for (Value &Arg : F.args()) 1291 FunctionArgs.push_back(&Arg); 1292 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1293 State S(DT); 1294 std::unique_ptr<Module> ReproducerModule( 1295 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1296 1297 // First, collect conditions implied by branches and blocks with their 1298 // Dominator DFS in and out numbers. 1299 for (BasicBlock &BB : F) { 1300 if (!DT.getNode(&BB)) 1301 continue; 1302 S.addInfoFor(BB); 1303 } 1304 1305 // Next, sort worklist by dominance, so that dominating conditions to check 1306 // and facts come before conditions and facts dominated by them. If a 1307 // condition to check and a fact have the same numbers, conditional facts come 1308 // first. Assume facts and checks are ordered according to their relative 1309 // order in the containing basic block. Also make sure conditions with 1310 // constant operands come before conditions without constant operands. This 1311 // increases the effectiveness of the current signed <-> unsigned fact 1312 // transfer logic. 1313 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1314 auto HasNoConstOp = [](const FactOrCheck &B) { 1315 return !isa<ConstantInt>(B.Inst->getOperand(0)) && 1316 !isa<ConstantInt>(B.Inst->getOperand(1)); 1317 }; 1318 // If both entries have the same In numbers, conditional facts come first. 1319 // Otherwise use the relative order in the basic block. 1320 if (A.NumIn == B.NumIn) { 1321 if (A.isConditionFact() && B.isConditionFact()) { 1322 bool NoConstOpA = HasNoConstOp(A); 1323 bool NoConstOpB = HasNoConstOp(B); 1324 return NoConstOpA < NoConstOpB; 1325 } 1326 if (A.isConditionFact()) 1327 return true; 1328 if (B.isConditionFact()) 1329 return false; 1330 auto *InstA = A.getContextInst(); 1331 auto *InstB = B.getContextInst(); 1332 return InstA->comesBefore(InstB); 1333 } 1334 return A.NumIn < B.NumIn; 1335 }); 1336 1337 SmallVector<Instruction *> ToRemove; 1338 1339 // Finally, process ordered worklist and eliminate implied conditions. 1340 SmallVector<StackEntry, 16> DFSInStack; 1341 SmallVector<ReproducerEntry> ReproducerCondStack; 1342 for (FactOrCheck &CB : S.WorkList) { 1343 // First, pop entries from the stack that are out-of-scope for CB. Remove 1344 // the corresponding entry from the constraint system. 1345 while (!DFSInStack.empty()) { 1346 auto &E = DFSInStack.back(); 1347 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1348 << "\n"); 1349 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1350 assert(E.NumIn <= CB.NumIn); 1351 if (CB.NumOut <= E.NumOut) 1352 break; 1353 LLVM_DEBUG({ 1354 dbgs() << "Removing "; 1355 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1356 Info.getValue2Index(E.IsSigned)); 1357 dbgs() << "\n"; 1358 }); 1359 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1360 DFSInStack); 1361 } 1362 1363 LLVM_DEBUG(dbgs() << "Processing "); 1364 1365 // For a block, check if any CmpInsts become known based on the current set 1366 // of constraints. 1367 if (CB.isCheck()) { 1368 Instruction *Inst = CB.getInstructionToSimplify(); 1369 if (!Inst) 1370 continue; 1371 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1372 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1373 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1374 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1375 bool Simplified = checkAndReplaceCondition( 1376 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1377 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1378 if (!Simplified && match(CB.getContextInst(), 1379 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1380 Simplified = 1381 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1382 ReproducerCondStack, DFSInStack); 1383 } 1384 Changed |= Simplified; 1385 } 1386 continue; 1387 } 1388 1389 LLVM_DEBUG(dbgs() << "fact to add to the system: " << *CB.Inst << "\n"); 1390 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1391 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1392 LLVM_DEBUG( 1393 dbgs() 1394 << "Skip adding constraint because system has too many rows.\n"); 1395 return; 1396 } 1397 1398 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1399 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1400 ReproducerCondStack.emplace_back(Pred, A, B); 1401 1402 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1403 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1404 // Add dummy entries to ReproducerCondStack to keep it in sync with 1405 // DFSInStack. 1406 for (unsigned I = 0, 1407 E = (DFSInStack.size() - ReproducerCondStack.size()); 1408 I < E; ++I) { 1409 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1410 nullptr, nullptr); 1411 } 1412 } 1413 }; 1414 1415 ICmpInst::Predicate Pred; 1416 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1417 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1418 AddFact(Pred, MinMax, MinMax->getLHS()); 1419 AddFact(Pred, MinMax, MinMax->getRHS()); 1420 continue; 1421 } 1422 1423 Value *A, *B; 1424 Value *Cmp = CB.Inst; 1425 match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp))); 1426 if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 1427 // Use the inverse predicate if required. 1428 if (CB.Not) 1429 Pred = CmpInst::getInversePredicate(Pred); 1430 1431 AddFact(Pred, A, B); 1432 } 1433 } 1434 1435 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1436 std::string S; 1437 raw_string_ostream StringS(S); 1438 ReproducerModule->print(StringS, nullptr); 1439 StringS.flush(); 1440 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1441 Rem << ore::NV("module") << S; 1442 ORE.emit(Rem); 1443 } 1444 1445 #ifndef NDEBUG 1446 unsigned SignedEntries = 1447 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1448 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1449 "updates to CS and DFSInStack are out of sync"); 1450 assert(Info.getCS(true).size() == SignedEntries && 1451 "updates to CS and DFSInStack are out of sync"); 1452 #endif 1453 1454 for (Instruction *I : ToRemove) 1455 I->eraseFromParent(); 1456 return Changed; 1457 } 1458 1459 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1460 FunctionAnalysisManager &AM) { 1461 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1462 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1463 if (!eliminateConstraints(F, DT, ORE)) 1464 return PreservedAnalyses::all(); 1465 1466 PreservedAnalyses PA; 1467 PA.preserve<DominatorTreeAnalysis>(); 1468 PA.preserveSet<CFGAnalyses>(); 1469 return PA; 1470 } 1471