1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Verifier.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/DebugCounter.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/ValueMapper.h" 43 44 #include <cmath> 45 #include <optional> 46 #include <string> 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 #define DEBUG_TYPE "constraint-elimination" 52 53 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 54 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 55 "Controls which conditions are eliminated"); 56 57 static cl::opt<unsigned> 58 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, 59 cl::desc("Maximum number of rows to keep in constraint system")); 60 61 static cl::opt<bool> DumpReproducers( 62 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, 63 cl::desc("Dump IR to reproduce successful transformations.")); 64 65 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 66 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 67 68 // A helper to multiply 2 signed integers where overflowing is allowed. 69 static int64_t multiplyWithOverflow(int64_t A, int64_t B) { 70 int64_t Result; 71 MulOverflow(A, B, Result); 72 return Result; 73 } 74 75 // A helper to add 2 signed integers where overflowing is allowed. 76 static int64_t addWithOverflow(int64_t A, int64_t B) { 77 int64_t Result; 78 AddOverflow(A, B, Result); 79 return Result; 80 } 81 82 static Instruction *getContextInstForUse(Use &U) { 83 Instruction *UserI = cast<Instruction>(U.getUser()); 84 if (auto *Phi = dyn_cast<PHINode>(UserI)) 85 UserI = Phi->getIncomingBlock(U)->getTerminator(); 86 return UserI; 87 } 88 89 namespace { 90 /// Struct to express a condition of the form %Op0 Pred %Op1. 91 struct ConditionTy { 92 CmpInst::Predicate Pred; 93 Value *Op0; 94 Value *Op1; 95 96 ConditionTy() 97 : Pred(CmpInst::BAD_ICMP_PREDICATE), Op0(nullptr), Op1(nullptr) {} 98 ConditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 99 : Pred(Pred), Op0(Op0), Op1(Op1) {} 100 }; 101 102 /// Represents either 103 /// * a condition that holds on entry to a block (=condition fact) 104 /// * an assume (=assume fact) 105 /// * a use of a compare instruction to simplify. 106 /// It also tracks the Dominator DFS in and out numbers for each entry. 107 struct FactOrCheck { 108 enum class EntryTy { 109 ConditionFact, /// A condition that holds on entry to a block. 110 InstFact, /// A fact that holds after Inst executed (e.g. an assume or 111 /// min/mix intrinsic. 112 InstCheck, /// An instruction to simplify (e.g. an overflow math 113 /// intrinsics). 114 UseCheck /// An use of a compare instruction to simplify. 115 }; 116 117 union { 118 Instruction *Inst; 119 Use *U; 120 ConditionTy Cond; 121 }; 122 123 /// A pre-condition that must hold for the current fact to be added to the 124 /// system. 125 ConditionTy DoesHold; 126 127 unsigned NumIn; 128 unsigned NumOut; 129 EntryTy Ty; 130 131 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst) 132 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 133 Ty(Ty) {} 134 135 FactOrCheck(DomTreeNode *DTN, Use *U) 136 : U(U), DoesHold(CmpInst::BAD_ICMP_PREDICATE, nullptr, nullptr), 137 NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), 138 Ty(EntryTy::UseCheck) {} 139 140 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1, 141 ConditionTy Precond = ConditionTy()) 142 : Cond(Pred, Op0, Op1), DoesHold(Precond), NumIn(DTN->getDFSNumIn()), 143 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {} 144 145 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred, 146 Value *Op0, Value *Op1, 147 ConditionTy Precond = ConditionTy()) { 148 return FactOrCheck(DTN, Pred, Op0, Op1, Precond); 149 } 150 151 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) { 152 return FactOrCheck(EntryTy::InstFact, DTN, Inst); 153 } 154 155 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) { 156 return FactOrCheck(DTN, U); 157 } 158 159 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) { 160 return FactOrCheck(EntryTy::InstCheck, DTN, CI); 161 } 162 163 bool isCheck() const { 164 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck; 165 } 166 167 Instruction *getContextInst() const { 168 if (Ty == EntryTy::UseCheck) 169 return getContextInstForUse(*U); 170 return Inst; 171 } 172 173 Instruction *getInstructionToSimplify() const { 174 assert(isCheck()); 175 if (Ty == EntryTy::InstCheck) 176 return Inst; 177 // The use may have been simplified to a constant already. 178 return dyn_cast<Instruction>(*U); 179 } 180 181 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; } 182 }; 183 184 /// Keep state required to build worklist. 185 struct State { 186 DominatorTree &DT; 187 LoopInfo &LI; 188 ScalarEvolution &SE; 189 SmallVector<FactOrCheck, 64> WorkList; 190 191 State(DominatorTree &DT, LoopInfo &LI, ScalarEvolution &SE) 192 : DT(DT), LI(LI), SE(SE) {} 193 194 /// Process block \p BB and add known facts to work-list. 195 void addInfoFor(BasicBlock &BB); 196 197 /// Try to add facts for loop inductions (AddRecs) in EQ/NE compares 198 /// controlling the loop header. 199 void addInfoForInductions(BasicBlock &BB); 200 201 /// Returns true if we can add a known condition from BB to its successor 202 /// block Succ. 203 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 204 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ); 205 } 206 }; 207 208 class ConstraintInfo; 209 210 struct StackEntry { 211 unsigned NumIn; 212 unsigned NumOut; 213 bool IsSigned = false; 214 /// Variables that can be removed from the system once the stack entry gets 215 /// removed. 216 SmallVector<Value *, 2> ValuesToRelease; 217 218 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 219 SmallVector<Value *, 2> ValuesToRelease) 220 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 221 ValuesToRelease(ValuesToRelease) {} 222 }; 223 224 struct ConstraintTy { 225 SmallVector<int64_t, 8> Coefficients; 226 SmallVector<ConditionTy, 2> Preconditions; 227 228 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 229 230 bool IsSigned = false; 231 232 ConstraintTy() = default; 233 234 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq, 235 bool IsNe) 236 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) { 237 } 238 239 unsigned size() const { return Coefficients.size(); } 240 241 unsigned empty() const { return Coefficients.empty(); } 242 243 /// Returns true if all preconditions for this list of constraints are 244 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 245 bool isValid(const ConstraintInfo &Info) const; 246 247 bool isEq() const { return IsEq; } 248 249 bool isNe() const { return IsNe; } 250 251 /// Check if the current constraint is implied by the given ConstraintSystem. 252 /// 253 /// \return true or false if the constraint is proven to be respectively true, 254 /// or false. When the constraint cannot be proven to be either true or false, 255 /// std::nullopt is returned. 256 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const; 257 258 private: 259 bool IsEq = false; 260 bool IsNe = false; 261 }; 262 263 /// Wrapper encapsulating separate constraint systems and corresponding value 264 /// mappings for both unsigned and signed information. Facts are added to and 265 /// conditions are checked against the corresponding system depending on the 266 /// signed-ness of their predicates. While the information is kept separate 267 /// based on signed-ness, certain conditions can be transferred between the two 268 /// systems. 269 class ConstraintInfo { 270 271 ConstraintSystem UnsignedCS; 272 ConstraintSystem SignedCS; 273 274 const DataLayout &DL; 275 276 public: 277 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs) 278 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {} 279 280 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 281 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 282 } 283 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 284 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index(); 285 } 286 287 ConstraintSystem &getCS(bool Signed) { 288 return Signed ? SignedCS : UnsignedCS; 289 } 290 const ConstraintSystem &getCS(bool Signed) const { 291 return Signed ? SignedCS : UnsignedCS; 292 } 293 294 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 295 void popLastNVariables(bool Signed, unsigned N) { 296 getCS(Signed).popLastNVariables(N); 297 } 298 299 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 300 301 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 302 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 303 304 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 305 /// constraints, using indices from the corresponding constraint system. 306 /// New variables that need to be added to the system are collected in 307 /// \p NewVariables. 308 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 309 SmallVectorImpl<Value *> &NewVariables) const; 310 311 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 312 /// constraints using getConstraint. Returns an empty constraint if the result 313 /// cannot be used to query the existing constraint system, e.g. because it 314 /// would require adding new variables. Also tries to convert signed 315 /// predicates to unsigned ones if possible to allow using the unsigned system 316 /// which increases the effectiveness of the signed <-> unsigned transfer 317 /// logic. 318 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0, 319 Value *Op1) const; 320 321 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 322 /// system if \p Pred is signed/unsigned. 323 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 324 unsigned NumIn, unsigned NumOut, 325 SmallVectorImpl<StackEntry> &DFSInStack); 326 }; 327 328 /// Represents a (Coefficient * Variable) entry after IR decomposition. 329 struct DecompEntry { 330 int64_t Coefficient; 331 Value *Variable; 332 /// True if the variable is known positive in the current constraint. 333 bool IsKnownNonNegative; 334 335 DecompEntry(int64_t Coefficient, Value *Variable, 336 bool IsKnownNonNegative = false) 337 : Coefficient(Coefficient), Variable(Variable), 338 IsKnownNonNegative(IsKnownNonNegative) {} 339 }; 340 341 /// Represents an Offset + Coefficient1 * Variable1 + ... decomposition. 342 struct Decomposition { 343 int64_t Offset = 0; 344 SmallVector<DecompEntry, 3> Vars; 345 346 Decomposition(int64_t Offset) : Offset(Offset) {} 347 Decomposition(Value *V, bool IsKnownNonNegative = false) { 348 Vars.emplace_back(1, V, IsKnownNonNegative); 349 } 350 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars) 351 : Offset(Offset), Vars(Vars) {} 352 353 void add(int64_t OtherOffset) { 354 Offset = addWithOverflow(Offset, OtherOffset); 355 } 356 357 void add(const Decomposition &Other) { 358 add(Other.Offset); 359 append_range(Vars, Other.Vars); 360 } 361 362 void mul(int64_t Factor) { 363 Offset = multiplyWithOverflow(Offset, Factor); 364 for (auto &Var : Vars) 365 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor); 366 } 367 }; 368 369 // Variable and constant offsets for a chain of GEPs, with base pointer BasePtr. 370 struct OffsetResult { 371 Value *BasePtr; 372 APInt ConstantOffset; 373 MapVector<Value *, APInt> VariableOffsets; 374 bool AllInbounds; 375 376 OffsetResult() : BasePtr(nullptr), ConstantOffset(0, uint64_t(0)) {} 377 378 OffsetResult(GEPOperator &GEP, const DataLayout &DL) 379 : BasePtr(GEP.getPointerOperand()), AllInbounds(GEP.isInBounds()) { 380 ConstantOffset = APInt(DL.getIndexTypeSizeInBits(BasePtr->getType()), 0); 381 } 382 }; 383 } // namespace 384 385 // Try to collect variable and constant offsets for \p GEP, partly traversing 386 // nested GEPs. Returns an OffsetResult with nullptr as BasePtr of collecting 387 // the offset fails. 388 static OffsetResult collectOffsets(GEPOperator &GEP, const DataLayout &DL) { 389 OffsetResult Result(GEP, DL); 390 unsigned BitWidth = Result.ConstantOffset.getBitWidth(); 391 if (!GEP.collectOffset(DL, BitWidth, Result.VariableOffsets, 392 Result.ConstantOffset)) 393 return {}; 394 395 // If we have a nested GEP, check if we can combine the constant offset of the 396 // inner GEP with the outer GEP. 397 if (auto *InnerGEP = dyn_cast<GetElementPtrInst>(Result.BasePtr)) { 398 MapVector<Value *, APInt> VariableOffsets2; 399 APInt ConstantOffset2(BitWidth, 0); 400 bool CanCollectInner = InnerGEP->collectOffset( 401 DL, BitWidth, VariableOffsets2, ConstantOffset2); 402 // TODO: Support cases with more than 1 variable offset. 403 if (!CanCollectInner || Result.VariableOffsets.size() > 1 || 404 VariableOffsets2.size() > 1 || 405 (Result.VariableOffsets.size() >= 1 && VariableOffsets2.size() >= 1)) { 406 // More than 1 variable index, use outer result. 407 return Result; 408 } 409 Result.BasePtr = InnerGEP->getPointerOperand(); 410 Result.ConstantOffset += ConstantOffset2; 411 if (Result.VariableOffsets.size() == 0 && VariableOffsets2.size() == 1) 412 Result.VariableOffsets = VariableOffsets2; 413 Result.AllInbounds &= InnerGEP->isInBounds(); 414 } 415 return Result; 416 } 417 418 static Decomposition decompose(Value *V, 419 SmallVectorImpl<ConditionTy> &Preconditions, 420 bool IsSigned, const DataLayout &DL); 421 422 static bool canUseSExt(ConstantInt *CI) { 423 const APInt &Val = CI->getValue(); 424 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 425 } 426 427 static Decomposition decomposeGEP(GEPOperator &GEP, 428 SmallVectorImpl<ConditionTy> &Preconditions, 429 bool IsSigned, const DataLayout &DL) { 430 // Do not reason about pointers where the index size is larger than 64 bits, 431 // as the coefficients used to encode constraints are 64 bit integers. 432 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64) 433 return &GEP; 434 435 assert(!IsSigned && "The logic below only supports decomposition for " 436 "unsinged predicates at the moment."); 437 const auto &[BasePtr, ConstantOffset, VariableOffsets, AllInbounds] = 438 collectOffsets(GEP, DL); 439 if (!BasePtr || !AllInbounds) 440 return &GEP; 441 442 Decomposition Result(ConstantOffset.getSExtValue(), DecompEntry(1, BasePtr)); 443 for (auto [Index, Scale] : VariableOffsets) { 444 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL); 445 IdxResult.mul(Scale.getSExtValue()); 446 Result.add(IdxResult); 447 448 // If Op0 is signed non-negative, the GEP is increasing monotonically and 449 // can be de-composed. 450 if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 451 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index, 452 ConstantInt::get(Index->getType(), 0)); 453 } 454 return Result; 455 } 456 457 // Decomposes \p V into a constant offset + list of pairs { Coefficient, 458 // Variable } where Coefficient * Variable. The sum of the constant offset and 459 // pairs equals \p V. 460 static Decomposition decompose(Value *V, 461 SmallVectorImpl<ConditionTy> &Preconditions, 462 bool IsSigned, const DataLayout &DL) { 463 464 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B, 465 bool IsSignedB) { 466 auto ResA = decompose(A, Preconditions, IsSigned, DL); 467 auto ResB = decompose(B, Preconditions, IsSignedB, DL); 468 ResA.add(ResB); 469 return ResA; 470 }; 471 472 Type *Ty = V->getType()->getScalarType(); 473 if (Ty->isPointerTy() && !IsSigned) { 474 if (auto *GEP = dyn_cast<GEPOperator>(V)) 475 return decomposeGEP(*GEP, Preconditions, IsSigned, DL); 476 if (isa<ConstantPointerNull>(V)) 477 return int64_t(0); 478 479 return V; 480 } 481 482 // Don't handle integers > 64 bit. Our coefficients are 64-bit large, so 483 // coefficient add/mul may wrap, while the operation in the full bit width 484 // would not. 485 if (!Ty->isIntegerTy() || Ty->getIntegerBitWidth() > 64) 486 return V; 487 488 // Decompose \p V used with a signed predicate. 489 if (IsSigned) { 490 if (auto *CI = dyn_cast<ConstantInt>(V)) { 491 if (canUseSExt(CI)) 492 return CI->getSExtValue(); 493 } 494 Value *Op0; 495 Value *Op1; 496 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) 497 return MergeResults(Op0, Op1, IsSigned); 498 499 ConstantInt *CI; 500 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) { 501 auto Result = decompose(Op0, Preconditions, IsSigned, DL); 502 Result.mul(CI->getSExtValue()); 503 return Result; 504 } 505 506 return V; 507 } 508 509 if (auto *CI = dyn_cast<ConstantInt>(V)) { 510 if (CI->uge(MaxConstraintValue)) 511 return V; 512 return int64_t(CI->getZExtValue()); 513 } 514 515 Value *Op0; 516 bool IsKnownNonNegative = false; 517 if (match(V, m_ZExt(m_Value(Op0)))) { 518 IsKnownNonNegative = true; 519 V = Op0; 520 } 521 522 Value *Op1; 523 ConstantInt *CI; 524 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 525 return MergeResults(Op0, Op1, IsSigned); 526 } 527 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) { 528 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 529 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 530 ConstantInt::get(Op0->getType(), 0)); 531 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 532 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1, 533 ConstantInt::get(Op1->getType(), 0)); 534 535 return MergeResults(Op0, Op1, IsSigned); 536 } 537 538 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 539 canUseSExt(CI)) { 540 Preconditions.emplace_back( 541 CmpInst::ICMP_UGE, Op0, 542 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 543 return MergeResults(Op0, CI, true); 544 } 545 546 // Decompose or as an add if there are no common bits between the operands. 547 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) && 548 haveNoCommonBitsSet(Op0, CI, DL)) { 549 return MergeResults(Op0, CI, IsSigned); 550 } 551 552 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) { 553 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64) 554 return {V, IsKnownNonNegative}; 555 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 556 Result.mul(int64_t{1} << CI->getSExtValue()); 557 return Result; 558 } 559 560 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) && 561 (!CI->isNegative())) { 562 auto Result = decompose(Op1, Preconditions, IsSigned, DL); 563 Result.mul(CI->getSExtValue()); 564 return Result; 565 } 566 567 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) 568 return {-1 * CI->getSExtValue(), {{1, Op0}}}; 569 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 570 return {0, {{1, Op0}, {-1, Op1}}}; 571 572 return {V, IsKnownNonNegative}; 573 } 574 575 ConstraintTy 576 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 577 SmallVectorImpl<Value *> &NewVariables) const { 578 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 579 bool IsEq = false; 580 bool IsNe = false; 581 582 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 583 switch (Pred) { 584 case CmpInst::ICMP_UGT: 585 case CmpInst::ICMP_UGE: 586 case CmpInst::ICMP_SGT: 587 case CmpInst::ICMP_SGE: { 588 Pred = CmpInst::getSwappedPredicate(Pred); 589 std::swap(Op0, Op1); 590 break; 591 } 592 case CmpInst::ICMP_EQ: 593 if (match(Op1, m_Zero())) { 594 Pred = CmpInst::ICMP_ULE; 595 } else { 596 IsEq = true; 597 Pred = CmpInst::ICMP_ULE; 598 } 599 break; 600 case CmpInst::ICMP_NE: 601 if (match(Op1, m_Zero())) { 602 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 603 std::swap(Op0, Op1); 604 } else { 605 IsNe = true; 606 Pred = CmpInst::ICMP_ULE; 607 } 608 break; 609 default: 610 break; 611 } 612 613 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 614 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 615 return {}; 616 617 SmallVector<ConditionTy, 4> Preconditions; 618 bool IsSigned = CmpInst::isSigned(Pred); 619 auto &Value2Index = getValue2Index(IsSigned); 620 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 621 Preconditions, IsSigned, DL); 622 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 623 Preconditions, IsSigned, DL); 624 int64_t Offset1 = ADec.Offset; 625 int64_t Offset2 = BDec.Offset; 626 Offset1 *= -1; 627 628 auto &VariablesA = ADec.Vars; 629 auto &VariablesB = BDec.Vars; 630 631 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 632 // new entry to NewVariables. 633 DenseMap<Value *, unsigned> NewIndexMap; 634 auto GetOrAddIndex = [&Value2Index, &NewVariables, 635 &NewIndexMap](Value *V) -> unsigned { 636 auto V2I = Value2Index.find(V); 637 if (V2I != Value2Index.end()) 638 return V2I->second; 639 auto Insert = 640 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 641 if (Insert.second) 642 NewVariables.push_back(V); 643 return Insert.first->second; 644 }; 645 646 // Make sure all variables have entries in Value2Index or NewVariables. 647 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 648 GetOrAddIndex(KV.Variable); 649 650 // Build result constraint, by first adding all coefficients from A and then 651 // subtracting all coefficients from B. 652 ConstraintTy Res( 653 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 654 IsSigned, IsEq, IsNe); 655 // Collect variables that are known to be positive in all uses in the 656 // constraint. 657 DenseMap<Value *, bool> KnownNonNegativeVariables; 658 auto &R = Res.Coefficients; 659 for (const auto &KV : VariablesA) { 660 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 661 auto I = 662 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 663 I.first->second &= KV.IsKnownNonNegative; 664 } 665 666 for (const auto &KV : VariablesB) { 667 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient, 668 R[GetOrAddIndex(KV.Variable)])) 669 return {}; 670 auto I = 671 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative}); 672 I.first->second &= KV.IsKnownNonNegative; 673 } 674 675 int64_t OffsetSum; 676 if (AddOverflow(Offset1, Offset2, OffsetSum)) 677 return {}; 678 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 679 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 680 return {}; 681 R[0] = OffsetSum; 682 Res.Preconditions = std::move(Preconditions); 683 684 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 685 // variables. 686 while (!NewVariables.empty()) { 687 int64_t Last = R.back(); 688 if (Last != 0) 689 break; 690 R.pop_back(); 691 Value *RemovedV = NewVariables.pop_back_val(); 692 NewIndexMap.erase(RemovedV); 693 } 694 695 // Add extra constraints for variables that are known positive. 696 for (auto &KV : KnownNonNegativeVariables) { 697 if (!KV.second || 698 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first))) 699 continue; 700 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 701 C[GetOrAddIndex(KV.first)] = -1; 702 Res.ExtraInfo.push_back(C); 703 } 704 return Res; 705 } 706 707 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred, 708 Value *Op0, 709 Value *Op1) const { 710 Constant *NullC = Constant::getNullValue(Op0->getType()); 711 // Handle trivially true compares directly to avoid adding V UGE 0 constraints 712 // for all variables in the unsigned system. 713 if ((Pred == CmpInst::ICMP_ULE && Op0 == NullC) || 714 (Pred == CmpInst::ICMP_UGE && Op1 == NullC)) { 715 auto &Value2Index = getValue2Index(false); 716 // Return constraint that's trivially true. 717 return ConstraintTy(SmallVector<int64_t, 8>(Value2Index.size(), 0), false, 718 false, false); 719 } 720 721 // If both operands are known to be non-negative, change signed predicates to 722 // unsigned ones. This increases the reasoning effectiveness in combination 723 // with the signed <-> unsigned transfer logic. 724 if (CmpInst::isSigned(Pred) && 725 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) && 726 isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 727 Pred = CmpInst::getUnsignedPredicate(Pred); 728 729 SmallVector<Value *> NewVariables; 730 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables); 731 if (!NewVariables.empty()) 732 return {}; 733 return R; 734 } 735 736 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 737 return Coefficients.size() > 0 && 738 all_of(Preconditions, [&Info](const ConditionTy &C) { 739 return Info.doesHold(C.Pred, C.Op0, C.Op1); 740 }); 741 } 742 743 std::optional<bool> 744 ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const { 745 bool IsConditionImplied = CS.isConditionImplied(Coefficients); 746 747 if (IsEq || IsNe) { 748 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients); 749 bool IsNegatedOrEqualImplied = 750 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual); 751 752 // In order to check that `%a == %b` is true (equality), both conditions `%a 753 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq` 754 // is true), we return true if they both hold, false in the other cases. 755 if (IsConditionImplied && IsNegatedOrEqualImplied) 756 return IsEq; 757 758 auto Negated = ConstraintSystem::negate(Coefficients); 759 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 760 761 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients); 762 bool IsStrictLessThanImplied = 763 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan); 764 765 // In order to check that `%a != %b` is true (non-equality), either 766 // condition `%a > %b` or `%a < %b` must hold true. When checking for 767 // non-equality (`IsNe` is true), we return true if one of the two holds, 768 // false in the other cases. 769 if (IsNegatedImplied || IsStrictLessThanImplied) 770 return IsNe; 771 772 return std::nullopt; 773 } 774 775 if (IsConditionImplied) 776 return true; 777 778 auto Negated = ConstraintSystem::negate(Coefficients); 779 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated); 780 if (IsNegatedImplied) 781 return false; 782 783 // Neither the condition nor its negated holds, did not prove anything. 784 return std::nullopt; 785 } 786 787 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 788 Value *B) const { 789 auto R = getConstraintForSolving(Pred, A, B); 790 return R.isValid(*this) && 791 getCS(R.IsSigned).isConditionImplied(R.Coefficients); 792 } 793 794 void ConstraintInfo::transferToOtherSystem( 795 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 796 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 797 auto IsKnownNonNegative = [this](Value *V) { 798 return doesHold(CmpInst::ICMP_SGE, V, ConstantInt::get(V->getType(), 0)) || 799 isKnownNonNegative(V, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1); 800 }; 801 // Check if we can combine facts from the signed and unsigned systems to 802 // derive additional facts. 803 if (!A->getType()->isIntegerTy()) 804 return; 805 // FIXME: This currently depends on the order we add facts. Ideally we 806 // would first add all known facts and only then try to add additional 807 // facts. 808 switch (Pred) { 809 default: 810 break; 811 case CmpInst::ICMP_ULT: 812 case CmpInst::ICMP_ULE: 813 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B. 814 if (IsKnownNonNegative(B)) { 815 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 816 NumOut, DFSInStack); 817 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 818 DFSInStack); 819 } 820 break; 821 case CmpInst::ICMP_UGE: 822 case CmpInst::ICMP_UGT: 823 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B. 824 if (IsKnownNonNegative(A)) { 825 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn, 826 NumOut, DFSInStack); 827 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut, 828 DFSInStack); 829 } 830 break; 831 case CmpInst::ICMP_SLT: 832 if (IsKnownNonNegative(A)) 833 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 834 break; 835 case CmpInst::ICMP_SGT: { 836 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 837 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 838 NumOut, DFSInStack); 839 if (IsKnownNonNegative(B)) 840 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack); 841 842 break; 843 } 844 case CmpInst::ICMP_SGE: 845 if (IsKnownNonNegative(B)) 846 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 847 break; 848 } 849 } 850 851 #ifndef NDEBUG 852 853 static void dumpConstraint(ArrayRef<int64_t> C, 854 const DenseMap<Value *, unsigned> &Value2Index) { 855 ConstraintSystem CS(Value2Index); 856 CS.addVariableRowFill(C); 857 CS.dump(); 858 } 859 #endif 860 861 void State::addInfoForInductions(BasicBlock &BB) { 862 auto *L = LI.getLoopFor(&BB); 863 if (!L || L->getHeader() != &BB) 864 return; 865 866 Value *A; 867 Value *B; 868 CmpInst::Predicate Pred; 869 870 if (!match(BB.getTerminator(), 871 m_Br(m_ICmp(Pred, m_Value(A), m_Value(B)), m_Value(), m_Value()))) 872 return; 873 PHINode *PN = dyn_cast<PHINode>(A); 874 if (!PN) { 875 Pred = CmpInst::getSwappedPredicate(Pred); 876 std::swap(A, B); 877 PN = dyn_cast<PHINode>(A); 878 } 879 880 if (!PN || PN->getParent() != &BB || PN->getNumIncomingValues() != 2 || 881 !SE.isSCEVable(PN->getType())) 882 return; 883 884 BasicBlock *InLoopSucc = nullptr; 885 if (Pred == CmpInst::ICMP_NE) 886 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(0); 887 else if (Pred == CmpInst::ICMP_EQ) 888 InLoopSucc = cast<BranchInst>(BB.getTerminator())->getSuccessor(1); 889 else 890 return; 891 892 if (!L->contains(InLoopSucc) || !L->isLoopExiting(&BB) || InLoopSucc == &BB) 893 return; 894 895 auto *AR = dyn_cast_or_null<SCEVAddRecExpr>(SE.getSCEV(PN)); 896 BasicBlock *LoopPred = L->getLoopPredecessor(); 897 if (!AR || AR->getLoop() != L || !LoopPred) 898 return; 899 900 const SCEV *StartSCEV = AR->getStart(); 901 Value *StartValue = nullptr; 902 if (auto *C = dyn_cast<SCEVConstant>(StartSCEV)) { 903 StartValue = C->getValue(); 904 } else { 905 StartValue = PN->getIncomingValueForBlock(LoopPred); 906 assert(SE.getSCEV(StartValue) == StartSCEV && "inconsistent start value"); 907 } 908 909 DomTreeNode *DTN = DT.getNode(InLoopSucc); 910 auto Inc = SE.getMonotonicPredicateType(AR, CmpInst::ICMP_UGT); 911 bool MonotonicallyIncreasing = 912 Inc && *Inc == ScalarEvolution::MonotonicallyIncreasing; 913 if (MonotonicallyIncreasing) { 914 // SCEV guarantees that AR does not wrap, so PN >= StartValue can be added 915 // unconditionally. 916 WorkList.push_back( 917 FactOrCheck::getConditionFact(DTN, CmpInst::ICMP_UGE, PN, StartValue)); 918 } 919 920 APInt StepOffset; 921 if (auto *C = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 922 StepOffset = C->getAPInt(); 923 else 924 return; 925 926 // Make sure the bound B is loop-invariant. 927 if (!L->isLoopInvariant(B)) 928 return; 929 930 // Handle negative steps. 931 if (StepOffset.isNegative()) { 932 // TODO: Extend to allow steps > -1. 933 if (!(-StepOffset).isOne()) 934 return; 935 936 // AR may wrap. 937 // Add StartValue >= PN conditional on B <= StartValue which guarantees that 938 // the loop exits before wrapping with a step of -1. 939 WorkList.push_back(FactOrCheck::getConditionFact( 940 DTN, CmpInst::ICMP_UGE, StartValue, PN, 941 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 942 // Add PN > B conditional on B <= StartValue which guarantees that the loop 943 // exits when reaching B with a step of -1. 944 WorkList.push_back(FactOrCheck::getConditionFact( 945 DTN, CmpInst::ICMP_UGT, PN, B, 946 ConditionTy(CmpInst::ICMP_ULE, B, StartValue))); 947 return; 948 } 949 950 // Make sure AR either steps by 1 or that the value we compare against is a 951 // GEP based on the same start value and all offsets are a multiple of the 952 // step size, to guarantee that the induction will reach the value. 953 if (StepOffset.isZero() || StepOffset.isNegative()) 954 return; 955 956 if (!StepOffset.isOne()) { 957 auto *UpperGEP = dyn_cast<GetElementPtrInst>(B); 958 if (!UpperGEP || UpperGEP->getPointerOperand() != StartValue || 959 !UpperGEP->isInBounds()) 960 return; 961 962 MapVector<Value *, APInt> UpperVariableOffsets; 963 APInt UpperConstantOffset(StepOffset.getBitWidth(), 0); 964 const DataLayout &DL = BB.getModule()->getDataLayout(); 965 if (!UpperGEP->collectOffset(DL, StepOffset.getBitWidth(), 966 UpperVariableOffsets, UpperConstantOffset)) 967 return; 968 // All variable offsets and the constant offset have to be a multiple of the 969 // step. 970 if (!UpperConstantOffset.urem(StepOffset).isZero() || 971 any_of(UpperVariableOffsets, [&StepOffset](const auto &P) { 972 return !P.second.urem(StepOffset).isZero(); 973 })) 974 return; 975 } 976 977 // AR may wrap. Add PN >= StartValue conditional on StartValue <= B which 978 // guarantees that the loop exits before wrapping in combination with the 979 // restrictions on B and the step above. 980 if (!MonotonicallyIncreasing) { 981 WorkList.push_back(FactOrCheck::getConditionFact( 982 DTN, CmpInst::ICMP_UGE, PN, StartValue, 983 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 984 } 985 WorkList.push_back(FactOrCheck::getConditionFact( 986 DTN, CmpInst::ICMP_ULT, PN, B, 987 ConditionTy(CmpInst::ICMP_ULE, StartValue, B))); 988 } 989 990 void State::addInfoFor(BasicBlock &BB) { 991 addInfoForInductions(BB); 992 993 // True as long as long as the current instruction is guaranteed to execute. 994 bool GuaranteedToExecute = true; 995 // Queue conditions and assumes. 996 for (Instruction &I : BB) { 997 if (auto Cmp = dyn_cast<ICmpInst>(&I)) { 998 for (Use &U : Cmp->uses()) { 999 auto *UserI = getContextInstForUse(U); 1000 auto *DTN = DT.getNode(UserI->getParent()); 1001 if (!DTN) 1002 continue; 1003 WorkList.push_back(FactOrCheck::getCheck(DTN, &U)); 1004 } 1005 continue; 1006 } 1007 1008 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) { 1009 WorkList.push_back( 1010 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I))); 1011 continue; 1012 } 1013 1014 if (isa<MinMaxIntrinsic>(&I)) { 1015 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I)); 1016 continue; 1017 } 1018 1019 Value *A, *B; 1020 CmpInst::Predicate Pred; 1021 // For now, just handle assumes with a single compare as condition. 1022 if (match(&I, m_Intrinsic<Intrinsic::assume>( 1023 m_ICmp(Pred, m_Value(A), m_Value(B))))) { 1024 if (GuaranteedToExecute) { 1025 // The assume is guaranteed to execute when BB is entered, hence Cond 1026 // holds on entry to BB. 1027 WorkList.emplace_back(FactOrCheck::getConditionFact( 1028 DT.getNode(I.getParent()), Pred, A, B)); 1029 } else { 1030 WorkList.emplace_back( 1031 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I)); 1032 } 1033 } 1034 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 1035 } 1036 1037 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) { 1038 for (auto &Case : Switch->cases()) { 1039 BasicBlock *Succ = Case.getCaseSuccessor(); 1040 Value *V = Case.getCaseValue(); 1041 if (!canAddSuccessor(BB, Succ)) 1042 continue; 1043 WorkList.emplace_back(FactOrCheck::getConditionFact( 1044 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V)); 1045 } 1046 return; 1047 } 1048 1049 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 1050 if (!Br || !Br->isConditional()) 1051 return; 1052 1053 Value *Cond = Br->getCondition(); 1054 1055 // If the condition is a chain of ORs/AND and the successor only has the 1056 // current block as predecessor, queue conditions for the successor. 1057 Value *Op0, *Op1; 1058 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 1059 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1060 bool IsOr = match(Cond, m_LogicalOr()); 1061 bool IsAnd = match(Cond, m_LogicalAnd()); 1062 // If there's a select that matches both AND and OR, we need to commit to 1063 // one of the options. Arbitrarily pick OR. 1064 if (IsOr && IsAnd) 1065 IsAnd = false; 1066 1067 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 1068 if (canAddSuccessor(BB, Successor)) { 1069 SmallVector<Value *> CondWorkList; 1070 SmallPtrSet<Value *, 8> SeenCond; 1071 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 1072 if (SeenCond.insert(V).second) 1073 CondWorkList.push_back(V); 1074 }; 1075 QueueValue(Op1); 1076 QueueValue(Op0); 1077 while (!CondWorkList.empty()) { 1078 Value *Cur = CondWorkList.pop_back_val(); 1079 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 1080 WorkList.emplace_back(FactOrCheck::getConditionFact( 1081 DT.getNode(Successor), 1082 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate()) 1083 : Cmp->getPredicate(), 1084 Cmp->getOperand(0), Cmp->getOperand(1))); 1085 continue; 1086 } 1087 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 1088 QueueValue(Op1); 1089 QueueValue(Op0); 1090 continue; 1091 } 1092 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 1093 QueueValue(Op1); 1094 QueueValue(Op0); 1095 continue; 1096 } 1097 } 1098 } 1099 return; 1100 } 1101 1102 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 1103 if (!CmpI) 1104 return; 1105 if (canAddSuccessor(BB, Br->getSuccessor(0))) 1106 WorkList.emplace_back(FactOrCheck::getConditionFact( 1107 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(), 1108 CmpI->getOperand(0), CmpI->getOperand(1))); 1109 if (canAddSuccessor(BB, Br->getSuccessor(1))) 1110 WorkList.emplace_back(FactOrCheck::getConditionFact( 1111 DT.getNode(Br->getSuccessor(1)), 1112 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0), 1113 CmpI->getOperand(1))); 1114 } 1115 1116 namespace { 1117 /// Helper to keep track of a condition and if it should be treated as negated 1118 /// for reproducer construction. 1119 /// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a 1120 /// placeholder to keep the ReproducerCondStack in sync with DFSInStack. 1121 struct ReproducerEntry { 1122 ICmpInst::Predicate Pred; 1123 Value *LHS; 1124 Value *RHS; 1125 1126 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS) 1127 : Pred(Pred), LHS(LHS), RHS(RHS) {} 1128 }; 1129 } // namespace 1130 1131 /// Helper function to generate a reproducer function for simplifying \p Cond. 1132 /// The reproducer function contains a series of @llvm.assume calls, one for 1133 /// each condition in \p Stack. For each condition, the operand instruction are 1134 /// cloned until we reach operands that have an entry in \p Value2Index. Those 1135 /// will then be added as function arguments. \p DT is used to order cloned 1136 /// instructions. The reproducer function will get added to \p M, if it is 1137 /// non-null. Otherwise no reproducer function is generated. 1138 static void generateReproducer(CmpInst *Cond, Module *M, 1139 ArrayRef<ReproducerEntry> Stack, 1140 ConstraintInfo &Info, DominatorTree &DT) { 1141 if (!M) 1142 return; 1143 1144 LLVMContext &Ctx = Cond->getContext(); 1145 1146 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n"); 1147 1148 ValueToValueMapTy Old2New; 1149 SmallVector<Value *> Args; 1150 SmallPtrSet<Value *, 8> Seen; 1151 // Traverse Cond and its operands recursively until we reach a value that's in 1152 // Value2Index or not an instruction, or not a operation that 1153 // ConstraintElimination can decompose. Such values will be considered as 1154 // external inputs to the reproducer, they are collected and added as function 1155 // arguments later. 1156 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1157 auto &Value2Index = Info.getValue2Index(IsSigned); 1158 SmallVector<Value *, 4> WorkList(Ops); 1159 while (!WorkList.empty()) { 1160 Value *V = WorkList.pop_back_val(); 1161 if (!Seen.insert(V).second) 1162 continue; 1163 if (Old2New.find(V) != Old2New.end()) 1164 continue; 1165 if (isa<Constant>(V)) 1166 continue; 1167 1168 auto *I = dyn_cast<Instruction>(V); 1169 if (Value2Index.contains(V) || !I || 1170 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) { 1171 Old2New[V] = V; 1172 Args.push_back(V); 1173 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n"); 1174 } else { 1175 append_range(WorkList, I->operands()); 1176 } 1177 } 1178 }; 1179 1180 for (auto &Entry : Stack) 1181 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE) 1182 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred)); 1183 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate())); 1184 1185 SmallVector<Type *> ParamTys; 1186 for (auto *P : Args) 1187 ParamTys.push_back(P->getType()); 1188 1189 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys, 1190 /*isVarArg=*/false); 1191 Function *F = Function::Create(FTy, Function::ExternalLinkage, 1192 Cond->getModule()->getName() + 1193 Cond->getFunction()->getName() + "repro", 1194 M); 1195 // Add arguments to the reproducer function for each external value collected. 1196 for (unsigned I = 0; I < Args.size(); ++I) { 1197 F->getArg(I)->setName(Args[I]->getName()); 1198 Old2New[Args[I]] = F->getArg(I); 1199 } 1200 1201 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F); 1202 IRBuilder<> Builder(Entry); 1203 Builder.CreateRet(Builder.getTrue()); 1204 Builder.SetInsertPoint(Entry->getTerminator()); 1205 1206 // Clone instructions in \p Ops and their operands recursively until reaching 1207 // an value in Value2Index (external input to the reproducer). Update Old2New 1208 // mapping for the original and cloned instructions. Sort instructions to 1209 // clone by dominance, then insert the cloned instructions in the function. 1210 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) { 1211 SmallVector<Value *, 4> WorkList(Ops); 1212 SmallVector<Instruction *> ToClone; 1213 auto &Value2Index = Info.getValue2Index(IsSigned); 1214 while (!WorkList.empty()) { 1215 Value *V = WorkList.pop_back_val(); 1216 if (Old2New.find(V) != Old2New.end()) 1217 continue; 1218 1219 auto *I = dyn_cast<Instruction>(V); 1220 if (!Value2Index.contains(V) && I) { 1221 Old2New[V] = nullptr; 1222 ToClone.push_back(I); 1223 append_range(WorkList, I->operands()); 1224 } 1225 } 1226 1227 sort(ToClone, 1228 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); }); 1229 for (Instruction *I : ToClone) { 1230 Instruction *Cloned = I->clone(); 1231 Old2New[I] = Cloned; 1232 Old2New[I]->setName(I->getName()); 1233 Cloned->insertBefore(&*Builder.GetInsertPoint()); 1234 Cloned->dropUnknownNonDebugMetadata(); 1235 Cloned->setDebugLoc({}); 1236 } 1237 }; 1238 1239 // Materialize the assumptions for the reproducer using the entries in Stack. 1240 // That is, first clone the operands of the condition recursively until we 1241 // reach an external input to the reproducer and add them to the reproducer 1242 // function. Then add an ICmp for the condition (with the inverse predicate if 1243 // the entry is negated) and an assert using the ICmp. 1244 for (auto &Entry : Stack) { 1245 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE) 1246 continue; 1247 1248 LLVM_DEBUG( 1249 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' '; 1250 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", "; 1251 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n"); 1252 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred)); 1253 1254 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS); 1255 Builder.CreateAssumption(Cmp); 1256 } 1257 1258 // Finally, clone the condition to reproduce and remap instruction operands in 1259 // the reproducer using Old2New. 1260 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate())); 1261 Entry->getTerminator()->setOperand(0, Cond); 1262 remapInstructionsInBlocks({Entry}, Old2New); 1263 1264 assert(!verifyFunction(*F, &dbgs())); 1265 } 1266 1267 static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info, 1268 unsigned NumIn, unsigned NumOut, 1269 Instruction *ContextInst) { 1270 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 1271 1272 CmpInst::Predicate Pred = Cmp->getPredicate(); 1273 Value *A = Cmp->getOperand(0); 1274 Value *B = Cmp->getOperand(1); 1275 1276 auto R = Info.getConstraintForSolving(Pred, A, B); 1277 if (R.empty() || !R.isValid(Info)){ 1278 LLVM_DEBUG(dbgs() << " failed to decompose condition\n"); 1279 return std::nullopt; 1280 } 1281 1282 auto &CSToUse = Info.getCS(R.IsSigned); 1283 1284 // If there was extra information collected during decomposition, apply 1285 // it now and remove it immediately once we are done with reasoning 1286 // about the constraint. 1287 for (auto &Row : R.ExtraInfo) 1288 CSToUse.addVariableRow(Row); 1289 auto InfoRestorer = make_scope_exit([&]() { 1290 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 1291 CSToUse.popLastConstraint(); 1292 }); 1293 1294 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) { 1295 if (!DebugCounter::shouldExecute(EliminatedCounter)) 1296 return std::nullopt; 1297 1298 LLVM_DEBUG({ 1299 if (*ImpliedCondition) { 1300 dbgs() << "Condition " << *Cmp; 1301 } else { 1302 auto InversePred = Cmp->getInversePredicate(); 1303 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " " 1304 << *A << ", " << *B; 1305 } 1306 dbgs() << " implied by dominating constraints\n"; 1307 CSToUse.dump(); 1308 }); 1309 return ImpliedCondition; 1310 } 1311 1312 return std::nullopt; 1313 } 1314 1315 static bool checkAndReplaceCondition( 1316 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, 1317 Instruction *ContextInst, Module *ReproducerModule, 1318 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT, 1319 SmallVectorImpl<Instruction *> &ToRemove) { 1320 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) { 1321 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT); 1322 Constant *ConstantC = ConstantInt::getBool( 1323 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue); 1324 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut, 1325 ContextInst](Use &U) { 1326 auto *UserI = getContextInstForUse(U); 1327 auto *DTN = DT.getNode(UserI->getParent()); 1328 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut) 1329 return false; 1330 if (UserI->getParent() == ContextInst->getParent() && 1331 UserI->comesBefore(ContextInst)) 1332 return false; 1333 1334 // Conditions in an assume trivially simplify to true. Skip uses 1335 // in assume calls to not destroy the available information. 1336 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 1337 return !II || II->getIntrinsicID() != Intrinsic::assume; 1338 }); 1339 NumCondsRemoved++; 1340 if (Cmp->use_empty()) 1341 ToRemove.push_back(Cmp); 1342 return true; 1343 }; 1344 1345 if (auto ImpliedCondition = 1346 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst)) 1347 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition); 1348 return false; 1349 } 1350 1351 static void 1352 removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, 1353 Module *ReproducerModule, 1354 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1355 SmallVectorImpl<StackEntry> &DFSInStack) { 1356 Info.popLastConstraint(E.IsSigned); 1357 // Remove variables in the system that went out of scope. 1358 auto &Mapping = Info.getValue2Index(E.IsSigned); 1359 for (Value *V : E.ValuesToRelease) 1360 Mapping.erase(V); 1361 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 1362 DFSInStack.pop_back(); 1363 if (ReproducerModule) 1364 ReproducerCondStack.pop_back(); 1365 } 1366 1367 /// Check if the first condition for an AND implies the second. 1368 static bool checkAndSecondOpImpliedByFirst( 1369 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, 1370 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack, 1371 SmallVectorImpl<StackEntry> &DFSInStack) { 1372 1373 CmpInst::Predicate Pred; 1374 Value *A, *B; 1375 Instruction *And = CB.getContextInst(); 1376 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B)))) 1377 return false; 1378 1379 // Optimistically add fact from first condition. 1380 unsigned OldSize = DFSInStack.size(); 1381 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1382 if (OldSize == DFSInStack.size()) 1383 return false; 1384 1385 bool Changed = false; 1386 // Check if the second condition can be simplified now. 1387 if (auto ImpliedCondition = 1388 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn, 1389 CB.NumOut, CB.getContextInst())) { 1390 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition)); 1391 Changed = true; 1392 } 1393 1394 // Remove entries again. 1395 while (OldSize < DFSInStack.size()) { 1396 StackEntry E = DFSInStack.back(); 1397 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack, 1398 DFSInStack); 1399 } 1400 return Changed; 1401 } 1402 1403 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 1404 unsigned NumIn, unsigned NumOut, 1405 SmallVectorImpl<StackEntry> &DFSInStack) { 1406 // If the constraint has a pre-condition, skip the constraint if it does not 1407 // hold. 1408 SmallVector<Value *> NewVariables; 1409 auto R = getConstraint(Pred, A, B, NewVariables); 1410 1411 // TODO: Support non-equality for facts as well. 1412 if (!R.isValid(*this) || R.isNe()) 1413 return; 1414 1415 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " "; 1416 A->printAsOperand(dbgs(), false); dbgs() << ", "; 1417 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 1418 bool Added = false; 1419 auto &CSToUse = getCS(R.IsSigned); 1420 if (R.Coefficients.empty()) 1421 return; 1422 1423 Added |= CSToUse.addVariableRowFill(R.Coefficients); 1424 1425 // If R has been added to the system, add the new variables and queue it for 1426 // removal once it goes out-of-scope. 1427 if (Added) { 1428 SmallVector<Value *, 2> ValuesToRelease; 1429 auto &Value2Index = getValue2Index(R.IsSigned); 1430 for (Value *V : NewVariables) { 1431 Value2Index.insert({V, Value2Index.size() + 1}); 1432 ValuesToRelease.push_back(V); 1433 } 1434 1435 LLVM_DEBUG({ 1436 dbgs() << " constraint: "; 1437 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned)); 1438 dbgs() << "\n"; 1439 }); 1440 1441 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1442 std::move(ValuesToRelease)); 1443 1444 if (R.isEq()) { 1445 // Also add the inverted constraint for equality constraints. 1446 for (auto &Coeff : R.Coefficients) 1447 Coeff *= -1; 1448 CSToUse.addVariableRowFill(R.Coefficients); 1449 1450 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 1451 SmallVector<Value *, 2>()); 1452 } 1453 } 1454 } 1455 1456 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, 1457 SmallVectorImpl<Instruction *> &ToRemove) { 1458 bool Changed = false; 1459 IRBuilder<> Builder(II->getParent(), II->getIterator()); 1460 Value *Sub = nullptr; 1461 for (User *U : make_early_inc_range(II->users())) { 1462 if (match(U, m_ExtractValue<0>(m_Value()))) { 1463 if (!Sub) 1464 Sub = Builder.CreateSub(A, B); 1465 U->replaceAllUsesWith(Sub); 1466 Changed = true; 1467 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 1468 U->replaceAllUsesWith(Builder.getFalse()); 1469 Changed = true; 1470 } else 1471 continue; 1472 1473 if (U->use_empty()) { 1474 auto *I = cast<Instruction>(U); 1475 ToRemove.push_back(I); 1476 I->setOperand(0, PoisonValue::get(II->getType())); 1477 Changed = true; 1478 } 1479 } 1480 1481 if (II->use_empty()) { 1482 II->eraseFromParent(); 1483 Changed = true; 1484 } 1485 return Changed; 1486 } 1487 1488 static bool 1489 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 1490 SmallVectorImpl<Instruction *> &ToRemove) { 1491 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 1492 ConstraintInfo &Info) { 1493 auto R = Info.getConstraintForSolving(Pred, A, B); 1494 if (R.size() < 2 || !R.isValid(Info)) 1495 return false; 1496 1497 auto &CSToUse = Info.getCS(R.IsSigned); 1498 return CSToUse.isConditionImplied(R.Coefficients); 1499 }; 1500 1501 bool Changed = false; 1502 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 1503 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 1504 // can be simplified to a regular sub. 1505 Value *A = II->getArgOperand(0); 1506 Value *B = II->getArgOperand(1); 1507 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 1508 !DoesConditionHold(CmpInst::ICMP_SGE, B, 1509 ConstantInt::get(A->getType(), 0), Info)) 1510 return false; 1511 Changed = replaceSubOverflowUses(II, A, B, ToRemove); 1512 } 1513 return Changed; 1514 } 1515 1516 static bool eliminateConstraints(Function &F, DominatorTree &DT, LoopInfo &LI, 1517 ScalarEvolution &SE, 1518 OptimizationRemarkEmitter &ORE) { 1519 bool Changed = false; 1520 DT.updateDFSNumbers(); 1521 SmallVector<Value *> FunctionArgs; 1522 for (Value &Arg : F.args()) 1523 FunctionArgs.push_back(&Arg); 1524 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs); 1525 State S(DT, LI, SE); 1526 std::unique_ptr<Module> ReproducerModule( 1527 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr); 1528 1529 // First, collect conditions implied by branches and blocks with their 1530 // Dominator DFS in and out numbers. 1531 for (BasicBlock &BB : F) { 1532 if (!DT.getNode(&BB)) 1533 continue; 1534 S.addInfoFor(BB); 1535 } 1536 1537 // Next, sort worklist by dominance, so that dominating conditions to check 1538 // and facts come before conditions and facts dominated by them. If a 1539 // condition to check and a fact have the same numbers, conditional facts come 1540 // first. Assume facts and checks are ordered according to their relative 1541 // order in the containing basic block. Also make sure conditions with 1542 // constant operands come before conditions without constant operands. This 1543 // increases the effectiveness of the current signed <-> unsigned fact 1544 // transfer logic. 1545 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) { 1546 auto HasNoConstOp = [](const FactOrCheck &B) { 1547 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0); 1548 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1); 1549 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1); 1550 }; 1551 // If both entries have the same In numbers, conditional facts come first. 1552 // Otherwise use the relative order in the basic block. 1553 if (A.NumIn == B.NumIn) { 1554 if (A.isConditionFact() && B.isConditionFact()) { 1555 bool NoConstOpA = HasNoConstOp(A); 1556 bool NoConstOpB = HasNoConstOp(B); 1557 return NoConstOpA < NoConstOpB; 1558 } 1559 if (A.isConditionFact()) 1560 return true; 1561 if (B.isConditionFact()) 1562 return false; 1563 auto *InstA = A.getContextInst(); 1564 auto *InstB = B.getContextInst(); 1565 return InstA->comesBefore(InstB); 1566 } 1567 return A.NumIn < B.NumIn; 1568 }); 1569 1570 SmallVector<Instruction *> ToRemove; 1571 1572 // Finally, process ordered worklist and eliminate implied conditions. 1573 SmallVector<StackEntry, 16> DFSInStack; 1574 SmallVector<ReproducerEntry> ReproducerCondStack; 1575 for (FactOrCheck &CB : S.WorkList) { 1576 // First, pop entries from the stack that are out-of-scope for CB. Remove 1577 // the corresponding entry from the constraint system. 1578 while (!DFSInStack.empty()) { 1579 auto &E = DFSInStack.back(); 1580 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 1581 << "\n"); 1582 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 1583 assert(E.NumIn <= CB.NumIn); 1584 if (CB.NumOut <= E.NumOut) 1585 break; 1586 LLVM_DEBUG({ 1587 dbgs() << "Removing "; 1588 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(), 1589 Info.getValue2Index(E.IsSigned)); 1590 dbgs() << "\n"; 1591 }); 1592 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack, 1593 DFSInStack); 1594 } 1595 1596 LLVM_DEBUG(dbgs() << "Processing "); 1597 1598 // For a block, check if any CmpInsts become known based on the current set 1599 // of constraints. 1600 if (CB.isCheck()) { 1601 Instruction *Inst = CB.getInstructionToSimplify(); 1602 if (!Inst) 1603 continue; 1604 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n"); 1605 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) { 1606 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 1607 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) { 1608 bool Simplified = checkAndReplaceCondition( 1609 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(), 1610 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove); 1611 if (!Simplified && match(CB.getContextInst(), 1612 m_LogicalAnd(m_Value(), m_Specific(Inst)))) { 1613 Simplified = 1614 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(), 1615 ReproducerCondStack, DFSInStack); 1616 } 1617 Changed |= Simplified; 1618 } 1619 continue; 1620 } 1621 1622 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) { 1623 LLVM_DEBUG(dbgs() << "fact to add to the system: " 1624 << CmpInst::getPredicateName(Pred) << " "; 1625 A->printAsOperand(dbgs()); dbgs() << ", "; 1626 B->printAsOperand(dbgs(), false); dbgs() << "\n"); 1627 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) { 1628 LLVM_DEBUG( 1629 dbgs() 1630 << "Skip adding constraint because system has too many rows.\n"); 1631 return; 1632 } 1633 1634 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1635 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) 1636 ReproducerCondStack.emplace_back(Pred, A, B); 1637 1638 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 1639 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) { 1640 // Add dummy entries to ReproducerCondStack to keep it in sync with 1641 // DFSInStack. 1642 for (unsigned I = 0, 1643 E = (DFSInStack.size() - ReproducerCondStack.size()); 1644 I < E; ++I) { 1645 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE, 1646 nullptr, nullptr); 1647 } 1648 } 1649 }; 1650 1651 ICmpInst::Predicate Pred; 1652 if (!CB.isConditionFact()) { 1653 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) { 1654 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate()); 1655 AddFact(Pred, MinMax, MinMax->getLHS()); 1656 AddFact(Pred, MinMax, MinMax->getRHS()); 1657 continue; 1658 } 1659 } 1660 1661 Value *A = nullptr, *B = nullptr; 1662 if (CB.isConditionFact()) { 1663 Pred = CB.Cond.Pred; 1664 A = CB.Cond.Op0; 1665 B = CB.Cond.Op1; 1666 if (CB.DoesHold.Pred != CmpInst::BAD_ICMP_PREDICATE && 1667 !Info.doesHold(CB.DoesHold.Pred, CB.DoesHold.Op0, CB.DoesHold.Op1)) 1668 continue; 1669 } else { 1670 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>( 1671 m_ICmp(Pred, m_Value(A), m_Value(B)))); 1672 (void)Matched; 1673 assert(Matched && "Must have an assume intrinsic with a icmp operand"); 1674 } 1675 AddFact(Pred, A, B); 1676 } 1677 1678 if (ReproducerModule && !ReproducerModule->functions().empty()) { 1679 std::string S; 1680 raw_string_ostream StringS(S); 1681 ReproducerModule->print(StringS, nullptr); 1682 StringS.flush(); 1683 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F); 1684 Rem << ore::NV("module") << S; 1685 ORE.emit(Rem); 1686 } 1687 1688 #ifndef NDEBUG 1689 unsigned SignedEntries = 1690 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 1691 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 1692 "updates to CS and DFSInStack are out of sync"); 1693 assert(Info.getCS(true).size() == SignedEntries && 1694 "updates to CS and DFSInStack are out of sync"); 1695 #endif 1696 1697 for (Instruction *I : ToRemove) 1698 I->eraseFromParent(); 1699 return Changed; 1700 } 1701 1702 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 1703 FunctionAnalysisManager &AM) { 1704 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1705 auto &LI = AM.getResult<LoopAnalysis>(F); 1706 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1707 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1708 if (!eliminateConstraints(F, DT, LI, SE, ORE)) 1709 return PreservedAnalyses::all(); 1710 1711 PreservedAnalyses PA; 1712 PA.preserve<DominatorTreeAnalysis>(); 1713 PA.preserve<LoopAnalysis>(); 1714 PA.preserve<ScalarEvolutionAnalysis>(); 1715 PA.preserveSet<CFGAnalyses>(); 1716 return PA; 1717 } 1718