xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision cebe7ae88156dd275db385ffdcaa7d417f0814e2)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/DebugCounter.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Transforms/Scalar.h"
33 
34 #include <string>
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "constraint-elimination"
40 
41 STATISTIC(NumCondsRemoved, "Number of instructions removed");
42 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
43               "Controls which conditions are eliminated");
44 
45 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
46 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
47 
48 namespace {
49 
50 class ConstraintInfo;
51 
52 struct StackEntry {
53   unsigned NumIn;
54   unsigned NumOut;
55   Instruction *Condition;
56   bool IsNot;
57   bool IsSigned = false;
58   /// Variables that can be removed from the system once the stack entry gets
59   /// removed.
60   SmallVector<Value *, 2> ValuesToRelease;
61 
62   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot,
63              bool IsSigned, SmallVector<Value *, 2> ValuesToRelease)
64       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
65         IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {}
66 };
67 
68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
69 struct PreconditionTy {
70   CmpInst::Predicate Pred;
71   Value *Op0;
72   Value *Op1;
73 
74   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
75       : Pred(Pred), Op0(Op0), Op1(Op1) {}
76 };
77 
78 struct ConstraintTy {
79   SmallVector<int64_t, 8> Coefficients;
80   SmallVector<PreconditionTy, 2> Preconditions;
81 
82   bool IsSigned = false;
83   bool IsEq = false;
84 
85   ConstraintTy() = default;
86 
87   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
88       : Coefficients(Coefficients), IsSigned(IsSigned) {}
89 
90   unsigned size() const { return Coefficients.size(); }
91 
92   unsigned empty() const { return Coefficients.empty(); }
93 
94   /// Returns true if any constraint has a non-zero coefficient for any of the
95   /// newly added indices. Zero coefficients for new indices are removed. If it
96   /// returns true, no new variable need to be added to the system.
97   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
98     for (unsigned I = 0; I < NewIndices.size(); ++I) {
99       int64_t Last = Coefficients.pop_back_val();
100       if (Last != 0)
101         return true;
102     }
103     return false;
104   }
105 
106   /// Returns true if all preconditions for this list of constraints are
107   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
108   bool isValid(const ConstraintInfo &Info) const;
109 };
110 
111 /// Wrapper encapsulating separate constraint systems and corresponding value
112 /// mappings for both unsigned and signed information. Facts are added to and
113 /// conditions are checked against the corresponding system depending on the
114 /// signed-ness of their predicates. While the information is kept separate
115 /// based on signed-ness, certain conditions can be transferred between the two
116 /// systems.
117 class ConstraintInfo {
118   DenseMap<Value *, unsigned> UnsignedValue2Index;
119   DenseMap<Value *, unsigned> SignedValue2Index;
120 
121   ConstraintSystem UnsignedCS;
122   ConstraintSystem SignedCS;
123 
124 public:
125   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
126     return Signed ? SignedValue2Index : UnsignedValue2Index;
127   }
128   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
129     return Signed ? SignedValue2Index : UnsignedValue2Index;
130   }
131 
132   ConstraintSystem &getCS(bool Signed) {
133     return Signed ? SignedCS : UnsignedCS;
134   }
135   const ConstraintSystem &getCS(bool Signed) const {
136     return Signed ? SignedCS : UnsignedCS;
137   }
138 
139   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
140   void popLastNVariables(bool Signed, unsigned N) {
141     getCS(Signed).popLastNVariables(N);
142   }
143 
144   void addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
145                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
146 };
147 
148 } // namespace
149 
150 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
151 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
152 // must be nullptr. If the expression cannot be decomposed, returns an empty
153 // vector.
154 static SmallVector<std::pair<int64_t, Value *>, 4>
155 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
156           bool IsSigned) {
157 
158   auto CanUseSExt = [](ConstantInt *CI) {
159     const APInt &Val = CI->getValue();
160     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
161   };
162   // Decompose \p V used with a signed predicate.
163   if (IsSigned) {
164     if (auto *CI = dyn_cast<ConstantInt>(V)) {
165       if (CanUseSExt(CI))
166         return {{CI->getSExtValue(), nullptr}};
167     }
168 
169     return {{0, nullptr}, {1, V}};
170   }
171 
172   if (auto *CI = dyn_cast<ConstantInt>(V)) {
173     if (CI->uge(MaxConstraintValue))
174       return {};
175     return {{CI->getZExtValue(), nullptr}};
176   }
177   auto *GEP = dyn_cast<GetElementPtrInst>(V);
178   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
179     Value *Op0, *Op1;
180     ConstantInt *CI;
181 
182     // If the index is zero-extended, it is guaranteed to be positive.
183     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
184               m_ZExt(m_Value(Op0)))) {
185       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
186           CanUseSExt(CI))
187         return {{0, nullptr},
188                 {1, GEP->getPointerOperand()},
189                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
190       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
191           CanUseSExt(CI))
192         return {{CI->getSExtValue(), nullptr},
193                 {1, GEP->getPointerOperand()},
194                 {1, Op1}};
195       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
196     }
197 
198     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
199         !CI->isNegative() && CanUseSExt(CI))
200       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
201 
202     SmallVector<std::pair<int64_t, Value *>, 4> Result;
203     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
204               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
205         CanUseSExt(CI))
206       Result = {{0, nullptr},
207                 {1, GEP->getPointerOperand()},
208                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
209     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
210                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
211              CanUseSExt(CI))
212       Result = {{CI->getSExtValue(), nullptr},
213                 {1, GEP->getPointerOperand()},
214                 {1, Op0}};
215     else {
216       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
217       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
218     }
219     // If Op0 is signed non-negative, the GEP is increasing monotonically and
220     // can be de-composed.
221     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
222                                ConstantInt::get(Op0->getType(), 0));
223     return Result;
224   }
225 
226   Value *Op0;
227   if (match(V, m_ZExt(m_Value(Op0))))
228     V = Op0;
229 
230   Value *Op1;
231   ConstantInt *CI;
232   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
233       !CI->uge(MaxConstraintValue))
234     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
235   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
236       CanUseSExt(CI)) {
237     Preconditions.emplace_back(
238         CmpInst::ICMP_UGE, Op0,
239         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
240     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
241   }
242   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
243     return {{0, nullptr}, {1, Op0}, {1, Op1}};
244 
245   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
246     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
247   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
248     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
249 
250   return {{0, nullptr}, {1, V}};
251 }
252 
253 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
254 /// Value2Index. Additional indices for newly discovered values are added to \p
255 /// NewIndices.
256 static ConstraintTy
257 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
258               const DenseMap<Value *, unsigned> &Value2Index,
259               DenseMap<Value *, unsigned> &NewIndices) {
260   bool IsEq = false;
261   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
262   switch (Pred) {
263   case CmpInst::ICMP_UGT:
264   case CmpInst::ICMP_UGE:
265   case CmpInst::ICMP_SGT:
266   case CmpInst::ICMP_SGE: {
267     Pred = CmpInst::getSwappedPredicate(Pred);
268     std::swap(Op0, Op1);
269     break;
270   }
271   case CmpInst::ICMP_EQ:
272     if (match(Op1, m_Zero())) {
273       Pred = CmpInst::ICMP_ULE;
274     } else {
275       IsEq = true;
276       Pred = CmpInst::ICMP_ULE;
277     }
278     break;
279   case CmpInst::ICMP_NE:
280     if (!match(Op1, m_Zero()))
281       return {};
282     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
283     std::swap(Op0, Op1);
284     break;
285   default:
286     break;
287   }
288 
289   // Only ULE and ULT predicates are supported at the moment.
290   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
291       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
292     return {};
293 
294   SmallVector<PreconditionTy, 4> Preconditions;
295   bool IsSigned = CmpInst::isSigned(Pred);
296   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
297                         Preconditions, IsSigned);
298   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
299                         Preconditions, IsSigned);
300   // Skip if decomposing either of the values failed.
301   if (ADec.empty() || BDec.empty())
302     return {};
303 
304   int64_t Offset1 = ADec[0].first;
305   int64_t Offset2 = BDec[0].first;
306   Offset1 *= -1;
307 
308   // Create iterator ranges that skip the constant-factor.
309   auto VariablesA = llvm::drop_begin(ADec);
310   auto VariablesB = llvm::drop_begin(BDec);
311 
312   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
313   // new entry to NewIndices.
314   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
315     auto V2I = Value2Index.find(V);
316     if (V2I != Value2Index.end())
317       return V2I->second;
318     auto Insert =
319         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
320     return Insert.first->second;
321   };
322 
323   // Make sure all variables have entries in Value2Index or NewIndices.
324   for (const auto &KV :
325        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
326     GetOrAddIndex(KV.second);
327 
328   // Build result constraint, by first adding all coefficients from A and then
329   // subtracting all coefficients from B.
330   ConstraintTy Res(
331       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
332       IsSigned);
333   Res.IsEq = IsEq;
334   auto &R = Res.Coefficients;
335   for (const auto &KV : VariablesA)
336     R[GetOrAddIndex(KV.second)] += KV.first;
337 
338   for (const auto &KV : VariablesB)
339     R[GetOrAddIndex(KV.second)] -= KV.first;
340 
341   int64_t OffsetSum;
342   if (AddOverflow(Offset1, Offset2, OffsetSum))
343     return {};
344   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
345     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
346       return {};
347   R[0] = OffsetSum;
348   Res.Preconditions = std::move(Preconditions);
349   return Res;
350 }
351 
352 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info,
353                                   DenseMap<Value *, unsigned> &NewIndices) {
354   return getConstraint(
355       Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1),
356       Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices);
357 }
358 
359 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
360   return Coefficients.size() > 0 &&
361          all_of(Preconditions, [&Info](const PreconditionTy &C) {
362            DenseMap<Value *, unsigned> NewIndices;
363            auto R = getConstraint(
364                C.Pred, C.Op0, C.Op1,
365                Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices);
366            // TODO: properly check NewIndices.
367            return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
368                   R.size() >= 1 &&
369                   Info.getCS(CmpInst::isSigned(C.Pred))
370                       .isConditionImplied(R.Coefficients);
371          });
372 }
373 
374 namespace {
375 /// Represents either a condition that holds on entry to a block or a basic
376 /// block, with their respective Dominator DFS in and out numbers.
377 struct ConstraintOrBlock {
378   unsigned NumIn;
379   unsigned NumOut;
380   bool IsBlock;
381   bool Not;
382   union {
383     BasicBlock *BB;
384     CmpInst *Condition;
385   };
386 
387   ConstraintOrBlock(DomTreeNode *DTN)
388       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
389         BB(DTN->getBlock()) {}
390   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
391       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
392         Not(Not), Condition(Condition) {}
393 };
394 
395 /// Keep state required to build worklist.
396 struct State {
397   DominatorTree &DT;
398   SmallVector<ConstraintOrBlock, 64> WorkList;
399 
400   State(DominatorTree &DT) : DT(DT) {}
401 
402   /// Process block \p BB and add known facts to work-list.
403   void addInfoFor(BasicBlock &BB);
404 
405   /// Returns true if we can add a known condition from BB to its successor
406   /// block Succ. Each predecessor of Succ can either be BB or be dominated
407   /// by Succ (e.g. the case when adding a condition from a pre-header to a
408   /// loop header).
409   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
410     if (BB.getSingleSuccessor()) {
411       assert(BB.getSingleSuccessor() == Succ);
412       return DT.properlyDominates(&BB, Succ);
413     }
414     return any_of(successors(&BB),
415                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
416            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
417              return Pred == &BB || DT.dominates(Succ, Pred);
418            });
419   }
420 };
421 
422 } // namespace
423 
424 #ifndef NDEBUG
425 static void dumpWithNames(ConstraintTy &C,
426                           DenseMap<Value *, unsigned> &Value2Index) {
427   SmallVector<std::string> Names(Value2Index.size(), "");
428   for (auto &KV : Value2Index) {
429     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
430   }
431   ConstraintSystem CS;
432   CS.addVariableRowFill(C.Coefficients);
433   CS.dump(Names);
434 }
435 #endif
436 
437 void State::addInfoFor(BasicBlock &BB) {
438   WorkList.emplace_back(DT.getNode(&BB));
439 
440   // True as long as long as the current instruction is guaranteed to execute.
441   bool GuaranteedToExecute = true;
442   // Scan BB for assume calls.
443   // TODO: also use this scan to queue conditions to simplify, so we can
444   // interleave facts from assumes and conditions to simplify in a single
445   // basic block. And to skip another traversal of each basic block when
446   // simplifying.
447   for (Instruction &I : BB) {
448     Value *Cond;
449     // For now, just handle assumes with a single compare as condition.
450     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
451         isa<ICmpInst>(Cond)) {
452       if (GuaranteedToExecute) {
453         // The assume is guaranteed to execute when BB is entered, hence Cond
454         // holds on entry to BB.
455         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
456       } else {
457         // Otherwise the condition only holds in the successors.
458         for (BasicBlock *Succ : successors(&BB)) {
459           if (!canAddSuccessor(BB, Succ))
460             continue;
461           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
462         }
463       }
464     }
465     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
466   }
467 
468   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
469   if (!Br || !Br->isConditional())
470     return;
471 
472   // If the condition is an OR of 2 compares and the false successor only has
473   // the current block as predecessor, queue both negated conditions for the
474   // false successor.
475   Value *Op0, *Op1;
476   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
477       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
478     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
479     if (canAddSuccessor(BB, FalseSuccessor)) {
480       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
481                             true);
482       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
483                             true);
484     }
485     return;
486   }
487 
488   // If the condition is an AND of 2 compares and the true successor only has
489   // the current block as predecessor, queue both conditions for the true
490   // successor.
491   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
492       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
493     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
494     if (canAddSuccessor(BB, TrueSuccessor)) {
495       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
496                             false);
497       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
498                             false);
499     }
500     return;
501   }
502 
503   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
504   if (!CmpI)
505     return;
506   if (canAddSuccessor(BB, Br->getSuccessor(0)))
507     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
508   if (canAddSuccessor(BB, Br->getSuccessor(1)))
509     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
510 }
511 
512 void ConstraintInfo::addFact(CmpInst *Condition, bool IsNegated, unsigned NumIn,
513                              unsigned NumOut,
514                              SmallVectorImpl<StackEntry> &DFSInStack) {
515   // If the constraint has a pre-condition, skip the constraint if it does not
516   // hold.
517   DenseMap<Value *, unsigned> NewIndices;
518   auto R = getConstraint(Condition, *this, NewIndices);
519   if (!R.isValid(*this))
520     return;
521 
522   LLVM_DEBUG(dbgs() << "Adding " << *Condition << " " << IsNegated << "\n");
523   bool Added = false;
524   assert(CmpInst::isSigned(Condition->getPredicate()) == R.IsSigned &&
525          "condition and constraint signs must match");
526   auto &CSToUse = getCS(R.IsSigned);
527   if (R.Coefficients.empty())
528     return;
529 
530   Added |= CSToUse.addVariableRowFill(R.Coefficients);
531 
532   // If R has been added to the system, queue it for removal once it goes
533   // out-of-scope.
534   if (Added) {
535     SmallVector<Value *, 2> ValuesToRelease;
536     for (auto &KV : NewIndices) {
537       getValue2Index(R.IsSigned).insert(KV);
538       ValuesToRelease.push_back(KV.first);
539     }
540 
541     LLVM_DEBUG({
542       dbgs() << "  constraint: ";
543       dumpWithNames(R, getValue2Index(R.IsSigned));
544     });
545 
546     DFSInStack.emplace_back(NumIn, NumOut, Condition, IsNegated, R.IsSigned,
547                             ValuesToRelease);
548 
549     if (R.IsEq) {
550       // Also add the inverted constraint for equality constraints.
551       for (auto &Coeff : R.Coefficients)
552         Coeff *= -1;
553       CSToUse.addVariableRowFill(R.Coefficients);
554 
555       DFSInStack.emplace_back(NumIn, NumOut, Condition, IsNegated, R.IsSigned,
556                               SmallVector<Value *, 2>());
557     }
558   }
559 }
560 
561 static void
562 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
563                           SmallVectorImpl<Instruction *> &ToRemove) {
564   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
565                               ConstraintInfo &Info) {
566     DenseMap<Value *, unsigned> NewIndices;
567     auto R = getConstraint(
568         Pred, A, B, Info.getValue2Index(CmpInst::isSigned(Pred)), NewIndices);
569     if (R.size() < 2 || R.needsNewIndices(NewIndices) || !R.isValid(Info))
570       return false;
571 
572     auto &CSToUse = Info.getCS(CmpInst::isSigned(Pred));
573     return CSToUse.isConditionImplied(R.Coefficients);
574   };
575 
576   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
577     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
578     // can be simplified to a regular sub.
579     Value *A = II->getArgOperand(0);
580     Value *B = II->getArgOperand(1);
581     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
582         !DoesConditionHold(CmpInst::ICMP_SGE, B,
583                            ConstantInt::get(A->getType(), 0), Info))
584       return;
585 
586     IRBuilder<> Builder(II->getParent(), II->getIterator());
587     Value *Sub = nullptr;
588     for (User *U : make_early_inc_range(II->users())) {
589       if (match(U, m_ExtractValue<0>(m_Value()))) {
590         if (!Sub)
591           Sub = Builder.CreateSub(A, B);
592         U->replaceAllUsesWith(Sub);
593       } else if (match(U, m_ExtractValue<1>(m_Value())))
594         U->replaceAllUsesWith(Builder.getFalse());
595       else
596         continue;
597 
598       if (U->use_empty()) {
599         auto *I = cast<Instruction>(U);
600         ToRemove.push_back(I);
601         I->setOperand(0, PoisonValue::get(II->getType()));
602       }
603     }
604 
605     if (II->use_empty())
606       II->eraseFromParent();
607   }
608 }
609 
610 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
611   bool Changed = false;
612   DT.updateDFSNumbers();
613 
614   ConstraintInfo Info;
615   State S(DT);
616 
617   // First, collect conditions implied by branches and blocks with their
618   // Dominator DFS in and out numbers.
619   for (BasicBlock &BB : F) {
620     if (!DT.getNode(&BB))
621       continue;
622     S.addInfoFor(BB);
623   }
624 
625   // Next, sort worklist by dominance, so that dominating blocks and conditions
626   // come before blocks and conditions dominated by them. If a block and a
627   // condition have the same numbers, the condition comes before the block, as
628   // it holds on entry to the block.
629   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
630     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
631   });
632 
633   SmallVector<Instruction *> ToRemove;
634 
635   // Finally, process ordered worklist and eliminate implied conditions.
636   SmallVector<StackEntry, 16> DFSInStack;
637   for (ConstraintOrBlock &CB : S.WorkList) {
638     // First, pop entries from the stack that are out-of-scope for CB. Remove
639     // the corresponding entry from the constraint system.
640     while (!DFSInStack.empty()) {
641       auto &E = DFSInStack.back();
642       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
643                         << "\n");
644       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
645       assert(E.NumIn <= CB.NumIn);
646       if (CB.NumOut <= E.NumOut)
647         break;
648       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
649                         << "\n");
650       Info.popLastConstraint(E.IsSigned);
651       // Remove variables in the system that went out of scope.
652       auto &Mapping = Info.getValue2Index(E.IsSigned);
653       for (Value *V : E.ValuesToRelease)
654         Mapping.erase(V);
655       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
656       DFSInStack.pop_back();
657     }
658 
659     LLVM_DEBUG({
660       dbgs() << "Processing ";
661       if (CB.IsBlock)
662         dbgs() << *CB.BB;
663       else
664         dbgs() << *CB.Condition;
665       dbgs() << "\n";
666     });
667 
668     // For a block, check if any CmpInsts become known based on the current set
669     // of constraints.
670     if (CB.IsBlock) {
671       for (Instruction &I : make_early_inc_range(*CB.BB)) {
672         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
673           tryToSimplifyOverflowMath(II, Info, ToRemove);
674           continue;
675         }
676         auto *Cmp = dyn_cast<ICmpInst>(&I);
677         if (!Cmp)
678           continue;
679 
680         DenseMap<Value *, unsigned> NewIndices;
681         auto R = getConstraint(Cmp, Info, NewIndices);
682         if (R.IsEq || R.empty() || R.needsNewIndices(NewIndices) ||
683             !R.isValid(Info))
684           continue;
685 
686         auto &CSToUse = Info.getCS(R.IsSigned);
687         if (CSToUse.isConditionImplied(R.Coefficients)) {
688           if (!DebugCounter::shouldExecute(EliminatedCounter))
689             continue;
690 
691           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
692                             << " implied by dominating constraints\n");
693           LLVM_DEBUG({
694             for (auto &E : reverse(DFSInStack))
695               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
696           });
697           Cmp->replaceUsesWithIf(
698               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
699                 // Conditions in an assume trivially simplify to true. Skip uses
700                 // in assume calls to not destroy the available information.
701                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
702                 return !II || II->getIntrinsicID() != Intrinsic::assume;
703               });
704           NumCondsRemoved++;
705           Changed = true;
706         }
707         if (CSToUse.isConditionImplied(
708                 ConstraintSystem::negate(R.Coefficients))) {
709           if (!DebugCounter::shouldExecute(EliminatedCounter))
710             continue;
711 
712           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
713                             << " implied by dominating constraints\n");
714           LLVM_DEBUG({
715             for (auto &E : reverse(DFSInStack))
716               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
717           });
718           Cmp->replaceAllUsesWith(
719               ConstantInt::getFalse(F.getParent()->getContext()));
720           NumCondsRemoved++;
721           Changed = true;
722         }
723       }
724       continue;
725     }
726 
727     // Set up a function to restore the predicate at the end of the scope if it
728     // has been negated. Negate the predicate in-place, if required.
729     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
730     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
731       if (CB.Not && CI)
732         CI->setPredicate(CI->getInversePredicate());
733     });
734     if (CB.Not) {
735       if (CI) {
736         CI->setPredicate(CI->getInversePredicate());
737       } else {
738         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
739         continue;
740       }
741     }
742 
743     // Otherwise, add the condition to the system and stack, if we can transform
744     // it into a constraint.
745     Info.addFact(CB.Condition, CB.Not, CB.NumIn, CB.NumOut, DFSInStack);
746   }
747 
748 #ifndef NDEBUG
749   unsigned SignedEntries =
750       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
751   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
752          "updates to CS and DFSInStack are out of sync");
753   assert(Info.getCS(true).size() == SignedEntries &&
754          "updates to CS and DFSInStack are out of sync");
755 #endif
756 
757   for (Instruction *I : ToRemove)
758     I->eraseFromParent();
759   return Changed;
760 }
761 
762 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
763                                                  FunctionAnalysisManager &AM) {
764   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
765   if (!eliminateConstraints(F, DT))
766     return PreservedAnalyses::all();
767 
768   PreservedAnalyses PA;
769   PA.preserve<DominatorTreeAnalysis>();
770   PA.preserveSet<CFGAnalyses>();
771   return PA;
772 }
773 
774 namespace {
775 
776 class ConstraintElimination : public FunctionPass {
777 public:
778   static char ID;
779 
780   ConstraintElimination() : FunctionPass(ID) {
781     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
782   }
783 
784   bool runOnFunction(Function &F) override {
785     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
786     return eliminateConstraints(F, DT);
787   }
788 
789   void getAnalysisUsage(AnalysisUsage &AU) const override {
790     AU.setPreservesCFG();
791     AU.addRequired<DominatorTreeWrapperPass>();
792     AU.addPreserved<GlobalsAAWrapperPass>();
793     AU.addPreserved<DominatorTreeWrapperPass>();
794   }
795 };
796 
797 } // end anonymous namespace
798 
799 char ConstraintElimination::ID = 0;
800 
801 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
802                       "Constraint Elimination", false, false)
803 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
804 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
805 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
806                     "Constraint Elimination", false, false)
807 
808 FunctionPass *llvm::createConstraintEliminationPass() {
809   return new ConstraintElimination();
810 }
811