1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Eliminate conditions based on constraints collected from dominating 10 // conditions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/ConstraintElimination.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/ScopeExit.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/ConstraintSystem.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/InitializePasses.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/DebugCounter.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Transforms/Scalar.h" 34 35 #include <cmath> 36 #include <string> 37 38 using namespace llvm; 39 using namespace PatternMatch; 40 41 #define DEBUG_TYPE "constraint-elimination" 42 43 STATISTIC(NumCondsRemoved, "Number of instructions removed"); 44 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated", 45 "Controls which conditions are eliminated"); 46 47 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max(); 48 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min(); 49 50 namespace { 51 52 class ConstraintInfo; 53 54 struct StackEntry { 55 unsigned NumIn; 56 unsigned NumOut; 57 bool IsSigned = false; 58 /// Variables that can be removed from the system once the stack entry gets 59 /// removed. 60 SmallVector<Value *, 2> ValuesToRelease; 61 62 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned, 63 SmallVector<Value *, 2> ValuesToRelease) 64 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned), 65 ValuesToRelease(ValuesToRelease) {} 66 }; 67 68 /// Struct to express a pre-condition of the form %Op0 Pred %Op1. 69 struct PreconditionTy { 70 CmpInst::Predicate Pred; 71 Value *Op0; 72 Value *Op1; 73 74 PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1) 75 : Pred(Pred), Op0(Op0), Op1(Op1) {} 76 }; 77 78 struct ConstraintTy { 79 SmallVector<int64_t, 8> Coefficients; 80 SmallVector<PreconditionTy, 2> Preconditions; 81 82 SmallVector<SmallVector<int64_t, 8>> ExtraInfo; 83 84 bool IsSigned = false; 85 bool IsEq = false; 86 87 ConstraintTy() = default; 88 89 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned) 90 : Coefficients(Coefficients), IsSigned(IsSigned) {} 91 92 unsigned size() const { return Coefficients.size(); } 93 94 unsigned empty() const { return Coefficients.empty(); } 95 96 /// Returns true if all preconditions for this list of constraints are 97 /// satisfied given \p CS and the corresponding \p Value2Index mapping. 98 bool isValid(const ConstraintInfo &Info) const; 99 }; 100 101 /// Wrapper encapsulating separate constraint systems and corresponding value 102 /// mappings for both unsigned and signed information. Facts are added to and 103 /// conditions are checked against the corresponding system depending on the 104 /// signed-ness of their predicates. While the information is kept separate 105 /// based on signed-ness, certain conditions can be transferred between the two 106 /// systems. 107 class ConstraintInfo { 108 DenseMap<Value *, unsigned> UnsignedValue2Index; 109 DenseMap<Value *, unsigned> SignedValue2Index; 110 111 ConstraintSystem UnsignedCS; 112 ConstraintSystem SignedCS; 113 114 public: 115 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) { 116 return Signed ? SignedValue2Index : UnsignedValue2Index; 117 } 118 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const { 119 return Signed ? SignedValue2Index : UnsignedValue2Index; 120 } 121 122 ConstraintSystem &getCS(bool Signed) { 123 return Signed ? SignedCS : UnsignedCS; 124 } 125 const ConstraintSystem &getCS(bool Signed) const { 126 return Signed ? SignedCS : UnsignedCS; 127 } 128 129 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); } 130 void popLastNVariables(bool Signed, unsigned N) { 131 getCS(Signed).popLastNVariables(N); 132 } 133 134 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const; 135 136 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 137 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack); 138 139 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of 140 /// constraints, using indices from the corresponding constraint system. 141 /// New variables that need to be added to the system are collected in 142 /// \p NewVariables. 143 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 144 SmallVectorImpl<Value *> &NewVariables) const; 145 146 /// Try to add information from \p A \p Pred \p B to the unsigned/signed 147 /// system if \p Pred is signed/unsigned. 148 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B, 149 unsigned NumIn, unsigned NumOut, 150 SmallVectorImpl<StackEntry> &DFSInStack); 151 }; 152 153 /// Represents a (Coefficient * Variable) entry after IR decomposition. 154 struct DecompEntry { 155 int64_t Coefficient; 156 Value *Variable; 157 /// True if the variable is known positive in the current constraint. 158 bool IsKnownPositive; 159 160 DecompEntry(int64_t Coefficient, Value *Variable, 161 bool IsKnownPositive = false) 162 : Coefficient(Coefficient), Variable(Variable), 163 IsKnownPositive(IsKnownPositive) {} 164 }; 165 166 } // namespace 167 168 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable 169 // } where Coefficient * Variable. The sum of the pairs equals \p V. The first 170 // pair is the constant-factor and X must be nullptr. If the expression cannot 171 // be decomposed, returns an empty vector. 172 static SmallVector<DecompEntry, 4> 173 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions, 174 bool IsSigned) { 175 176 auto CanUseSExt = [](ConstantInt *CI) { 177 const APInt &Val = CI->getValue(); 178 return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue); 179 }; 180 // Decompose \p V used with a signed predicate. 181 if (IsSigned) { 182 if (auto *CI = dyn_cast<ConstantInt>(V)) { 183 if (CanUseSExt(CI)) 184 return {{CI->getSExtValue(), nullptr}}; 185 } 186 187 return {{0, nullptr}, {1, V}}; 188 } 189 190 if (auto *CI = dyn_cast<ConstantInt>(V)) { 191 if (CI->uge(MaxConstraintValue)) 192 return {}; 193 return {{int64_t(CI->getZExtValue()), nullptr}}; 194 } 195 auto *GEP = dyn_cast<GetElementPtrInst>(V); 196 if (GEP && GEP->getNumOperands() == 2 && GEP->isInBounds()) { 197 Value *Op0, *Op1; 198 ConstantInt *CI; 199 200 // If the index is zero-extended, it is guaranteed to be positive. 201 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 202 m_ZExt(m_Value(Op0)))) { 203 if (match(Op0, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && 204 CanUseSExt(CI)) 205 return {{0, nullptr}, 206 {1, GEP->getPointerOperand()}, 207 {int64_t(std::pow(int64_t(2), CI->getSExtValue())), Op1}}; 208 if (match(Op0, m_NSWAdd(m_Value(Op1), m_ConstantInt(CI))) && 209 CanUseSExt(CI)) 210 return {{CI->getSExtValue(), nullptr}, 211 {1, GEP->getPointerOperand()}, 212 {1, Op1}}; 213 return {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0, true}}; 214 } 215 216 if (match(GEP->getOperand(GEP->getNumOperands() - 1), m_ConstantInt(CI)) && 217 !CI->isNegative() && CanUseSExt(CI)) 218 return {{CI->getSExtValue(), nullptr}, {1, GEP->getPointerOperand()}}; 219 220 SmallVector<DecompEntry, 4> Result; 221 if (match(GEP->getOperand(GEP->getNumOperands() - 1), 222 m_NUWShl(m_Value(Op0), m_ConstantInt(CI))) && 223 CanUseSExt(CI)) 224 Result = {{0, nullptr}, 225 {1, GEP->getPointerOperand()}, 226 {int(std::pow(int64_t(2), CI->getSExtValue())), Op0}}; 227 else if (match(GEP->getOperand(GEP->getNumOperands() - 1), 228 m_NSWAdd(m_Value(Op0), m_ConstantInt(CI))) && 229 CanUseSExt(CI)) 230 Result = {{CI->getSExtValue(), nullptr}, 231 {1, GEP->getPointerOperand()}, 232 {1, Op0}}; 233 else { 234 Op0 = GEP->getOperand(GEP->getNumOperands() - 1); 235 Result = {{0, nullptr}, {1, GEP->getPointerOperand()}, {1, Op0}}; 236 } 237 // If Op0 is signed non-negative, the GEP is increasing monotonically and 238 // can be de-composed. 239 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0, 240 ConstantInt::get(Op0->getType(), 0)); 241 return Result; 242 } 243 244 Value *Op0; 245 bool IsKnownPositive = false; 246 if (match(V, m_ZExt(m_Value(Op0)))) { 247 IsKnownPositive = true; 248 V = Op0; 249 } 250 251 auto MergeResults = [&Preconditions, IsSigned]( 252 Value *A, Value *B, 253 bool IsSignedB) -> SmallVector<DecompEntry, 4> { 254 auto ResA = decompose(A, Preconditions, IsSigned); 255 auto ResB = decompose(B, Preconditions, IsSignedB); 256 if (ResA.empty() || ResB.empty()) 257 return {}; 258 ResA[0].Coefficient += ResB[0].Coefficient; 259 append_range(ResA, drop_begin(ResB)); 260 return ResA; 261 }; 262 Value *Op1; 263 ConstantInt *CI; 264 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) { 265 return MergeResults(Op0, Op1, IsSigned); 266 } 267 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() && 268 CanUseSExt(CI)) { 269 Preconditions.emplace_back( 270 CmpInst::ICMP_UGE, Op0, 271 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1)); 272 return MergeResults(Op0, CI, true); 273 } 274 275 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && CanUseSExt(CI)) 276 return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}}; 277 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1)))) 278 return {{0, nullptr}, {1, Op0}, {-1, Op1}}; 279 280 return {{0, nullptr}, {1, V, IsKnownPositive}}; 281 } 282 283 ConstraintTy 284 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1, 285 SmallVectorImpl<Value *> &NewVariables) const { 286 assert(NewVariables.empty() && "NewVariables must be empty when passed in"); 287 bool IsEq = false; 288 // Try to convert Pred to one of ULE/SLT/SLE/SLT. 289 switch (Pred) { 290 case CmpInst::ICMP_UGT: 291 case CmpInst::ICMP_UGE: 292 case CmpInst::ICMP_SGT: 293 case CmpInst::ICMP_SGE: { 294 Pred = CmpInst::getSwappedPredicate(Pred); 295 std::swap(Op0, Op1); 296 break; 297 } 298 case CmpInst::ICMP_EQ: 299 if (match(Op1, m_Zero())) { 300 Pred = CmpInst::ICMP_ULE; 301 } else { 302 IsEq = true; 303 Pred = CmpInst::ICMP_ULE; 304 } 305 break; 306 case CmpInst::ICMP_NE: 307 if (!match(Op1, m_Zero())) 308 return {}; 309 Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT); 310 std::swap(Op0, Op1); 311 break; 312 default: 313 break; 314 } 315 316 // Only ULE and ULT predicates are supported at the moment. 317 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT && 318 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT) 319 return {}; 320 321 SmallVector<PreconditionTy, 4> Preconditions; 322 bool IsSigned = CmpInst::isSigned(Pred); 323 auto &Value2Index = getValue2Index(IsSigned); 324 auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(), 325 Preconditions, IsSigned); 326 auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(), 327 Preconditions, IsSigned); 328 // Skip if decomposing either of the values failed. 329 if (ADec.empty() || BDec.empty()) 330 return {}; 331 332 int64_t Offset1 = ADec[0].Coefficient; 333 int64_t Offset2 = BDec[0].Coefficient; 334 Offset1 *= -1; 335 336 // Create iterator ranges that skip the constant-factor. 337 auto VariablesA = llvm::drop_begin(ADec); 338 auto VariablesB = llvm::drop_begin(BDec); 339 340 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a 341 // new entry to NewVariables. 342 DenseMap<Value *, unsigned> NewIndexMap; 343 auto GetOrAddIndex = [&Value2Index, &NewVariables, 344 &NewIndexMap](Value *V) -> unsigned { 345 auto V2I = Value2Index.find(V); 346 if (V2I != Value2Index.end()) 347 return V2I->second; 348 auto Insert = 349 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1}); 350 if (Insert.second) 351 NewVariables.push_back(V); 352 return Insert.first->second; 353 }; 354 355 // Make sure all variables have entries in Value2Index or NewVariables. 356 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB)) 357 GetOrAddIndex(KV.Variable); 358 359 // Build result constraint, by first adding all coefficients from A and then 360 // subtracting all coefficients from B. 361 ConstraintTy Res( 362 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0), 363 IsSigned); 364 // Collect variables that are known to be positive in all uses in the 365 // constraint. 366 DenseMap<Value *, bool> KnownPositiveVariables; 367 Res.IsEq = IsEq; 368 auto &R = Res.Coefficients; 369 for (const auto &KV : VariablesA) { 370 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient; 371 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 372 I.first->second &= KV.IsKnownPositive; 373 } 374 375 for (const auto &KV : VariablesB) { 376 R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient; 377 auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive}); 378 I.first->second &= KV.IsKnownPositive; 379 } 380 381 int64_t OffsetSum; 382 if (AddOverflow(Offset1, Offset2, OffsetSum)) 383 return {}; 384 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT)) 385 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum)) 386 return {}; 387 R[0] = OffsetSum; 388 Res.Preconditions = std::move(Preconditions); 389 390 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new 391 // variables. 392 while (!NewVariables.empty()) { 393 int64_t Last = R.back(); 394 if (Last != 0) 395 break; 396 R.pop_back(); 397 Value *RemovedV = NewVariables.pop_back_val(); 398 NewIndexMap.erase(RemovedV); 399 } 400 401 // Add extra constraints for variables that are known positive. 402 for (auto &KV : KnownPositiveVariables) { 403 if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() && 404 NewIndexMap.find(KV.first) == NewIndexMap.end())) 405 continue; 406 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0); 407 C[GetOrAddIndex(KV.first)] = -1; 408 Res.ExtraInfo.push_back(C); 409 } 410 return Res; 411 } 412 413 bool ConstraintTy::isValid(const ConstraintInfo &Info) const { 414 return Coefficients.size() > 0 && 415 all_of(Preconditions, [&Info](const PreconditionTy &C) { 416 return Info.doesHold(C.Pred, C.Op0, C.Op1); 417 }); 418 } 419 420 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A, 421 Value *B) const { 422 SmallVector<Value *> NewVariables; 423 auto R = getConstraint(Pred, A, B, NewVariables); 424 425 if (!NewVariables.empty()) 426 return false; 427 428 return NewVariables.empty() && R.Preconditions.empty() && !R.IsEq && 429 !R.empty() && getCS(R.IsSigned).isConditionImplied(R.Coefficients); 430 } 431 432 void ConstraintInfo::transferToOtherSystem( 433 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn, 434 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) { 435 // Check if we can combine facts from the signed and unsigned systems to 436 // derive additional facts. 437 if (!A->getType()->isIntegerTy()) 438 return; 439 // FIXME: This currently depends on the order we add facts. Ideally we 440 // would first add all known facts and only then try to add additional 441 // facts. 442 switch (Pred) { 443 default: 444 break; 445 case CmpInst::ICMP_ULT: 446 // If B is a signed positive constant, A >=s 0 and A <s B. 447 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 448 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn, 449 NumOut, DFSInStack); 450 addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack); 451 } 452 break; 453 case CmpInst::ICMP_SLT: 454 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) 455 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack); 456 break; 457 case CmpInst::ICMP_SGT: 458 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1))) 459 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn, 460 NumOut, DFSInStack); 461 break; 462 case CmpInst::ICMP_SGE: 463 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) { 464 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack); 465 } 466 break; 467 } 468 } 469 470 namespace { 471 /// Represents either a condition that holds on entry to a block or a basic 472 /// block, with their respective Dominator DFS in and out numbers. 473 struct ConstraintOrBlock { 474 unsigned NumIn; 475 unsigned NumOut; 476 bool IsBlock; 477 bool Not; 478 union { 479 BasicBlock *BB; 480 CmpInst *Condition; 481 }; 482 483 ConstraintOrBlock(DomTreeNode *DTN) 484 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true), 485 BB(DTN->getBlock()) {} 486 ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not) 487 : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false), 488 Not(Not), Condition(Condition) {} 489 }; 490 491 /// Keep state required to build worklist. 492 struct State { 493 DominatorTree &DT; 494 SmallVector<ConstraintOrBlock, 64> WorkList; 495 496 State(DominatorTree &DT) : DT(DT) {} 497 498 /// Process block \p BB and add known facts to work-list. 499 void addInfoFor(BasicBlock &BB); 500 501 /// Returns true if we can add a known condition from BB to its successor 502 /// block Succ. Each predecessor of Succ can either be BB or be dominated 503 /// by Succ (e.g. the case when adding a condition from a pre-header to a 504 /// loop header). 505 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const { 506 if (BB.getSingleSuccessor()) { 507 assert(BB.getSingleSuccessor() == Succ); 508 return DT.properlyDominates(&BB, Succ); 509 } 510 return any_of(successors(&BB), 511 [Succ](const BasicBlock *S) { return S != Succ; }) && 512 all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) { 513 return Pred == &BB || DT.dominates(Succ, Pred); 514 }); 515 } 516 }; 517 518 } // namespace 519 520 #ifndef NDEBUG 521 static void dumpWithNames(const ConstraintSystem &CS, 522 DenseMap<Value *, unsigned> &Value2Index) { 523 SmallVector<std::string> Names(Value2Index.size(), ""); 524 for (auto &KV : Value2Index) { 525 Names[KV.second - 1] = std::string("%") + KV.first->getName().str(); 526 } 527 CS.dump(Names); 528 } 529 530 static void dumpWithNames(ArrayRef<int64_t> C, 531 DenseMap<Value *, unsigned> &Value2Index) { 532 ConstraintSystem CS; 533 CS.addVariableRowFill(C); 534 dumpWithNames(CS, Value2Index); 535 } 536 #endif 537 538 void State::addInfoFor(BasicBlock &BB) { 539 WorkList.emplace_back(DT.getNode(&BB)); 540 541 // True as long as long as the current instruction is guaranteed to execute. 542 bool GuaranteedToExecute = true; 543 // Scan BB for assume calls. 544 // TODO: also use this scan to queue conditions to simplify, so we can 545 // interleave facts from assumes and conditions to simplify in a single 546 // basic block. And to skip another traversal of each basic block when 547 // simplifying. 548 for (Instruction &I : BB) { 549 Value *Cond; 550 // For now, just handle assumes with a single compare as condition. 551 if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) && 552 isa<ICmpInst>(Cond)) { 553 if (GuaranteedToExecute) { 554 // The assume is guaranteed to execute when BB is entered, hence Cond 555 // holds on entry to BB. 556 WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false); 557 } else { 558 // Otherwise the condition only holds in the successors. 559 for (BasicBlock *Succ : successors(&BB)) { 560 if (!canAddSuccessor(BB, Succ)) 561 continue; 562 WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false); 563 } 564 } 565 } 566 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I); 567 } 568 569 auto *Br = dyn_cast<BranchInst>(BB.getTerminator()); 570 if (!Br || !Br->isConditional()) 571 return; 572 573 Value *Cond = Br->getCondition(); 574 575 // If the condition is a chain of ORs/AND and the successor only has the 576 // current block as predecessor, queue conditions for the successor. 577 Value *Op0, *Op1; 578 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 579 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 580 bool IsOr = match(Cond, m_LogicalOr()); 581 bool IsAnd = match(Cond, m_LogicalAnd()); 582 // If there's a select that matches both AND and OR, we need to commit to 583 // one of the options. Arbitrarily pick OR. 584 if (IsOr && IsAnd) 585 IsAnd = false; 586 587 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0); 588 if (canAddSuccessor(BB, Successor)) { 589 SmallVector<Value *> CondWorkList; 590 SmallPtrSet<Value *, 8> SeenCond; 591 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) { 592 if (SeenCond.insert(V).second) 593 CondWorkList.push_back(V); 594 }; 595 QueueValue(Op1); 596 QueueValue(Op0); 597 while (!CondWorkList.empty()) { 598 Value *Cur = CondWorkList.pop_back_val(); 599 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) { 600 WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr); 601 continue; 602 } 603 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 604 QueueValue(Op1); 605 QueueValue(Op0); 606 continue; 607 } 608 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 609 QueueValue(Op1); 610 QueueValue(Op0); 611 continue; 612 } 613 } 614 } 615 return; 616 } 617 618 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition()); 619 if (!CmpI) 620 return; 621 if (canAddSuccessor(BB, Br->getSuccessor(0))) 622 WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false); 623 if (canAddSuccessor(BB, Br->getSuccessor(1))) 624 WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true); 625 } 626 627 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B, 628 unsigned NumIn, unsigned NumOut, 629 SmallVectorImpl<StackEntry> &DFSInStack) { 630 // If the constraint has a pre-condition, skip the constraint if it does not 631 // hold. 632 SmallVector<Value *> NewVariables; 633 auto R = getConstraint(Pred, A, B, NewVariables); 634 if (!R.isValid(*this)) 635 return; 636 637 LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " "; 638 A->printAsOperand(dbgs(), false); dbgs() << ", "; 639 B->printAsOperand(dbgs(), false); dbgs() << "'\n"); 640 bool Added = false; 641 auto &CSToUse = getCS(R.IsSigned); 642 if (R.Coefficients.empty()) 643 return; 644 645 Added |= CSToUse.addVariableRowFill(R.Coefficients); 646 647 // If R has been added to the system, add the new variables and queue it for 648 // removal once it goes out-of-scope. 649 if (Added) { 650 SmallVector<Value *, 2> ValuesToRelease; 651 auto &Value2Index = getValue2Index(R.IsSigned); 652 for (Value *V : NewVariables) { 653 Value2Index.insert({V, Value2Index.size() + 1}); 654 ValuesToRelease.push_back(V); 655 } 656 657 LLVM_DEBUG({ 658 dbgs() << " constraint: "; 659 dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned)); 660 dbgs() << "\n"; 661 }); 662 663 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease); 664 665 if (R.IsEq) { 666 // Also add the inverted constraint for equality constraints. 667 for (auto &Coeff : R.Coefficients) 668 Coeff *= -1; 669 CSToUse.addVariableRowFill(R.Coefficients); 670 671 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, 672 SmallVector<Value *, 2>()); 673 } 674 } 675 } 676 677 static bool 678 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, 679 SmallVectorImpl<Instruction *> &ToRemove) { 680 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B, 681 ConstraintInfo &Info) { 682 SmallVector<Value *> NewVariables; 683 auto R = Info.getConstraint(Pred, A, B, NewVariables); 684 if (R.size() < 2 || !NewVariables.empty() || !R.isValid(Info)) 685 return false; 686 687 auto &CSToUse = Info.getCS(R.IsSigned); 688 return CSToUse.isConditionImplied(R.Coefficients); 689 }; 690 691 bool Changed = false; 692 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) { 693 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and 694 // can be simplified to a regular sub. 695 Value *A = II->getArgOperand(0); 696 Value *B = II->getArgOperand(1); 697 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) || 698 !DoesConditionHold(CmpInst::ICMP_SGE, B, 699 ConstantInt::get(A->getType(), 0), Info)) 700 return false; 701 702 IRBuilder<> Builder(II->getParent(), II->getIterator()); 703 Value *Sub = nullptr; 704 for (User *U : make_early_inc_range(II->users())) { 705 if (match(U, m_ExtractValue<0>(m_Value()))) { 706 if (!Sub) 707 Sub = Builder.CreateSub(A, B); 708 U->replaceAllUsesWith(Sub); 709 Changed = true; 710 } else if (match(U, m_ExtractValue<1>(m_Value()))) { 711 U->replaceAllUsesWith(Builder.getFalse()); 712 Changed = true; 713 } else 714 continue; 715 716 if (U->use_empty()) { 717 auto *I = cast<Instruction>(U); 718 ToRemove.push_back(I); 719 I->setOperand(0, PoisonValue::get(II->getType())); 720 Changed = true; 721 } 722 } 723 724 if (II->use_empty()) { 725 II->eraseFromParent(); 726 Changed = true; 727 } 728 } 729 return Changed; 730 } 731 732 static bool eliminateConstraints(Function &F, DominatorTree &DT) { 733 bool Changed = false; 734 DT.updateDFSNumbers(); 735 736 ConstraintInfo Info; 737 State S(DT); 738 739 // First, collect conditions implied by branches and blocks with their 740 // Dominator DFS in and out numbers. 741 for (BasicBlock &BB : F) { 742 if (!DT.getNode(&BB)) 743 continue; 744 S.addInfoFor(BB); 745 } 746 747 // Next, sort worklist by dominance, so that dominating blocks and conditions 748 // come before blocks and conditions dominated by them. If a block and a 749 // condition have the same numbers, the condition comes before the block, as 750 // it holds on entry to the block. Also make sure conditions with constant 751 // operands come before conditions without constant operands. This increases 752 // the effectiveness of the current signed <-> unsigned fact transfer logic. 753 stable_sort( 754 S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) { 755 auto HasNoConstOp = [](const ConstraintOrBlock &B) { 756 return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) && 757 !isa<ConstantInt>(B.Condition->getOperand(1)); 758 }; 759 bool NoConstOpA = HasNoConstOp(A); 760 bool NoConstOpB = HasNoConstOp(B); 761 return std::tie(A.NumIn, A.IsBlock, NoConstOpA) < 762 std::tie(B.NumIn, B.IsBlock, NoConstOpB); 763 }); 764 765 SmallVector<Instruction *> ToRemove; 766 767 // Finally, process ordered worklist and eliminate implied conditions. 768 SmallVector<StackEntry, 16> DFSInStack; 769 for (ConstraintOrBlock &CB : S.WorkList) { 770 // First, pop entries from the stack that are out-of-scope for CB. Remove 771 // the corresponding entry from the constraint system. 772 while (!DFSInStack.empty()) { 773 auto &E = DFSInStack.back(); 774 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut 775 << "\n"); 776 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n"); 777 assert(E.NumIn <= CB.NumIn); 778 if (CB.NumOut <= E.NumOut) 779 break; 780 LLVM_DEBUG({ 781 dbgs() << "Removing "; 782 dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(), 783 Info.getValue2Index(E.IsSigned)); 784 dbgs() << "\n"; 785 }); 786 787 Info.popLastConstraint(E.IsSigned); 788 // Remove variables in the system that went out of scope. 789 auto &Mapping = Info.getValue2Index(E.IsSigned); 790 for (Value *V : E.ValuesToRelease) 791 Mapping.erase(V); 792 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size()); 793 DFSInStack.pop_back(); 794 } 795 796 LLVM_DEBUG({ 797 dbgs() << "Processing "; 798 if (CB.IsBlock) 799 dbgs() << *CB.BB; 800 else 801 dbgs() << *CB.Condition; 802 dbgs() << "\n"; 803 }); 804 805 // For a block, check if any CmpInsts become known based on the current set 806 // of constraints. 807 if (CB.IsBlock) { 808 for (Instruction &I : make_early_inc_range(*CB.BB)) { 809 if (auto *II = dyn_cast<WithOverflowInst>(&I)) { 810 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove); 811 continue; 812 } 813 auto *Cmp = dyn_cast<ICmpInst>(&I); 814 if (!Cmp) 815 continue; 816 817 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n"); 818 SmallVector<Value *> NewVariables; 819 CmpInst::Predicate Pred = Cmp->getPredicate(); 820 Value *A = Cmp->getOperand(0); 821 Value *B = Cmp->getOperand(1); 822 const DataLayout &DL = Cmp->getModule()->getDataLayout(); 823 824 // If both operands are known to be non-negative, change signed 825 // predicates to unsigned ones. This increases the reasoning 826 // effectiveness in combination with the signed <-> unsigned transfer 827 // logic. 828 if (CmpInst::isSigned(Pred) && 829 isKnownNonNegative(A, DL, 830 /*Depth=*/MaxAnalysisRecursionDepth - 1) && 831 isKnownNonNegative(B, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1)) 832 Pred = CmpInst::getUnsignedPredicate(Pred); 833 834 auto R = Info.getConstraint(Pred, A, B, NewVariables); 835 if (R.IsEq || R.empty() || !NewVariables.empty() || !R.isValid(Info)) 836 continue; 837 838 auto &CSToUse = Info.getCS(R.IsSigned); 839 840 // If there was extra information collected during decomposition, apply 841 // it now and remove it immediately once we are done with reasoning 842 // about the constraint. 843 for (auto &Row : R.ExtraInfo) 844 CSToUse.addVariableRow(Row); 845 auto InfoRestorer = make_scope_exit([&]() { 846 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I) 847 CSToUse.popLastConstraint(); 848 }); 849 850 if (CSToUse.isConditionImplied(R.Coefficients)) { 851 if (!DebugCounter::shouldExecute(EliminatedCounter)) 852 continue; 853 854 LLVM_DEBUG({ 855 dbgs() << "Condition " << *Cmp 856 << " implied by dominating constraints\n"; 857 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 858 }); 859 Cmp->replaceUsesWithIf( 860 ConstantInt::getTrue(F.getParent()->getContext()), [](Use &U) { 861 // Conditions in an assume trivially simplify to true. Skip uses 862 // in assume calls to not destroy the available information. 863 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 864 return !II || II->getIntrinsicID() != Intrinsic::assume; 865 }); 866 NumCondsRemoved++; 867 Changed = true; 868 } 869 if (CSToUse.isConditionImplied( 870 ConstraintSystem::negate(R.Coefficients))) { 871 if (!DebugCounter::shouldExecute(EliminatedCounter)) 872 continue; 873 874 LLVM_DEBUG({ 875 dbgs() << "Condition !" << *Cmp 876 << " implied by dominating constraints\n"; 877 dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned)); 878 }); 879 Cmp->replaceAllUsesWith( 880 ConstantInt::getFalse(F.getParent()->getContext())); 881 NumCondsRemoved++; 882 Changed = true; 883 } 884 } 885 continue; 886 } 887 888 ICmpInst::Predicate Pred; 889 Value *A, *B; 890 if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) { 891 // Use the inverse predicate if required. 892 if (CB.Not) 893 Pred = CmpInst::getInversePredicate(Pred); 894 895 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 896 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack); 897 } 898 } 899 900 #ifndef NDEBUG 901 unsigned SignedEntries = 902 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; }); 903 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries && 904 "updates to CS and DFSInStack are out of sync"); 905 assert(Info.getCS(true).size() == SignedEntries && 906 "updates to CS and DFSInStack are out of sync"); 907 #endif 908 909 for (Instruction *I : ToRemove) 910 I->eraseFromParent(); 911 return Changed; 912 } 913 914 PreservedAnalyses ConstraintEliminationPass::run(Function &F, 915 FunctionAnalysisManager &AM) { 916 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 917 if (!eliminateConstraints(F, DT)) 918 return PreservedAnalyses::all(); 919 920 PreservedAnalyses PA; 921 PA.preserve<DominatorTreeAnalysis>(); 922 PA.preserveSet<CFGAnalyses>(); 923 return PA; 924 } 925 926 namespace { 927 928 class ConstraintElimination : public FunctionPass { 929 public: 930 static char ID; 931 932 ConstraintElimination() : FunctionPass(ID) { 933 initializeConstraintEliminationPass(*PassRegistry::getPassRegistry()); 934 } 935 936 bool runOnFunction(Function &F) override { 937 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 938 return eliminateConstraints(F, DT); 939 } 940 941 void getAnalysisUsage(AnalysisUsage &AU) const override { 942 AU.setPreservesCFG(); 943 AU.addRequired<DominatorTreeWrapperPass>(); 944 AU.addPreserved<GlobalsAAWrapperPass>(); 945 AU.addPreserved<DominatorTreeWrapperPass>(); 946 } 947 }; 948 949 } // end anonymous namespace 950 951 char ConstraintElimination::ID = 0; 952 953 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination", 954 "Constraint Elimination", false, false) 955 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 956 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 957 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination", 958 "Constraint Elimination", false, false) 959 960 FunctionPass *llvm::createConstraintEliminationPass() { 961 return new ConstraintElimination(); 962 } 963