xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision c59d95f6a47c81e0f9eae37625b6ee14022e06a2)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/DebugCounter.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Transforms/Scalar.h"
32 
33 #include <string>
34 
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "constraint-elimination"
39 
40 STATISTIC(NumCondsRemoved, "Number of instructions removed");
41 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
42               "Controls which conditions are eliminated");
43 
44 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
45 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
46 
47 namespace {
48 
49 class ConstraintInfo;
50 
51 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
52 struct PreconditionTy {
53   CmpInst::Predicate Pred;
54   Value *Op0;
55   Value *Op1;
56 
57   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
58       : Pred(Pred), Op0(Op0), Op1(Op1) {}
59 };
60 
61 struct ConstraintTy {
62   SmallVector<int64_t, 8> Coefficients;
63   SmallVector<PreconditionTy, 2> Preconditions;
64 
65   bool IsSigned = false;
66   bool IsEq = false;
67 
68   ConstraintTy() = default;
69 
70   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
71       : Coefficients(Coefficients), IsSigned(IsSigned) {}
72 
73   unsigned size() const { return Coefficients.size(); }
74 
75   unsigned empty() const { return Coefficients.empty(); }
76 
77   /// Returns true if any constraint has a non-zero coefficient for any of the
78   /// newly added indices. Zero coefficients for new indices are removed. If it
79   /// returns true, no new variable need to be added to the system.
80   bool needsNewIndices(const DenseMap<Value *, unsigned> &NewIndices) {
81     for (unsigned I = 0; I < NewIndices.size(); ++I) {
82       int64_t Last = Coefficients.pop_back_val();
83       if (Last != 0)
84         return true;
85     }
86     return false;
87   }
88 
89   /// Returns true if all preconditions for this list of constraints are
90   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
91   bool isValid(const ConstraintInfo &Info) const;
92 
93   /// Returns true if there is exactly one constraint in the list and isValid is
94   /// also true.
95   bool isValidSingle(const ConstraintInfo &Info) const {
96     if (size() != 1)
97       return false;
98     return isValid(Info);
99   }
100 };
101 
102 /// Wrapper encapsulating separate constraint systems and corresponding value
103 /// mappings for both unsigned and signed information. Facts are added to and
104 /// conditions are checked against the corresponding system depending on the
105 /// signed-ness of their predicates. While the information is kept separate
106 /// based on signed-ness, certain conditions can be transferred between the two
107 /// systems.
108 class ConstraintInfo {
109   DenseMap<Value *, unsigned> UnsignedValue2Index;
110   DenseMap<Value *, unsigned> SignedValue2Index;
111 
112   ConstraintSystem UnsignedCS;
113   ConstraintSystem SignedCS;
114 
115 public:
116   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
117     return Signed ? SignedValue2Index : UnsignedValue2Index;
118   }
119   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
120     return Signed ? SignedValue2Index : UnsignedValue2Index;
121   }
122 
123   ConstraintSystem &getCS(bool Signed) {
124     return Signed ? SignedCS : UnsignedCS;
125   }
126   const ConstraintSystem &getCS(bool Signed) const {
127     return Signed ? SignedCS : UnsignedCS;
128   }
129 
130   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
131   void popLastNVariables(bool Signed, unsigned N) {
132     getCS(Signed).popLastNVariables(N);
133   }
134 };
135 
136 } // namespace
137 
138 // Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
139 // sum of the pairs equals \p V.  The first pair is the constant-factor and X
140 // must be nullptr. If the expression cannot be decomposed, returns an empty
141 // vector.
142 static SmallVector<std::pair<int64_t, Value *>, 4>
143 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
144           bool IsSigned) {
145 
146   auto CanUseSExt = [](ConstantInt *CI) {
147     const APInt &Val = CI->getValue();
148     return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
149   };
150   // Decompose \p V used with a signed predicate.
151   if (IsSigned) {
152     if (auto *CI = dyn_cast<ConstantInt>(V)) {
153       if (CanUseSExt(CI))
154         return {{CI->getSExtValue(), nullptr}};
155     }
156 
157     return {{0, nullptr}, {1, V}};
158   }
159 
160   if (auto *CI = dyn_cast<ConstantInt>(V)) {
161     if (CI->uge(MaxConstraintValue))
162       return {};
163     return {{CI->getZExtValue(), nullptr}};
164   }
165   auto *GEP = dyn_cast<GetElementPtrInst>(V);
166   if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) {
167     Value *Op0, *Op1;
168     ConstantInt *CI;
169 
170     // If the index is zero-extended, it is guaranteed to be positive.
171     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
172               m_ZExt(m_Value(Op0)))) {
173       if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) &&
174           CanUseSExt(CI))
175         return {{0, nullptr},
176                 {1, GEP->getPointerOperand()},
177                 {std::pow(int64_t(2), CI->getSExtValue()), Op1}};
178       if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) &&
179           CanUseSExt(CI))
180         return {{CI->getSExtValue(), nullptr},
181                 {1, GEP->getPointerOperand()},
182                 {1, Op1}};
183       return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
184     }
185 
186     if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) &&
187         !CI->isNegative() && CanUseSExt(CI))
188       return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}};
189 
190     SmallVector<std::pair<int64_t, Value *>, 4> Result;
191     if (match(GEP->getOperand(GEP->getNumOperands() - 1),
192               m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) &&
193         CanUseSExt(CI))
194       Result = {{0, nullptr},
195                 {1, GEP->getPointerOperand()},
196                 {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
197     else if (match(GEP->getOperand(GEP->getNumOperands() - 1),
198                    m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
199              CanUseSExt(CI))
200       Result = {{CI->getSExtValue(), nullptr},
201                 {1, GEP->getPointerOperand()},
202                 {1, Op0}};
203     else {
204       Op0 = GEP->getOperand(GEP->getNumOperands() - 1);
205       Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}};
206     }
207     // If Op0 is signed non-negative, the GEP is increasing monotonically and
208     // can be de-composed.
209     Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
210                                ConstantInt::get(Op0->getType(), 0));
211     return Result;
212   }
213 
214   Value *Op0;
215   if (match(V, m_ZExt(m_Value(Op0))))
216     V = Op0;
217 
218   Value *Op1;
219   ConstantInt *CI;
220   if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))) &&
221       !CI->uge(MaxConstraintValue))
222     return {{CI->getZExtValue(), nullptr}, {1, Op0}};
223   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
224       CanUseSExt(CI)) {
225     Preconditions.emplace_back(
226         CmpInst::ICMP_UGE, Op0,
227         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
228     return {{CI->getSExtValue(), nullptr}, {1, Op0}};
229   }
230   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
231     return {{0, nullptr}, {1, Op0}, {1, Op1}};
232 
233   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI))
234     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
235   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
236     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
237 
238   return {{0, nullptr}, {1, V}};
239 }
240 
241 /// Turn a condition \p CmpI into a vector of constraints, using indices from \p
242 /// Value2Index. Additional indices for newly discovered values are added to \p
243 /// NewIndices.
244 static ConstraintTy
245 getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
246               const DenseMap<Value *, unsigned> &Value2Index,
247               DenseMap<Value *, unsigned> &NewIndices) {
248   bool IsEq = false;
249   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
250   switch (Pred) {
251   case CmpInst::ICMP_UGT:
252   case CmpInst::ICMP_UGE:
253   case CmpInst::ICMP_SGT:
254   case CmpInst::ICMP_SGE: {
255     Pred = CmpInst::getSwappedPredicate(Pred);
256     std::swap(Op0, Op1);
257     break;
258   }
259   case CmpInst::ICMP_EQ:
260     if (match(Op1, m_Zero())) {
261       Pred = CmpInst::ICMP_ULE;
262     } else {
263       IsEq = true;
264       Pred = CmpInst::ICMP_ULE;
265     }
266     break;
267   case CmpInst::ICMP_NE:
268     if (!match(Op1, m_Zero()))
269       return {};
270     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
271     std::swap(Op0, Op1);
272     break;
273   default:
274     break;
275   }
276 
277   // Only ULE and ULT predicates are supported at the moment.
278   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
279       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
280     return {};
281 
282   SmallVector<PreconditionTy, 4> Preconditions;
283   bool IsSigned = CmpInst::isSigned(Pred);
284   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
285                         Preconditions, IsSigned);
286   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
287                         Preconditions, IsSigned);
288   // Skip if decomposing either of the values failed.
289   if (ADec.empty() || BDec.empty())
290     return {};
291 
292   // Skip trivial constraints without any variables.
293   if (ADec.size() == 1 && BDec.size() == 1)
294     return {};
295 
296   int64_t Offset1 = ADec[0].first;
297   int64_t Offset2 = BDec[0].first;
298   Offset1 *= -1;
299 
300   // Create iterator ranges that skip the constant-factor.
301   auto VariablesA = llvm::drop_begin(ADec);
302   auto VariablesB = llvm::drop_begin(BDec);
303 
304   // First try to look up \p V in Value2Index and NewIndices. Otherwise add a
305   // new entry to NewIndices.
306   auto GetOrAddIndex = [&Value2Index, &NewIndices](Value *V) -> unsigned {
307     auto V2I = Value2Index.find(V);
308     if (V2I != Value2Index.end())
309       return V2I->second;
310     auto Insert =
311         NewIndices.insert({V, Value2Index.size() + NewIndices.size() + 1});
312     return Insert.first->second;
313   };
314 
315   // Make sure all variables have entries in Value2Index or NewIndices.
316   for (const auto &KV :
317        concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
318     GetOrAddIndex(KV.second);
319 
320   // Build result constraint, by first adding all coefficients from A and then
321   // subtracting all coefficients from B.
322   ConstraintTy Res(
323       SmallVector<int64_t, 8>(Value2Index.size() + NewIndices.size() + 1, 0),
324       IsSigned);
325   Res.IsEq = IsEq;
326   auto &R = Res.Coefficients;
327   for (const auto &KV : VariablesA)
328     R[GetOrAddIndex(KV.second)] += KV.first;
329 
330   for (const auto &KV : VariablesB)
331     R[GetOrAddIndex(KV.second)] -= KV.first;
332 
333   int64_t OffsetSum;
334   if (AddOverflow(Offset1, Offset2, OffsetSum))
335     return {};
336   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
337     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
338       return {};
339   R[0] = OffsetSum;
340   Res.Preconditions = std::move(Preconditions);
341   return Res;
342 }
343 
344 static ConstraintTy getConstraint(CmpInst *Cmp, ConstraintInfo &Info,
345                                   DenseMap<Value *, unsigned> &NewIndices) {
346   return getConstraint(
347       Cmp->getPredicate(), Cmp->getOperand(0), Cmp->getOperand(1),
348       Info.getValue2Index(CmpInst::isSigned(Cmp->getPredicate())), NewIndices);
349 }
350 
351 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
352   return Coefficients.size() > 0 &&
353          all_of(Preconditions, [&Info](const PreconditionTy &C) {
354            DenseMap<Value *, unsigned> NewIndices;
355            auto R = getConstraint(
356                C.Pred, C.Op0, C.Op1,
357                Info.getValue2Index(CmpInst::isSigned(C.Pred)), NewIndices);
358            // TODO: properly check NewIndices.
359            return NewIndices.empty() && R.Preconditions.empty() && !R.IsEq &&
360                   R.size() >= 2 &&
361                   Info.getCS(CmpInst::isSigned(C.Pred))
362                       .isConditionImplied(R.Coefficients);
363          });
364 }
365 
366 namespace {
367 /// Represents either a condition that holds on entry to a block or a basic
368 /// block, with their respective Dominator DFS in and out numbers.
369 struct ConstraintOrBlock {
370   unsigned NumIn;
371   unsigned NumOut;
372   bool IsBlock;
373   bool Not;
374   union {
375     BasicBlock *BB;
376     CmpInst *Condition;
377   };
378 
379   ConstraintOrBlock(DomTreeNode *DTN)
380       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
381         BB(DTN->getBlock()) {}
382   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
383       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
384         Not(Not), Condition(Condition) {}
385 };
386 
387 struct StackEntry {
388   unsigned NumIn;
389   unsigned NumOut;
390   Instruction *Condition;
391   bool IsNot;
392   bool IsSigned = false;
393   /// Variables that can be removed from the system once the stack entry gets
394   /// removed.
395   SmallVector<Value *, 2> ValuesToRelease;
396 
397   StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot,
398              bool IsSigned, SmallVector<Value *, 2> ValuesToRelease)
399       : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot),
400         IsSigned(IsSigned), ValuesToRelease(ValuesToRelease) {}
401 };
402 
403 /// Keep state required to build worklist.
404 struct State {
405   DominatorTree &DT;
406   SmallVector<ConstraintOrBlock, 64> WorkList;
407 
408   State(DominatorTree &DT) : DT(DT) {}
409 
410   /// Process block \p BB and add known facts to work-list.
411   void addInfoFor(BasicBlock &BB);
412 
413   /// Returns true if we can add a known condition from BB to its successor
414   /// block Succ. Each predecessor of Succ can either be BB or be dominated
415   /// by Succ (e.g. the case when adding a condition from a pre-header to a
416   /// loop header).
417   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
418     if (BB.getSingleSuccessor()) {
419       assert(BB.getSingleSuccessor() == Succ);
420       return DT.properlyDominates(&BB, Succ);
421     }
422     return any_of(successors(&BB),
423                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
424            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
425              return Pred == &BB || DT.dominates(Succ, Pred);
426            });
427   }
428 };
429 
430 } // namespace
431 
432 #ifndef NDEBUG
433 static void dumpWithNames(ConstraintTy &C,
434                           DenseMap<Value *, unsigned> &Value2Index) {
435   SmallVector<std::string> Names(Value2Index.size(), "");
436   for (auto &KV : Value2Index) {
437     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
438   }
439   ConstraintSystem CS;
440   CS.addVariableRowFill(C.Coefficients);
441   CS.dump(Names);
442 }
443 #endif
444 
445 void State::addInfoFor(BasicBlock &BB) {
446   WorkList.emplace_back(DT.getNode(&BB));
447 
448   // True as long as long as the current instruction is guaranteed to execute.
449   bool GuaranteedToExecute = true;
450   // Scan BB for assume calls.
451   // TODO: also use this scan to queue conditions to simplify, so we can
452   // interleave facts from assumes and conditions to simplify in a single
453   // basic block. And to skip another traversal of each basic block when
454   // simplifying.
455   for (Instruction &I : BB) {
456     Value *Cond;
457     // For now, just handle assumes with a single compare as condition.
458     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
459         isa<ICmpInst>(Cond)) {
460       if (GuaranteedToExecute) {
461         // The assume is guaranteed to execute when BB is entered, hence Cond
462         // holds on entry to BB.
463         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
464       } else {
465         // Otherwise the condition only holds in the successors.
466         for (BasicBlock *Succ : successors(&BB)) {
467           if (!canAddSuccessor(BB, Succ))
468             continue;
469           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
470         }
471       }
472     }
473     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
474   }
475 
476   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
477   if (!Br || !Br->isConditional())
478     return;
479 
480   // If the condition is an OR of 2 compares and the false successor only has
481   // the current block as predecessor, queue both negated conditions for the
482   // false successor.
483   Value *Op0, *Op1;
484   if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
485       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
486     BasicBlock *FalseSuccessor = Br->getSuccessor(1);
487     if (canAddSuccessor(BB, FalseSuccessor)) {
488       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op0),
489                             true);
490       WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<ICmpInst>(Op1),
491                             true);
492     }
493     return;
494   }
495 
496   // If the condition is an AND of 2 compares and the true successor only has
497   // the current block as predecessor, queue both conditions for the true
498   // successor.
499   if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
500       isa<ICmpInst>(Op0) && isa<ICmpInst>(Op1)) {
501     BasicBlock *TrueSuccessor = Br->getSuccessor(0);
502     if (canAddSuccessor(BB, TrueSuccessor)) {
503       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op0),
504                             false);
505       WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<ICmpInst>(Op1),
506                             false);
507     }
508     return;
509   }
510 
511   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
512   if (!CmpI)
513     return;
514   if (canAddSuccessor(BB, Br->getSuccessor(0)))
515     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
516   if (canAddSuccessor(BB, Br->getSuccessor(1)))
517     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
518 }
519 
520 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
521   bool Changed = false;
522   DT.updateDFSNumbers();
523 
524   ConstraintInfo Info;
525   State S(DT);
526 
527   // First, collect conditions implied by branches and blocks with their
528   // Dominator DFS in and out numbers.
529   for (BasicBlock &BB : F) {
530     if (!DT.getNode(&BB))
531       continue;
532     S.addInfoFor(BB);
533   }
534 
535   // Next, sort worklist by dominance, so that dominating blocks and conditions
536   // come before blocks and conditions dominated by them. If a block and a
537   // condition have the same numbers, the condition comes before the block, as
538   // it holds on entry to the block.
539   sort(S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
540     return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
541   });
542 
543   // Finally, process ordered worklist and eliminate implied conditions.
544   SmallVector<StackEntry, 16> DFSInStack;
545   for (ConstraintOrBlock &CB : S.WorkList) {
546     // First, pop entries from the stack that are out-of-scope for CB. Remove
547     // the corresponding entry from the constraint system.
548     while (!DFSInStack.empty()) {
549       auto &E = DFSInStack.back();
550       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
551                         << "\n");
552       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
553       assert(E.NumIn <= CB.NumIn);
554       if (CB.NumOut <= E.NumOut)
555         break;
556       LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
557                         << "\n");
558       Info.popLastConstraint(E.IsSigned);
559       // Remove variables in the system that went out of scope.
560       auto &Mapping = Info.getValue2Index(E.IsSigned);
561       for (Value *V : E.ValuesToRelease)
562         Mapping.erase(V);
563       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
564       DFSInStack.pop_back();
565     }
566 
567     LLVM_DEBUG({
568       dbgs() << "Processing ";
569       if (CB.IsBlock)
570         dbgs() << *CB.BB;
571       else
572         dbgs() << *CB.Condition;
573       dbgs() << "\n";
574     });
575 
576     // For a block, check if any CmpInsts become known based on the current set
577     // of constraints.
578     if (CB.IsBlock) {
579       for (Instruction &I : *CB.BB) {
580         auto *Cmp = dyn_cast<ICmpInst>(&I);
581         if (!Cmp)
582           continue;
583 
584         DenseMap<Value *, unsigned> NewIndices;
585         auto R = getConstraint(Cmp, Info, NewIndices);
586         if (R.IsEq || R.size() < 2 || R.needsNewIndices(NewIndices) ||
587             !R.isValid(Info))
588           continue;
589 
590         auto &CSToUse = Info.getCS(R.IsSigned);
591         if (CSToUse.isConditionImplied(R.Coefficients)) {
592           if (!DebugCounter::shouldExecute(EliminatedCounter))
593             continue;
594 
595           LLVM_DEBUG(dbgs() << "Condition " << *Cmp
596                             << " implied by dominating constraints\n");
597           LLVM_DEBUG({
598             for (auto &E : reverse(DFSInStack))
599               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
600           });
601           Cmp->replaceUsesWithIf(
602               ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) {
603                 // Conditions in an assume trivially simplify to true. Skip uses
604                 // in assume calls to not destroy the available information.
605                 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
606                 return !II || II->getIntrinsicID() != Intrinsic::assume;
607               });
608           NumCondsRemoved++;
609           Changed = true;
610         }
611         if (CSToUse.isConditionImplied(
612                 ConstraintSystem::negate(R.Coefficients))) {
613           if (!DebugCounter::shouldExecute(EliminatedCounter))
614             continue;
615 
616           LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
617                             << " implied by dominating constraints\n");
618           LLVM_DEBUG({
619             for (auto &E : reverse(DFSInStack))
620               dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
621           });
622           Cmp->replaceAllUsesWith(
623               ConstantInt::getFalse(F.getParent()->getContext()));
624           NumCondsRemoved++;
625           Changed = true;
626         }
627       }
628       continue;
629     }
630 
631     // Set up a function to restore the predicate at the end of the scope if it
632     // has been negated. Negate the predicate in-place, if required.
633     auto *CI = dyn_cast<ICmpInst>(CB.Condition);
634     auto PredicateRestorer = make_scope_exit([CI, &CB]() {
635       if (CB.Not && CI)
636         CI->setPredicate(CI->getInversePredicate());
637     });
638     if (CB.Not) {
639       if (CI) {
640         CI->setPredicate(CI->getInversePredicate());
641       } else {
642         LLVM_DEBUG(dbgs() << "Can only negate compares so far.\n");
643         continue;
644       }
645     }
646 
647     // Otherwise, add the condition to the system and stack, if we can transform
648     // it into a constraint.
649     DenseMap<Value *, unsigned> NewIndices;
650     auto R = getConstraint(CB.Condition, Info, NewIndices);
651     if (!R.isValid(Info))
652       continue;
653 
654     LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
655     bool Added = false;
656     assert(CmpInst::isSigned(CB.Condition->getPredicate()) == R.IsSigned &&
657            "condition and constraint signs must match");
658     auto &CSToUse = Info.getCS(R.IsSigned);
659     if (R.Coefficients.empty())
660       continue;
661 
662     Added |= CSToUse.addVariableRowFill(R.Coefficients);
663 
664     // If R has been added to the system, queue it for removal once it goes
665     // out-of-scope.
666     if (Added) {
667       SmallVector<Value *, 2> ValuesToRelease;
668       for (auto &KV : NewIndices) {
669         Info.getValue2Index(R.IsSigned).insert(KV);
670         ValuesToRelease.push_back(KV.first);
671       }
672 
673       LLVM_DEBUG({
674         dbgs() << "  constraint: ";
675         dumpWithNames(R, Info.getValue2Index(R.IsSigned));
676       });
677 
678       DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
679                               R.IsSigned, ValuesToRelease);
680 
681       if (R.IsEq) {
682         // Also add the inverted constraint for equality constraints.
683         for (auto &Coeff : R.Coefficients)
684           Coeff *= -1;
685         CSToUse.addVariableRowFill(R.Coefficients);
686 
687         DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not,
688                                 R.IsSigned, SmallVector<Value *, 2>());
689       }
690     }
691   }
692 
693 #ifndef NDEBUG
694   unsigned SignedEntries =
695       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
696   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
697          "updates to CS and DFSInStack are out of sync");
698   assert(Info.getCS(true).size() == SignedEntries &&
699          "updates to CS and DFSInStack are out of sync");
700 #endif
701 
702   return Changed;
703 }
704 
705 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
706                                                  FunctionAnalysisManager &AM) {
707   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
708   if (!eliminateConstraints(F, DT))
709     return PreservedAnalyses::all();
710 
711   PreservedAnalyses PA;
712   PA.preserve<DominatorTreeAnalysis>();
713   PA.preserveSet<CFGAnalyses>();
714   return PA;
715 }
716 
717 namespace {
718 
719 class ConstraintElimination : public FunctionPass {
720 public:
721   static char ID;
722 
723   ConstraintElimination() : FunctionPass(ID) {
724     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
725   }
726 
727   bool runOnFunction(Function &F) override {
728     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
729     return eliminateConstraints(F, DT);
730   }
731 
732   void getAnalysisUsage(AnalysisUsage &AU) const override {
733     AU.setPreservesCFG();
734     AU.addRequired<DominatorTreeWrapperPass>();
735     AU.addPreserved<GlobalsAAWrapperPass>();
736     AU.addPreserved<DominatorTreeWrapperPass>();
737   }
738 };
739 
740 } // end anonymous namespace
741 
742 char ConstraintElimination::ID = 0;
743 
744 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
745                       "Constraint Elimination", false, false)
746 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
747 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
748 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
749                     "Constraint Elimination", false, false)
750 
751 FunctionPass *llvm::createConstraintEliminationPass() {
752   return new ConstraintElimination();
753 }
754