1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/DebugCounter.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Transforms/Scalar.h" 34 35 #include <cmath> 36 #include <string> 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "constraint-elimination" 42 43 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 45 "Controls which conditions are eliminated"); 46 47 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 48 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 49 50 namespace { 51 52 class ConstraintInfo; 53 54 struct StackEntry { 55 unsigned NumIn; 56 unsigned NumOut; 57 bool IsSigned = false; 58 /// Variables that can be removed from the system once the stack entry gets 59 /// removed. 60 SmallVector<Value *, 2> ValuesToRelease; 61 62 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 63 SmallVector<Value *, 2> ValuesToRelease) 64 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 65 ValuesToRelease(ValuesToRelease) {} 66 }; 67 68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 69 struct PreconditionTy { 70 CmpInst::Predicate Pred; 71 Value *Op0; 72 Value *Op1; 73 74 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 75 : Pred(Pred), Op0(Op0), Op1(Op1) {} 76 }; 77 78 struct ConstraintTy { 79 SmallVector<int64_t, 8> Coefficients; 80 SmallVector<PreconditionTy, 2> Preconditions; 81 82 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 83 84 bool IsSigned = false; 85 bool IsEq = false; 86 87 ConstraintTy() = default; 88 89 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 90 : Coefficients(Coefficients), IsSigned(IsSigned) {} 91 92 unsigned size() const { return Coefficients.size(); } 93 94 unsigned empty() const { return Coefficients.empty(); } 95 96 /// Returns true if all preconditions for this list of constraints are 97 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 98 bool isValid(const ConstraintInfo &Info) const; 99 }; 100 101 /// Wrapper encapsulating separate constraint systems and corresponding value 102 /// mappings for both unsigned and signed information. Facts are added to and 103 /// conditions are checked against the corresponding system depending on the 104 /// signed-ness of their predicates. While the information is kept separate 105 /// based on signed-ness, certain conditions can be transferred between the two 106 /// systems. 107 class ConstraintInfo { 108 DenseMap<Value *, unsigned> UnsignedValue2Index; 109 DenseMap<Value *, unsigned> SignedValue2Index; 110 111 ConstraintSystem UnsignedCS; 112 ConstraintSystem SignedCS; 113 114 public: 115 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 116 return Signed ? SignedValue2Index : UnsignedValue2Index; 117 } 118 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 119 return Signed ? SignedValue2Index : UnsignedValue2Index; 120 } 121 122 ConstraintSystem &getCS(bool Signed) { 123 return Signed ? SignedCS : UnsignedCS; 124 } 125 const ConstraintSystem &getCS(bool Signed) const { 126 return Signed ? SignedCS : UnsignedCS; 127 } 128 129 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 130 void popLastNVariables(bool Signed, unsigned N) { 131 getCS(Signed).popLastNVariables(N); 132 } 133 134 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 135 136 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 137 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 138 139 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 140 /// constraints, using indices from the corresponding constraint system. 141 /// New variables that need to be added to the system are collected in 142 /// \p NewVariables. 143 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 144 SmallVectorImpl<Value *> &NewVariables) const; 145 146 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 147 /// system if \p Pred is signed/unsigned. 148 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 149 unsigned NumIn, unsigned NumOut, 150 SmallVectorImpl<StackEntry> &DFSInStack); 151 }; 152 153 /// Represents a (Coefficient * Variable) entry after IR decomposition. 154 struct DecompEntry { 155 int64_t Coefficient; 156 Value *Variable; 157 /// True if the variable is known positive in the current constraint. 158 bool IsKnownPositive; 159 160 DecompEntry(int64_t Coefficient, Value *Variable, 161 bool IsKnownPositive = false) 162 : Coefficient(Coefficient), Variable(Variable), 163 IsKnownPositive(IsKnownPositive) {} 164 }; 165 166 } // namespace 167 168 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 169 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 170 // pair is the constant-factor and X must be nullptr. If the expression cannot 171 // be decomposed, returns an empty vector. 172 static SmallVector<DecompEntry, 4> 173 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 174 bool IsSigned) { 175 176 auto CanUseSExt = [](ConstantInt *CI) { 177 const APInt &Val = CI->getValue(); 178 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 179 }; 180 // Decompose \p V used with a signed predicate. 181 if (IsSigned) { 182 if (auto *CI = dyn_cast<ConstantInt>(V)) { 183 if (CanUseSExt(CI)) 184 return {{CI->getSExtValue(), nullptr}}; 185 } 186 187 return {{0, nullptr}, {1, V}}; 188 } 189 190 if (auto *CI = dyn_cast<ConstantInt>(V)) { 191 if (CI->uge(MaxConstraintValue)) 192 return {}; 193 return {{int64_t(CI->getZExtValue()), nullptr}}; 194 } 195 auto *GEP = dyn_cast<GetElementPtrInst>(V); 196 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 197 Value *Op0, *Op1; 198 ConstantInt *CI; 199 200 // Handle the (gep (gep ....), C) case by incrementing the constant 201 // coefficient of the inner GEP, if C is a constant. 202 auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand()); 203 if (InnerGEP && InnerGEP->getNumOperands() == 2 && 204 isa<ConstantInt>(GEP->getOperand(1))) { 205 APInt Offset = cast<ConstantInt>(GEP->getOperand(1))->getValue(); 206 auto Result = decompose(InnerGEP, Preconditions, IsSigned); 207 Result[0].Coefficient += Offset.getSExtValue(); 208 if (Offset.isNegative()) { 209 // Add pre-condition ensuring the GEP is increasing monotonically and 210 // can be de-composed. 211 Preconditions.emplace_back( 212 CmpInst::ICMP_SGE, InnerGEP->getOperand(1), 213 ConstantInt::get(InnerGEP->getOperand(1)->getType(), 214 -1 * Offset.getSExtValue())); 215 } 216 return Result; 217 } 218 219 // If the index is zero-extended, it is guaranteed to be positive. 220 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 221 m_ZExt(m_Value(Op0)))) { 222 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 223 CanUseSExt(CI)) 224 return {{0, nullptr}, 225 {1, GEP->getPointerOperand()}, 226 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 227 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 228 CanUseSExt(CI)) 229 return {{CI->getSExtValue(), nullptr}, 230 {1, GEP->getPointerOperand()}, 231 {1, Op1}}; 232 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 233 } 234 235 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 236 !CI->isNegative() && CanUseSExt(CI)) 237 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 238 239 SmallVector<DecompEntry, 4> Result; 240 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 241 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 242 CanUseSExt(CI)) 243 Result = {{0, nullptr}, 244 {1, GEP->getPointerOperand()}, 245 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 246 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 247 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 248 CanUseSExt(CI)) 249 Result = {{CI->getSExtValue(), nullptr}, 250 {1, GEP->getPointerOperand()}, 251 {1, Op0}}; 252 else { 253 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 254 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 255 } 256 // If Op0 is signed non-negative, the GEP is increasing monotonically and 257 // can be de-composed. 258 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 259 ConstantInt::get(Op0->getType(), 0)); 260 return Result; 261 } 262 263 Value *Op0; 264 bool IsKnownPositive = false; 265 if (match(V, m_ZExt(m_Value(Op0)))) { 266 IsKnownPositive = true; 267 V = Op0; 268 } 269 270 auto MergeResults = [&Preconditions, IsSigned]( 271 Value *A, Value *B, 272 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 273 auto ResA = decompose(A, Preconditions, IsSigned); 274 auto ResB = decompose(B, Preconditions, IsSignedB); 275 if (ResA.empty() || ResB.empty()) 276 return {}; 277 ResA[0].Coefficient += ResB[0].Coefficient; 278 append_range(ResA, drop_begin(ResB)); 279 return ResA; 280 }; 281 Value *Op1; 282 ConstantInt *CI; 283 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 284 return MergeResults(Op0, Op1, IsSigned); 285 } 286 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 287 CanUseSExt(CI)) { 288 Preconditions.emplace_back( 289 CmpInst::ICMP_UGE, Op0, 290 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 291 return MergeResults(Op0, CI, true); 292 } 293 294 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 295 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 296 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 297 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 298 299 return {{0, nullptr}, {1, V, IsKnownPositive}}; 300 } 301 302 ConstraintTy 303 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 304 SmallVectorImpl<Value *> &NewVariables) const { 305 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 306 bool IsEq = false; 307 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 308 switch (Pred) { 309 case CmpInst::ICMP_UGT: 310 case CmpInst::ICMP_UGE: 311 case CmpInst::ICMP_SGT: 312 case CmpInst::ICMP_SGE: { 313 Pred = CmpInst::getSwappedPredicate(Pred); 314 std::swap(Op0, Op1); 315 break; 316 } 317 case CmpInst::ICMP_EQ: 318 if (match(Op1, m_Zero())) { 319 Pred = CmpInst::ICMP_ULE; 320 } else { 321 IsEq = true; 322 Pred = CmpInst::ICMP_ULE; 323 } 324 break; 325 case CmpInst::ICMP_NE: 326 if (!match(Op1, m_Zero())) 327 return {}; 328 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 329 std::swap(Op0, Op1); 330 break; 331 default: 332 break; 333 } 334 335 // Only ULE and ULT predicates are supported at the moment. 336 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 337 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 338 return {}; 339 340 SmallVector<PreconditionTy, 4> Preconditions; 341 bool IsSigned = CmpInst::isSigned(Pred); 342 auto &Value2Index = getValue2Index(IsSigned); 343 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 344 Preconditions, IsSigned); 345 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 346 Preconditions, IsSigned); 347 // Skip if decomposing either of the values failed. 348 if (ADec.empty() || BDec.empty()) 349 return {}; 350 351 int64_t Offset1 = ADec[0].Coefficient; 352 int64_t Offset2 = BDec[0].Coefficient; 353 Offset1 *= -1; 354 355 // Create iterator ranges that skip the constant-factor. 356 auto VariablesA = llvm::drop_begin(ADec); 357 auto VariablesB = llvm::drop_begin(BDec); 358 359 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 360 // new entry to NewVariables. 361 DenseMap<Value *, unsigned> NewIndexMap; 362 auto GetOrAddIndex = [&Value2Index, &NewVariables, 363 &NewIndexMap](Value *V) -> unsigned { 364 auto V2I = Value2Index.find(V); 365 if (V2I != Value2Index.end()) 366 return V2I->second; 367 auto Insert = 368 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 369 if (Insert.second) 370 NewVariables.push_back(V); 371 return Insert.first->second; 372 }; 373 374 // Make sure all variables have entries in Value2Index or NewVariables. 375 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 376 GetOrAddIndex(KV.Variable); 377 378 // Build result constraint, by first adding all coefficients from A and then 379 // subtracting all coefficients from B. 380 ConstraintTy Res( 381 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 382 IsSigned); 383 // Collect variables that are known to be positive in all uses in the 384 // constraint. 385 DenseMap<Value *, bool> KnownPositiveVariables; 386 Res.IsEq = IsEq; 387 auto &R = Res.Coefficients; 388 for (const auto &KV : VariablesA) { 389 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 390 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 391 I.first->second &= KV.IsKnownPositive; 392 } 393 394 for (const auto &KV : VariablesB) { 395 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 396 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 397 I.first->second &= KV.IsKnownPositive; 398 } 399 400 int64_t OffsetSum; 401 if (AddOverflow(Offset1, Offset2, OffsetSum)) 402 return {}; 403 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 404 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 405 return {}; 406 R[0] = OffsetSum; 407 Res.Preconditions = std::move(Preconditions); 408 409 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 410 // variables. 411 while (!NewVariables.empty()) { 412 int64_t Last = R.back(); 413 if (Last != 0) 414 break; 415 R.pop_back(); 416 Value *RemovedV = NewVariables.pop_back_val(); 417 NewIndexMap.erase(RemovedV); 418 } 419 420 // Add extra constraints for variables that are known positive. 421 for (auto &KV : KnownPositiveVariables) { 422 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 423 NewIndexMap.find(KV.first) == NewIndexMap.end())) 424 continue; 425 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 426 C[GetOrAddIndex(KV.first)] = -1; 427 Res.ExtraInfo.push_back(C); 428 } 429 return Res; 430 } 431 432 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 433 return Coefficients.size() > 0 && 434 all_of(Preconditions, [&Info](const PreconditionTy &C) { 435 return Info.doesHold(C.Pred, C.Op0, C.Op1); 436 }); 437 } 438 439 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 440 Value *B) const { 441 SmallVector<Value *> NewVariables; 442 auto R = getConstraint(Pred, A, B, NewVariables); 443 444 if (!NewVariables.empty()) 445 return false; 446 447 return NewVariables.empty() && R.Preconditions.empty() && !R.IsEq && 448 !R.empty() && getCS(R.IsSigned).isConditionImplied(R.Coefficients); 449 } 450 451 void ConstraintInfo::transferToOtherSystem( 452 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 453 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 454 // Check if we can combine facts from the signed and unsigned systems to 455 // derive additional facts. 456 if (!A->getType()->isIntegerTy()) 457 return; 458 // FIXME: This currently depends on the order we add facts. Ideally we 459 // would first add all known facts and only then try to add additional 460 // facts. 461 switch (Pred) { 462 default: 463 break; 464 case CmpInst::ICMP_ULT: 465 // If B is a signed positive constant, A >=s 0 and A <s B. 466 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 467 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 468 NumOut, DFSInStack); 469 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 470 } 471 break; 472 case CmpInst::ICMP_SLT: 473 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 474 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 475 break; 476 case CmpInst::ICMP_SGT: 477 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 478 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 479 NumOut, DFSInStack); 480 break; 481 case CmpInst::ICMP_SGE: 482 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 483 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 484 } 485 break; 486 } 487 } 488 489 namespace { 490 /// Represents either a condition that holds on entry to a block or a basic 491 /// block, with their respective Dominator DFS in and out numbers. 492 struct ConstraintOrBlock { 493 unsigned NumIn; 494 unsigned NumOut; 495 bool IsBlock; 496 bool Not; 497 union { 498 BasicBlock *BB; 499 CmpInst *Condition; 500 }; 501 502 ConstraintOrBlock(DomTreeNode *DTN) 503 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 504 BB(DTN->getBlock()) {} 505 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 506 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 507 Not(Not), Condition(Condition) {} 508 }; 509 510 /// Keep state required to build worklist. 511 struct State { 512 DominatorTree &DT; 513 SmallVector<ConstraintOrBlock, 64> WorkList; 514 515 State(DominatorTree &DT) : DT(DT) {} 516 517 /// Process block \p BB and add known facts to work-list. 518 void addInfoFor(BasicBlock &BB); 519 520 /// Returns true if we can add a known condition from BB to its successor 521 /// block Succ. Each predecessor of Succ can either be BB or be dominated 522 /// by Succ (e.g. the case when adding a condition from a pre-header to a 523 /// loop header). 524 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 525 if (BB.getSingleSuccessor()) { 526 assert(BB.getSingleSuccessor() == Succ); 527 return DT.properlyDominates(&BB, Succ); 528 } 529 return any_of(successors(&BB), 530 [Succ](const BasicBlock *S) { return S != Succ; }) && 531 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 532 return Pred == &BB || DT.dominates(Succ, Pred); 533 }); 534 } 535 }; 536 537 } // namespace 538 539 #ifndef NDEBUG 540 static void dumpWithNames(const ConstraintSystem &CS, 541 DenseMap<Value *, unsigned> &Value2Index) { 542 SmallVector<std::string> Names(Value2Index.size(), ""); 543 for (auto &KV : Value2Index) { 544 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 545 } 546 CS.dump(Names); 547 } 548 549 static void dumpWithNames(ArrayRef<int64_t> C, 550 DenseMap<Value *, unsigned> &Value2Index) { 551 ConstraintSystem CS; 552 CS.addVariableRowFill(C); 553 dumpWithNames(CS, Value2Index); 554 } 555 #endif 556 557 void State::addInfoFor(BasicBlock &BB) { 558 WorkList.emplace_back(DT.getNode(&BB)); 559 560 // True as long as long as the current instruction is guaranteed to execute. 561 bool GuaranteedToExecute = true; 562 // Scan BB for assume calls. 563 // TODO: also use this scan to queue conditions to simplify, so we can 564 // interleave facts from assumes and conditions to simplify in a single 565 // basic block. And to skip another traversal of each basic block when 566 // simplifying. 567 for (Instruction &I : BB) { 568 Value *Cond; 569 // For now, just handle assumes with a single compare as condition. 570 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 571 isa<ICmpInst>(Cond)) { 572 if (GuaranteedToExecute) { 573 // The assume is guaranteed to execute when BB is entered, hence Cond 574 // holds on entry to BB. 575 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 576 } else { 577 // Otherwise the condition only holds in the successors. 578 for (BasicBlock *Succ : successors(&BB)) { 579 if (!canAddSuccessor(BB, Succ)) 580 continue; 581 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 582 } 583 } 584 } 585 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 586 } 587 588 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 589 if (!Br || !Br->isConditional()) 590 return; 591 592 Value *Cond = Br->getCondition(); 593 594 // If the condition is a chain of ORs/AND and the successor only has the 595 // current block as predecessor, queue conditions for the successor. 596 Value *Op0, *Op1; 597 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 598 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 599 bool IsOr = match(Cond, m_LogicalOr()); 600 bool IsAnd = match(Cond, m_LogicalAnd()); 601 // If there's a select that matches both AND and OR, we need to commit to 602 // one of the options. Arbitrarily pick OR. 603 if (IsOr && IsAnd) 604 IsAnd = false; 605 606 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 607 if (canAddSuccessor(BB, Successor)) { 608 SmallVector<Value *> CondWorkList; 609 SmallPtrSet<Value *, 8> SeenCond; 610 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 611 if (SeenCond.insert(V).second) 612 CondWorkList.push_back(V); 613 }; 614 QueueValue(Op1); 615 QueueValue(Op0); 616 while (!CondWorkList.empty()) { 617 Value *Cur = CondWorkList.pop_back_val(); 618 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 619 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 620 continue; 621 } 622 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 623 QueueValue(Op1); 624 QueueValue(Op0); 625 continue; 626 } 627 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 628 QueueValue(Op1); 629 QueueValue(Op0); 630 continue; 631 } 632 } 633 } 634 return; 635 } 636 637 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 638 if (!CmpI) 639 return; 640 if (canAddSuccessor(BB, Br->getSuccessor(0))) 641 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 642 if (canAddSuccessor(BB, Br->getSuccessor(1))) 643 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 644 } 645 646 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 647 unsigned NumIn, unsigned NumOut, 648 SmallVectorImpl<StackEntry> &DFSInStack) { 649 // If the constraint has a pre-condition, skip the constraint if it does not 650 // hold. 651 SmallVector<Value *> NewVariables; 652 auto R = getConstraint(Pred, A, B, NewVariables); 653 if (!R.isValid(*this)) 654 return; 655 656 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 657 A->printAsOperand(dbgs(), false); dbgs() << ", "; 658 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 659 bool Added = false; 660 auto &CSToUse = getCS(R.IsSigned); 661 if (R.Coefficients.empty()) 662 return; 663 664 Added |= CSToUse.addVariableRowFill(R.Coefficients); 665 666 // If R has been added to the system, add the new variables and queue it for 667 // removal once it goes out-of-scope. 668 if (Added) { 669 SmallVector<Value *, 2> ValuesToRelease; 670 auto &Value2Index = getValue2Index(R.IsSigned); 671 for (Value *V : NewVariables) { 672 Value2Index.insert({V, Value2Index.size() + 1}); 673 ValuesToRelease.push_back(V); 674 } 675 676 LLVM_DEBUG({ 677 dbgs() << " constraint: "; 678 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 679 dbgs() << "\n"; 680 }); 681 682 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 683 684 if (R.IsEq) { 685 // Also add the inverted constraint for equality constraints. 686 for (auto &Coeff : R.Coefficients) 687 Coeff *= -1; 688 CSToUse.addVariableRowFill(R.Coefficients); 689 690 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 691 SmallVector<Value *, 2>()); 692 } 693 } 694 } 695 696 static bool 697 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 698 SmallVectorImpl<Instruction *> &ToRemove) { 699 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 700 ConstraintInfo &Info) { 701 SmallVector<Value *> NewVariables; 702 auto R = Info.getConstraint(Pred, A, B, NewVariables); 703 if (R.size() < 2 || !NewVariables.empty() || !R.isValid(Info)) 704 return false; 705 706 auto &CSToUse = Info.getCS(R.IsSigned); 707 return CSToUse.isConditionImplied(R.Coefficients); 708 }; 709 710 bool Changed = false; 711 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 712 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 713 // can be simplified to a regular sub. 714 Value *A = II->getArgOperand(0); 715 Value *B = II->getArgOperand(1); 716 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 717 !DoesConditionHold(CmpInst::ICMP_SGE, B, 718 ConstantInt::get(A->getType(), 0), Info)) 719 return false; 720 721 IRBuilder<> Builder(II->getParent(), II->getIterator()); 722 Value *Sub = nullptr; 723 for (User *U : make_early_inc_range(II->users())) { 724 if (match(U, m_ExtractValue<0>(m_Value()))) { 725 if (!Sub) 726 Sub = Builder.CreateSub(A, B); 727 U->replaceAllUsesWith(Sub); 728 Changed = true; 729 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 730 U->replaceAllUsesWith(Builder.getFalse()); 731 Changed = true; 732 } else 733 continue; 734 735 if (U->use_empty()) { 736 auto *I = cast<Instruction>(U); 737 ToRemove.push_back(I); 738 I->setOperand(0, PoisonValue::get(II->getType())); 739 Changed = true; 740 } 741 } 742 743 if (II->use_empty()) { 744 II->eraseFromParent(); 745 Changed = true; 746 } 747 } 748 return Changed; 749 } 750 751 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 752 bool Changed = false; 753 DT.updateDFSNumbers(); 754 755 ConstraintInfo Info; 756 State S(DT); 757 758 // First, collect conditions implied by branches and blocks with their 759 // Dominator DFS in and out numbers. 760 for (BasicBlock &BB : F) { 761 if (!DT.getNode(&BB)) 762 continue; 763 S.addInfoFor(BB); 764 } 765 766 // Next, sort worklist by dominance, so that dominating blocks and conditions 767 // come before blocks and conditions dominated by them. If a block and a 768 // condition have the same numbers, the condition comes before the block, as 769 // it holds on entry to the block. Also make sure conditions with constant 770 // operands come before conditions without constant operands. This increases 771 // the effectiveness of the current signed <-> unsigned fact transfer logic. 772 stable_sort( 773 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 774 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 775 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 776 !isa<ConstantInt>(B.Condition->getOperand(1)); 777 }; 778 bool NoConstOpA = HasNoConstOp(A); 779 bool NoConstOpB = HasNoConstOp(B); 780 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 781 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 782 }); 783 784 SmallVector<Instruction *> ToRemove; 785 786 // Finally, process ordered worklist and eliminate implied conditions. 787 SmallVector<StackEntry, 16> DFSInStack; 788 for (ConstraintOrBlock &CB : S.WorkList) { 789 // First, pop entries from the stack that are out-of-scope for CB. Remove 790 // the corresponding entry from the constraint system. 791 while (!DFSInStack.empty()) { 792 auto &E = DFSInStack.back(); 793 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 794 << "\n"); 795 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 796 assert(E.NumIn <= CB.NumIn); 797 if (CB.NumOut <= E.NumOut) 798 break; 799 LLVM_DEBUG({ 800 dbgs() << "Removing "; 801 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 802 Info.getValue2Index(E.IsSigned)); 803 dbgs() << "\n"; 804 }); 805 806 Info.popLastConstraint(E.IsSigned); 807 // Remove variables in the system that went out of scope. 808 auto &Mapping = Info.getValue2Index(E.IsSigned); 809 for (Value *V : E.ValuesToRelease) 810 Mapping.erase(V); 811 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 812 DFSInStack.pop_back(); 813 } 814 815 LLVM_DEBUG({ 816 dbgs() << "Processing "; 817 if (CB.IsBlock) 818 dbgs() << *CB.BB; 819 else 820 dbgs() << *CB.Condition; 821 dbgs() << "\n"; 822 }); 823 824 // For a block, check if any CmpInsts become known based on the current set 825 // of constraints. 826 if (CB.IsBlock) { 827 for (Instruction &I : make_early_inc_range(*CB.BB)) { 828 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 829 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 830 continue; 831 } 832 auto *Cmp = dyn_cast<ICmpInst>(&I); 833 if (!Cmp) 834 continue; 835 836 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 837 SmallVector<Value *> NewVariables; 838 CmpInst::Predicate Pred = Cmp->getPredicate(); 839 Value *A = Cmp->getOperand(0); 840 Value *B = Cmp->getOperand(1); 841 const DataLayout &DL = Cmp->getModule()->getDataLayout(); 842 843 // If both operands are known to be non-negative, change signed 844 // predicates to unsigned ones. This increases the reasoning 845 // effectiveness in combination with the signed <-> unsigned transfer 846 // logic. 847 if (CmpInst::isSigned(Pred) && 848 isKnownNonNegative(A, DL, 849 /*Depth=*/MaxAnalysisRecursionDepth - 1) && 850 isKnownNonNegative(B, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 851 Pred = CmpInst::getUnsignedPredicate(Pred); 852 853 auto R = Info.getConstraint(Pred, A, B, NewVariables); 854 if (R.IsEq || R.empty() || !NewVariables.empty() || !R.isValid(Info)) 855 continue; 856 857 auto &CSToUse = Info.getCS(R.IsSigned); 858 859 // If there was extra information collected during decomposition, apply 860 // it now and remove it immediately once we are done with reasoning 861 // about the constraint. 862 for (auto &Row : R.ExtraInfo) 863 CSToUse.addVariableRow(Row); 864 auto InfoRestorer = make_scope_exit([&]() { 865 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 866 CSToUse.popLastConstraint(); 867 }); 868 869 if (CSToUse.isConditionImplied(R.Coefficients)) { 870 if (!DebugCounter::shouldExecute(EliminatedCounter)) 871 continue; 872 873 LLVM_DEBUG({ 874 dbgs() << "Condition " << *Cmp 875 << " implied by dominating constraints\n"; 876 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 877 }); 878 Cmp->replaceUsesWithIf( 879 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 880 // Conditions in an assume trivially simplify to true. Skip uses 881 // in assume calls to not destroy the available information. 882 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 883 return !II || II->getIntrinsicID() != Intrinsic::assume; 884 }); 885 NumCondsRemoved++; 886 Changed = true; 887 } 888 if (CSToUse.isConditionImplied( 889 ConstraintSystem::negate(R.Coefficients))) { 890 if (!DebugCounter::shouldExecute(EliminatedCounter)) 891 continue; 892 893 LLVM_DEBUG({ 894 dbgs() << "Condition !" << *Cmp 895 << " implied by dominating constraints\n"; 896 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 897 }); 898 Cmp->replaceAllUsesWith( 899 ConstantInt::getFalse(F.getParent()->getContext())); 900 NumCondsRemoved++; 901 Changed = true; 902 } 903 } 904 continue; 905 } 906 907 ICmpInst::Predicate Pred; 908 Value *A, *B; 909 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 910 // Use the inverse predicate if required. 911 if (CB.Not) 912 Pred = CmpInst::getInversePredicate(Pred); 913 914 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 915 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 916 } 917 } 918 919 #ifndef NDEBUG 920 unsigned SignedEntries = 921 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 922 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 923 "updates to CS and DFSInStack are out of sync"); 924 assert(Info.getCS(true).size() == SignedEntries && 925 "updates to CS and DFSInStack are out of sync"); 926 #endif 927 928 for (Instruction *I : ToRemove) 929 I->eraseFromParent(); 930 return Changed; 931 } 932 933 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 934 FunctionAnalysisManager &AM) { 935 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 936 if (!eliminateConstraints(F, DT)) 937 return PreservedAnalyses::all(); 938 939 PreservedAnalyses PA; 940 PA.preserve<DominatorTreeAnalysis>(); 941 PA.preserveSet<CFGAnalyses>(); 942 return PA; 943 } 944 945 namespace { 946 947 class ConstraintElimination : public FunctionPass { 948 public: 949 static char ID; 950 951 ConstraintElimination() : FunctionPass(ID) { 952 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 953 } 954 955 bool runOnFunction(Function &F) override { 956 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 957 return eliminateConstraints(F, DT); 958 } 959 960 void getAnalysisUsage(AnalysisUsage &AU) const override { 961 AU.setPreservesCFG(); 962 AU.addRequired<DominatorTreeWrapperPass>(); 963 AU.addPreserved<GlobalsAAWrapperPass>(); 964 AU.addPreserved<DominatorTreeWrapperPass>(); 965 } 966 }; 967 968 } // end anonymous namespace 969 970 char ConstraintElimination::ID = 0; 971 972 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 973 "Constraint Elimination", false, false) 974 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 975 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 976 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 977 "Constraint Elimination", false, false) 978 979 FunctionPass *llvm::createConstraintEliminationPass() { 980 return new ConstraintElimination(); 981 } 982