xref: /llvm-project/llvm/lib/Transforms/Scalar/ConstraintElimination.cpp (revision aec0c1009fc4f87fc0c0f47d30eb2a7c12c5c27c)
1 //===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Eliminate conditions based on constraints collected from dominating
10 // conditions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/ConstraintElimination.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/ScopeExit.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ConstraintSystem.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/DebugCounter.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Transforms/Scalar.h"
35 
36 #include <cmath>
37 #include <string>
38 
39 using namespace llvm;
40 using namespace PatternMatch;
41 
42 #define DEBUG_TYPE "constraint-elimination"
43 
44 STATISTIC(NumCondsRemoved, "Number of instructions removed");
45 DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
46               "Controls which conditions are eliminated");
47 
48 static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
49 static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
50 
51 namespace {
52 
53 class ConstraintInfo;
54 
55 struct StackEntry {
56   unsigned NumIn;
57   unsigned NumOut;
58   bool IsSigned = false;
59   /// Variables that can be removed from the system once the stack entry gets
60   /// removed.
61   SmallVector<Value *, 2> ValuesToRelease;
62 
63   StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
64              SmallVector<Value *, 2> ValuesToRelease)
65       : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
66         ValuesToRelease(ValuesToRelease) {}
67 };
68 
69 /// Struct to express a pre-condition of the form %Op0 Pred %Op1.
70 struct PreconditionTy {
71   CmpInst::Predicate Pred;
72   Value *Op0;
73   Value *Op1;
74 
75   PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
76       : Pred(Pred), Op0(Op0), Op1(Op1) {}
77 };
78 
79 struct ConstraintTy {
80   SmallVector<int64_t, 8> Coefficients;
81   SmallVector<PreconditionTy, 2> Preconditions;
82 
83   SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
84 
85   bool IsSigned = false;
86   bool IsEq = false;
87 
88   ConstraintTy() = default;
89 
90   ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
91       : Coefficients(Coefficients), IsSigned(IsSigned) {}
92 
93   unsigned size() const { return Coefficients.size(); }
94 
95   unsigned empty() const { return Coefficients.empty(); }
96 
97   /// Returns true if all preconditions for this list of constraints are
98   /// satisfied given \p CS and the corresponding \p Value2Index mapping.
99   bool isValid(const ConstraintInfo &Info) const;
100 };
101 
102 /// Wrapper encapsulating separate constraint systems and corresponding value
103 /// mappings for both unsigned and signed information. Facts are added to and
104 /// conditions are checked against the corresponding system depending on the
105 /// signed-ness of their predicates. While the information is kept separate
106 /// based on signed-ness, certain conditions can be transferred between the two
107 /// systems.
108 class ConstraintInfo {
109   DenseMap<Value *, unsigned> UnsignedValue2Index;
110   DenseMap<Value *, unsigned> SignedValue2Index;
111 
112   ConstraintSystem UnsignedCS;
113   ConstraintSystem SignedCS;
114 
115   const DataLayout &DL;
116 
117 public:
118   ConstraintInfo(const DataLayout &DL) : DL(DL) {}
119 
120   DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
121     return Signed ? SignedValue2Index : UnsignedValue2Index;
122   }
123   const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
124     return Signed ? SignedValue2Index : UnsignedValue2Index;
125   }
126 
127   ConstraintSystem &getCS(bool Signed) {
128     return Signed ? SignedCS : UnsignedCS;
129   }
130   const ConstraintSystem &getCS(bool Signed) const {
131     return Signed ? SignedCS : UnsignedCS;
132   }
133 
134   void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
135   void popLastNVariables(bool Signed, unsigned N) {
136     getCS(Signed).popLastNVariables(N);
137   }
138 
139   bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
140 
141   void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
142                unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
143 
144   /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
145   /// constraints, using indices from the corresponding constraint system.
146   /// New variables that need to be added to the system are collected in
147   /// \p NewVariables.
148   ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
149                              SmallVectorImpl<Value *> &NewVariables) const;
150 
151   /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
152   /// constraints using getConstraint. Returns an empty constraint if the result
153   /// cannot be used to query the existing constraint system, e.g. because it
154   /// would require adding new variables. Also tries to convert signed
155   /// predicates to unsigned ones if possible to allow using the unsigned system
156   /// which increases the effectiveness of the signed <-> unsigned transfer
157   /// logic.
158   ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
159                                        Value *Op1) const;
160 
161   /// Try to add information from \p A \p Pred \p B to the unsigned/signed
162   /// system if \p Pred is signed/unsigned.
163   void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
164                              unsigned NumIn, unsigned NumOut,
165                              SmallVectorImpl<StackEntry> &DFSInStack);
166 };
167 
168 /// Represents a (Coefficient * Variable) entry after IR decomposition.
169 struct DecompEntry {
170   int64_t Coefficient;
171   Value *Variable;
172   /// True if the variable is known positive in the current constraint.
173   bool IsKnownPositive;
174 
175   DecompEntry(int64_t Coefficient, Value *Variable,
176               bool IsKnownPositive = false)
177       : Coefficient(Coefficient), Variable(Variable),
178         IsKnownPositive(IsKnownPositive) {}
179 };
180 
181 } // namespace
182 
183 static SmallVector<DecompEntry, 4>
184 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
185           bool IsSigned, const DataLayout &DL);
186 
187 static bool canUseSExt(ConstantInt *CI) {
188   const APInt &Val = CI->getValue();
189   return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
190 }
191 
192 // A helper to multiply 2 signed integers where overflowing is allowed.
193 static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
194   int64_t Result;
195   MulOverflow(A, B, Result);
196   return Result;
197 }
198 
199 static SmallVector<DecompEntry, 4>
200 decomposeGEP(GetElementPtrInst &GEP,
201              SmallVector<PreconditionTy, 4> &Preconditions, bool IsSigned,
202              const DataLayout &DL) {
203   // Do not reason about pointers where the index size is larger than 64 bits,
204   // as the coefficients used to encode constraints are 64 bit integers.
205   unsigned AS =
206       cast<PointerType>(GEP.getPointerOperand()->getType())->getAddressSpace();
207   if (DL.getIndexSizeInBits(AS) > 64)
208     return {};
209 
210   if (!GEP.isInBounds())
211     return {{0, nullptr}, {1, &GEP}};
212 
213   // Handle the (gep (gep ....), C) case by incrementing the constant
214   // coefficient of the inner GEP, if C is a constant.
215   auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
216   if (InnerGEP && InnerGEP->getNumOperands() == 2 &&
217       isa<ConstantInt>(GEP.getOperand(1))) {
218     APInt Offset = cast<ConstantInt>(GEP.getOperand(1))->getValue();
219     auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
220 
221     auto GTI = gep_type_begin(GEP);
222     // Bail out for scalable vectors for now.
223     if (isa<ScalableVectorType>(GTI.getIndexedType()))
224       return {};
225     int64_t Scale = static_cast<int64_t>(
226         DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize());
227 
228     Result[0].Coefficient += multiplyWithOverflow(Scale, Offset.getSExtValue());
229     if (Offset.isNegative()) {
230       // Add pre-condition ensuring the GEP is increasing monotonically and
231       // can be de-composed.
232       Preconditions.emplace_back(
233           CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
234           ConstantInt::get(InnerGEP->getOperand(1)->getType(),
235                            -1 * Offset.getSExtValue()));
236     }
237     return Result;
238   }
239 
240   SmallVector<DecompEntry, 4> Result = {{0, nullptr},
241                                         {1, GEP.getPointerOperand()}};
242   gep_type_iterator GTI = gep_type_begin(GEP);
243   for (User::const_op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
244        ++I, ++GTI) {
245     Value *Index = *I;
246 
247     // Bail out for scalable vectors for now.
248     if (isa<ScalableVectorType>(GTI.getIndexedType()))
249       return {};
250 
251     // Struct indices must be constants (and reference an existing field). Add
252     // them to the constant factor.
253     if (StructType *STy = GTI.getStructTypeOrNull()) {
254       // For a struct, add the member offset.
255       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
256       if (FieldNo == 0)
257         continue;
258 
259       // Add offset to constant factor.
260       Result[0].Coefficient +=
261           DL.getStructLayout(STy)->getElementOffset(FieldNo);
262       continue;
263     }
264 
265     // For an array/pointer, add the element offset, explicitly scaled.
266     unsigned Scale = DL.getTypeAllocSize(GTI.getIndexedType()).getFixedSize();
267 
268     auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
269     if (IdxResult.empty()) {
270       Result.emplace_back(Scale, Index);
271     } else {
272       for (auto &KV : IdxResult)
273         KV.Coefficient *= Scale;
274       Result[0].Coefficient += IdxResult[0].Coefficient;
275       append_range(Result, ArrayRef<DecompEntry>(IdxResult).drop_front());
276     }
277     // If Op0 is signed non-negative, the GEP is increasing monotonically and
278     // can be de-composed.
279     if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
280       Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
281                                  ConstantInt::get(Index->getType(), 0));
282   }
283   return Result;
284 }
285 
286 // Decomposes \p V into a vector of entries of the form { Coefficient, Variable
287 // } where Coefficient * Variable. The sum of the pairs equals \p V.  The first
288 // pair is the constant-factor and X must be nullptr. If the expression cannot
289 // be decomposed, returns an empty vector.
290 static SmallVector<DecompEntry, 4>
291 decompose(Value *V, SmallVector<PreconditionTy, 4> &Preconditions,
292           bool IsSigned, const DataLayout &DL) {
293 
294   auto MergeResults = [&Preconditions, IsSigned,
295                        DL](Value *A, Value *B,
296                            bool IsSignedB) -> SmallVector<DecompEntry, 4> {
297     auto ResA = decompose(A, Preconditions, IsSigned, DL);
298     auto ResB = decompose(B, Preconditions, IsSignedB, DL);
299     if (ResA.empty() || ResB.empty())
300       return {};
301     ResA[0].Coefficient += ResB[0].Coefficient;
302     append_range(ResA, drop_begin(ResB));
303     return ResA;
304   };
305 
306   // Decompose \p V used with a signed predicate.
307   if (IsSigned) {
308     if (auto *CI = dyn_cast<ConstantInt>(V)) {
309       if (canUseSExt(CI))
310         return {{CI->getSExtValue(), nullptr}};
311     }
312     Value *Op0;
313     Value *Op1;
314     if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
315       return MergeResults(Op0, Op1, IsSigned);
316 
317     return {{0, nullptr}, {1, V}};
318   }
319 
320   if (auto *CI = dyn_cast<ConstantInt>(V)) {
321     if (CI->uge(MaxConstraintValue))
322       return {};
323     return {{int64_t(CI->getZExtValue()), nullptr}};
324   }
325 
326   if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
327     return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
328 
329   Value *Op0;
330   bool IsKnownPositive = false;
331   if (match(V, m_ZExt(m_Value(Op0)))) {
332     IsKnownPositive = true;
333     V = Op0;
334   }
335 
336   Value *Op1;
337   ConstantInt *CI;
338   if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
339     return MergeResults(Op0, Op1, IsSigned);
340   }
341   if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
342     if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
343       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
344                                  ConstantInt::get(Op0->getType(), 0));
345     if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
346       Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
347                                  ConstantInt::get(Op1->getType(), 0));
348 
349     return MergeResults(Op0, Op1, IsSigned);
350   }
351 
352   if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
353       canUseSExt(CI)) {
354     Preconditions.emplace_back(
355         CmpInst::ICMP_UGE, Op0,
356         ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
357     return MergeResults(Op0, CI, true);
358   }
359 
360   if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
361     int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
362     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
363     for (auto &KV : Result)
364       KV.Coefficient *= Mult;
365     return Result;
366   }
367 
368   if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
369       (!CI->isNegative())) {
370     auto Result = decompose(Op1, Preconditions, IsSigned, DL);
371     for (auto &KV : Result)
372       KV.Coefficient *= CI->getSExtValue();
373     return Result;
374   }
375 
376   if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
377     return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
378   if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
379     return {{0, nullptr}, {1, Op0}, {-1, Op1}};
380 
381   return {{0, nullptr}, {1, V, IsKnownPositive}};
382 }
383 
384 ConstraintTy
385 ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
386                               SmallVectorImpl<Value *> &NewVariables) const {
387   assert(NewVariables.empty() && "NewVariables must be empty when passed in");
388   bool IsEq = false;
389   // Try to convert Pred to one of ULE/SLT/SLE/SLT.
390   switch (Pred) {
391   case CmpInst::ICMP_UGT:
392   case CmpInst::ICMP_UGE:
393   case CmpInst::ICMP_SGT:
394   case CmpInst::ICMP_SGE: {
395     Pred = CmpInst::getSwappedPredicate(Pred);
396     std::swap(Op0, Op1);
397     break;
398   }
399   case CmpInst::ICMP_EQ:
400     if (match(Op1, m_Zero())) {
401       Pred = CmpInst::ICMP_ULE;
402     } else {
403       IsEq = true;
404       Pred = CmpInst::ICMP_ULE;
405     }
406     break;
407   case CmpInst::ICMP_NE:
408     if (!match(Op1, m_Zero()))
409       return {};
410     Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
411     std::swap(Op0, Op1);
412     break;
413   default:
414     break;
415   }
416 
417   // Only ULE and ULT predicates are supported at the moment.
418   if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
419       Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
420     return {};
421 
422   SmallVector<PreconditionTy, 4> Preconditions;
423   bool IsSigned = CmpInst::isSigned(Pred);
424   auto &Value2Index = getValue2Index(IsSigned);
425   auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
426                         Preconditions, IsSigned, DL);
427   auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
428                         Preconditions, IsSigned, DL);
429   // Skip if decomposing either of the values failed.
430   if (ADec.empty() || BDec.empty())
431     return {};
432 
433   int64_t Offset1 = ADec[0].Coefficient;
434   int64_t Offset2 = BDec[0].Coefficient;
435   Offset1 *= -1;
436 
437   // Create iterator ranges that skip the constant-factor.
438   auto VariablesA = llvm::drop_begin(ADec);
439   auto VariablesB = llvm::drop_begin(BDec);
440 
441   // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
442   // new entry to NewVariables.
443   DenseMap<Value *, unsigned> NewIndexMap;
444   auto GetOrAddIndex = [&Value2Index, &NewVariables,
445                         &NewIndexMap](Value *V) -> unsigned {
446     auto V2I = Value2Index.find(V);
447     if (V2I != Value2Index.end())
448       return V2I->second;
449     auto Insert =
450         NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
451     if (Insert.second)
452       NewVariables.push_back(V);
453     return Insert.first->second;
454   };
455 
456   // Make sure all variables have entries in Value2Index or NewVariables.
457   for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
458     GetOrAddIndex(KV.Variable);
459 
460   // Build result constraint, by first adding all coefficients from A and then
461   // subtracting all coefficients from B.
462   ConstraintTy Res(
463       SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
464       IsSigned);
465   // Collect variables that are known to be positive in all uses in the
466   // constraint.
467   DenseMap<Value *, bool> KnownPositiveVariables;
468   Res.IsEq = IsEq;
469   auto &R = Res.Coefficients;
470   for (const auto &KV : VariablesA) {
471     R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
472     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
473     I.first->second &= KV.IsKnownPositive;
474   }
475 
476   for (const auto &KV : VariablesB) {
477     R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
478     auto I = KnownPositiveVariables.insert({KV.Variable, KV.IsKnownPositive});
479     I.first->second &= KV.IsKnownPositive;
480   }
481 
482   int64_t OffsetSum;
483   if (AddOverflow(Offset1, Offset2, OffsetSum))
484     return {};
485   if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
486     if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
487       return {};
488   R[0] = OffsetSum;
489   Res.Preconditions = std::move(Preconditions);
490 
491   // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
492   // variables.
493   while (!NewVariables.empty()) {
494     int64_t Last = R.back();
495     if (Last != 0)
496       break;
497     R.pop_back();
498     Value *RemovedV = NewVariables.pop_back_val();
499     NewIndexMap.erase(RemovedV);
500   }
501 
502   // Add extra constraints for variables that are known positive.
503   for (auto &KV : KnownPositiveVariables) {
504     if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
505                        NewIndexMap.find(KV.first) == NewIndexMap.end()))
506       continue;
507     SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
508     C[GetOrAddIndex(KV.first)] = -1;
509     Res.ExtraInfo.push_back(C);
510   }
511   return Res;
512 }
513 
514 ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
515                                                      Value *Op0,
516                                                      Value *Op1) const {
517   // If both operands are known to be non-negative, change signed predicates to
518   // unsigned ones. This increases the reasoning effectiveness in combination
519   // with the signed <-> unsigned transfer logic.
520   if (CmpInst::isSigned(Pred) &&
521       isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
522       isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
523     Pred = CmpInst::getUnsignedPredicate(Pred);
524 
525   SmallVector<Value *> NewVariables;
526   ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
527   if (R.IsEq || !NewVariables.empty())
528     return {};
529   return R;
530 }
531 
532 bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
533   return Coefficients.size() > 0 &&
534          all_of(Preconditions, [&Info](const PreconditionTy &C) {
535            return Info.doesHold(C.Pred, C.Op0, C.Op1);
536          });
537 }
538 
539 bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
540                               Value *B) const {
541   auto R = getConstraintForSolving(Pred, A, B);
542   return R.Preconditions.empty() && !R.empty() &&
543          getCS(R.IsSigned).isConditionImplied(R.Coefficients);
544 }
545 
546 void ConstraintInfo::transferToOtherSystem(
547     CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
548     unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
549   // Check if we can combine facts from the signed and unsigned systems to
550   // derive additional facts.
551   if (!A->getType()->isIntegerTy())
552     return;
553   // FIXME: This currently depends on the order we add facts. Ideally we
554   // would first add all known facts and only then try to add additional
555   // facts.
556   switch (Pred) {
557   default:
558     break;
559   case CmpInst::ICMP_ULT:
560     //  If B is a signed positive constant, A >=s 0 and A <s B.
561     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
562       addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
563               NumOut, DFSInStack);
564       addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
565     }
566     break;
567   case CmpInst::ICMP_SLT:
568     if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
569       addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
570     break;
571   case CmpInst::ICMP_SGT:
572     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
573       addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
574               NumOut, DFSInStack);
575     break;
576   case CmpInst::ICMP_SGE:
577     if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
578       addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
579     }
580     break;
581   }
582 }
583 
584 namespace {
585 /// Represents either a condition that holds on entry to a block or a basic
586 /// block, with their respective Dominator DFS in and out numbers.
587 struct ConstraintOrBlock {
588   unsigned NumIn;
589   unsigned NumOut;
590   bool IsBlock;
591   bool Not;
592   union {
593     BasicBlock *BB;
594     CmpInst *Condition;
595   };
596 
597   ConstraintOrBlock(DomTreeNode *DTN)
598       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
599         BB(DTN->getBlock()) {}
600   ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
601       : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
602         Not(Not), Condition(Condition) {}
603 };
604 
605 /// Keep state required to build worklist.
606 struct State {
607   DominatorTree &DT;
608   SmallVector<ConstraintOrBlock, 64> WorkList;
609 
610   State(DominatorTree &DT) : DT(DT) {}
611 
612   /// Process block \p BB and add known facts to work-list.
613   void addInfoFor(BasicBlock &BB);
614 
615   /// Returns true if we can add a known condition from BB to its successor
616   /// block Succ. Each predecessor of Succ can either be BB or be dominated
617   /// by Succ (e.g. the case when adding a condition from a pre-header to a
618   /// loop header).
619   bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
620     if (BB.getSingleSuccessor()) {
621       assert(BB.getSingleSuccessor() == Succ);
622       return DT.properlyDominates(&BB, Succ);
623     }
624     return any_of(successors(&BB),
625                   [Succ](const BasicBlock *S) { return S != Succ; }) &&
626            all_of(predecessors(Succ), [&BB, Succ, this](BasicBlock *Pred) {
627              return Pred == &BB || DT.dominates(Succ, Pred);
628            });
629   }
630 };
631 
632 } // namespace
633 
634 #ifndef NDEBUG
635 static void dumpWithNames(const ConstraintSystem &CS,
636                           DenseMap<Value *, unsigned> &Value2Index) {
637   SmallVector<std::string> Names(Value2Index.size(), "");
638   for (auto &KV : Value2Index) {
639     Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
640   }
641   CS.dump(Names);
642 }
643 
644 static void dumpWithNames(ArrayRef<int64_t> C,
645                           DenseMap<Value *, unsigned> &Value2Index) {
646   ConstraintSystem CS;
647   CS.addVariableRowFill(C);
648   dumpWithNames(CS, Value2Index);
649 }
650 #endif
651 
652 void State::addInfoFor(BasicBlock &BB) {
653   WorkList.emplace_back(DT.getNode(&BB));
654 
655   // True as long as long as the current instruction is guaranteed to execute.
656   bool GuaranteedToExecute = true;
657   // Scan BB for assume calls.
658   // TODO: also use this scan to queue conditions to simplify, so we can
659   // interleave facts from assumes and conditions to simplify in a single
660   // basic block. And to skip another traversal of each basic block when
661   // simplifying.
662   for (Instruction &I : BB) {
663     Value *Cond;
664     // For now, just handle assumes with a single compare as condition.
665     if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
666         isa<ICmpInst>(Cond)) {
667       if (GuaranteedToExecute) {
668         // The assume is guaranteed to execute when BB is entered, hence Cond
669         // holds on entry to BB.
670         WorkList.emplace_back(DT.getNode(&BB), cast<ICmpInst>(Cond), false);
671       } else {
672         // Otherwise the condition only holds in the successors.
673         for (BasicBlock *Succ : successors(&BB)) {
674           if (!canAddSuccessor(BB, Succ))
675             continue;
676           WorkList.emplace_back(DT.getNode(Succ), cast<ICmpInst>(Cond), false);
677         }
678       }
679     }
680     GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
681   }
682 
683   auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
684   if (!Br || !Br->isConditional())
685     return;
686 
687   Value *Cond = Br->getCondition();
688 
689   // If the condition is a chain of ORs/AND and the successor only has the
690   // current block as predecessor, queue conditions for the successor.
691   Value *Op0, *Op1;
692   if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
693       match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
694     bool IsOr = match(Cond, m_LogicalOr());
695     bool IsAnd = match(Cond, m_LogicalAnd());
696     // If there's a select that matches both AND and OR, we need to commit to
697     // one of the options. Arbitrarily pick OR.
698     if (IsOr && IsAnd)
699       IsAnd = false;
700 
701     BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
702     if (canAddSuccessor(BB, Successor)) {
703       SmallVector<Value *> CondWorkList;
704       SmallPtrSet<Value *, 8> SeenCond;
705       auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
706         if (SeenCond.insert(V).second)
707           CondWorkList.push_back(V);
708       };
709       QueueValue(Op1);
710       QueueValue(Op0);
711       while (!CondWorkList.empty()) {
712         Value *Cur = CondWorkList.pop_back_val();
713         if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
714           WorkList.emplace_back(DT.getNode(Successor), Cmp, IsOr);
715           continue;
716         }
717         if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
718           QueueValue(Op1);
719           QueueValue(Op0);
720           continue;
721         }
722         if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
723           QueueValue(Op1);
724           QueueValue(Op0);
725           continue;
726         }
727       }
728     }
729     return;
730   }
731 
732   auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
733   if (!CmpI)
734     return;
735   if (canAddSuccessor(BB, Br->getSuccessor(0)))
736     WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
737   if (canAddSuccessor(BB, Br->getSuccessor(1)))
738     WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
739 }
740 
741 static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
742   LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
743   CmpInst::Predicate Pred = Cmp->getPredicate();
744   Value *A = Cmp->getOperand(0);
745   Value *B = Cmp->getOperand(1);
746 
747   auto R = Info.getConstraintForSolving(Pred, A, B);
748   if (R.empty() || !R.isValid(Info)){
749     LLVM_DEBUG(dbgs() << "   failed to decompose condition\n");
750     return false;
751   }
752 
753   auto &CSToUse = Info.getCS(R.IsSigned);
754 
755   // If there was extra information collected during decomposition, apply
756   // it now and remove it immediately once we are done with reasoning
757   // about the constraint.
758   for (auto &Row : R.ExtraInfo)
759     CSToUse.addVariableRow(Row);
760   auto InfoRestorer = make_scope_exit([&]() {
761     for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
762       CSToUse.popLastConstraint();
763   });
764 
765   bool Changed = false;
766   LLVMContext &Ctx = Cmp->getModule()->getContext();
767   if (CSToUse.isConditionImplied(R.Coefficients)) {
768     if (!DebugCounter::shouldExecute(EliminatedCounter))
769       return false;
770 
771     LLVM_DEBUG({
772       dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
773       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
774     });
775     Cmp->replaceUsesWithIf(ConstantInt::getTrue(Ctx), [](Use &U) {
776       // Conditions in an assume trivially simplify to true. Skip uses
777       // in assume calls to not destroy the available information.
778       auto *II = dyn_cast<IntrinsicInst>(U.getUser());
779       return !II || II->getIntrinsicID() != Intrinsic::assume;
780     });
781     NumCondsRemoved++;
782     Changed = true;
783   }
784   if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
785     if (!DebugCounter::shouldExecute(EliminatedCounter))
786       return false;
787 
788     LLVM_DEBUG({
789       dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
790       dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
791     });
792     Cmp->replaceAllUsesWith(ConstantInt::getFalse(Ctx));
793     NumCondsRemoved++;
794     Changed = true;
795   }
796   return Changed;
797 }
798 
799 void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
800                              unsigned NumIn, unsigned NumOut,
801                              SmallVectorImpl<StackEntry> &DFSInStack) {
802   // If the constraint has a pre-condition, skip the constraint if it does not
803   // hold.
804   SmallVector<Value *> NewVariables;
805   auto R = getConstraint(Pred, A, B, NewVariables);
806   if (!R.isValid(*this))
807     return;
808 
809   LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
810              A->printAsOperand(dbgs(), false); dbgs() << ", ";
811              B->printAsOperand(dbgs(), false); dbgs() << "'\n");
812   bool Added = false;
813   auto &CSToUse = getCS(R.IsSigned);
814   if (R.Coefficients.empty())
815     return;
816 
817   Added |= CSToUse.addVariableRowFill(R.Coefficients);
818 
819   // If R has been added to the system, add the new variables and queue it for
820   // removal once it goes out-of-scope.
821   if (Added) {
822     SmallVector<Value *, 2> ValuesToRelease;
823     auto &Value2Index = getValue2Index(R.IsSigned);
824     for (Value *V : NewVariables) {
825       Value2Index.insert({V, Value2Index.size() + 1});
826       ValuesToRelease.push_back(V);
827     }
828 
829     LLVM_DEBUG({
830       dbgs() << "  constraint: ";
831       dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
832       dbgs() << "\n";
833     });
834 
835     DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned, ValuesToRelease);
836 
837     if (R.IsEq) {
838       // Also add the inverted constraint for equality constraints.
839       for (auto &Coeff : R.Coefficients)
840         Coeff *= -1;
841       CSToUse.addVariableRowFill(R.Coefficients);
842 
843       DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
844                               SmallVector<Value *, 2>());
845     }
846   }
847 }
848 
849 static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
850                                    SmallVectorImpl<Instruction *> &ToRemove) {
851   bool Changed = false;
852   IRBuilder<> Builder(II->getParent(), II->getIterator());
853   Value *Sub = nullptr;
854   for (User *U : make_early_inc_range(II->users())) {
855     if (match(U, m_ExtractValue<0>(m_Value()))) {
856       if (!Sub)
857         Sub = Builder.CreateSub(A, B);
858       U->replaceAllUsesWith(Sub);
859       Changed = true;
860     } else if (match(U, m_ExtractValue<1>(m_Value()))) {
861       U->replaceAllUsesWith(Builder.getFalse());
862       Changed = true;
863     } else
864       continue;
865 
866     if (U->use_empty()) {
867       auto *I = cast<Instruction>(U);
868       ToRemove.push_back(I);
869       I->setOperand(0, PoisonValue::get(II->getType()));
870       Changed = true;
871     }
872   }
873 
874   if (II->use_empty()) {
875     II->eraseFromParent();
876     Changed = true;
877   }
878   return Changed;
879 }
880 
881 static bool
882 tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
883                           SmallVectorImpl<Instruction *> &ToRemove) {
884   auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
885                               ConstraintInfo &Info) {
886     auto R = Info.getConstraintForSolving(Pred, A, B);
887     if (R.size() < 2 || !R.isValid(Info))
888       return false;
889 
890     auto &CSToUse = Info.getCS(R.IsSigned);
891     return CSToUse.isConditionImplied(R.Coefficients);
892   };
893 
894   bool Changed = false;
895   if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
896     // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
897     // can be simplified to a regular sub.
898     Value *A = II->getArgOperand(0);
899     Value *B = II->getArgOperand(1);
900     if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
901         !DoesConditionHold(CmpInst::ICMP_SGE, B,
902                            ConstantInt::get(A->getType(), 0), Info))
903       return false;
904     Changed = replaceSubOverflowUses(II, A, B, ToRemove);
905   }
906   return Changed;
907 }
908 
909 static bool eliminateConstraints(Function &F, DominatorTree &DT) {
910   bool Changed = false;
911   DT.updateDFSNumbers();
912 
913   ConstraintInfo Info(F.getParent()->getDataLayout());
914   State S(DT);
915 
916   // First, collect conditions implied by branches and blocks with their
917   // Dominator DFS in and out numbers.
918   for (BasicBlock &BB : F) {
919     if (!DT.getNode(&BB))
920       continue;
921     S.addInfoFor(BB);
922   }
923 
924   // Next, sort worklist by dominance, so that dominating blocks and conditions
925   // come before blocks and conditions dominated by them. If a block and a
926   // condition have the same numbers, the condition comes before the block, as
927   // it holds on entry to the block. Also make sure conditions with constant
928   // operands come before conditions without constant operands. This increases
929   // the effectiveness of the current signed <-> unsigned fact transfer logic.
930   stable_sort(
931       S.WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
932         auto HasNoConstOp = [](const ConstraintOrBlock &B) {
933           return !B.IsBlock && !isa<ConstantInt>(B.Condition->getOperand(0)) &&
934                  !isa<ConstantInt>(B.Condition->getOperand(1));
935         };
936         bool NoConstOpA = HasNoConstOp(A);
937         bool NoConstOpB = HasNoConstOp(B);
938         return std::tie(A.NumIn, A.IsBlock, NoConstOpA) <
939                std::tie(B.NumIn, B.IsBlock, NoConstOpB);
940       });
941 
942   SmallVector<Instruction *> ToRemove;
943 
944   // Finally, process ordered worklist and eliminate implied conditions.
945   SmallVector<StackEntry, 16> DFSInStack;
946   for (ConstraintOrBlock &CB : S.WorkList) {
947     // First, pop entries from the stack that are out-of-scope for CB. Remove
948     // the corresponding entry from the constraint system.
949     while (!DFSInStack.empty()) {
950       auto &E = DFSInStack.back();
951       LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
952                         << "\n");
953       LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
954       assert(E.NumIn <= CB.NumIn);
955       if (CB.NumOut <= E.NumOut)
956         break;
957       LLVM_DEBUG({
958         dbgs() << "Removing ";
959         dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
960                       Info.getValue2Index(E.IsSigned));
961         dbgs() << "\n";
962       });
963 
964       Info.popLastConstraint(E.IsSigned);
965       // Remove variables in the system that went out of scope.
966       auto &Mapping = Info.getValue2Index(E.IsSigned);
967       for (Value *V : E.ValuesToRelease)
968         Mapping.erase(V);
969       Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
970       DFSInStack.pop_back();
971     }
972 
973     LLVM_DEBUG({
974       dbgs() << "Processing ";
975       if (CB.IsBlock)
976         dbgs() << *CB.BB;
977       else
978         dbgs() << *CB.Condition;
979       dbgs() << "\n";
980     });
981 
982     // For a block, check if any CmpInsts become known based on the current set
983     // of constraints.
984     if (CB.IsBlock) {
985       for (Instruction &I : make_early_inc_range(*CB.BB)) {
986         if (auto *II = dyn_cast<WithOverflowInst>(&I)) {
987           Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
988           continue;
989         }
990         auto *Cmp = dyn_cast<ICmpInst>(&I);
991         if (!Cmp)
992           continue;
993 
994         Changed |= checkAndReplaceCondition(Cmp, Info);
995       }
996       continue;
997     }
998 
999     ICmpInst::Predicate Pred;
1000     Value *A, *B;
1001     if (match(CB.Condition, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
1002       // Use the inverse predicate if required.
1003       if (CB.Not)
1004         Pred = CmpInst::getInversePredicate(Pred);
1005 
1006       Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1007       Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1008     }
1009   }
1010 
1011 #ifndef NDEBUG
1012   unsigned SignedEntries =
1013       count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1014   assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1015          "updates to CS and DFSInStack are out of sync");
1016   assert(Info.getCS(true).size() == SignedEntries &&
1017          "updates to CS and DFSInStack are out of sync");
1018 #endif
1019 
1020   for (Instruction *I : ToRemove)
1021     I->eraseFromParent();
1022   return Changed;
1023 }
1024 
1025 PreservedAnalyses ConstraintEliminationPass::run(Function &F,
1026                                                  FunctionAnalysisManager &AM) {
1027   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1028   if (!eliminateConstraints(F, DT))
1029     return PreservedAnalyses::all();
1030 
1031   PreservedAnalyses PA;
1032   PA.preserve<DominatorTreeAnalysis>();
1033   PA.preserveSet<CFGAnalyses>();
1034   return PA;
1035 }
1036 
1037 namespace {
1038 
1039 class ConstraintElimination : public FunctionPass {
1040 public:
1041   static char ID;
1042 
1043   ConstraintElimination() : FunctionPass(ID) {
1044     initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
1045   }
1046 
1047   bool runOnFunction(Function &F) override {
1048     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1049     return eliminateConstraints(F, DT);
1050   }
1051 
1052   void getAnalysisUsage(AnalysisUsage &AU) const override {
1053     AU.setPreservesCFG();
1054     AU.addRequired<DominatorTreeWrapperPass>();
1055     AU.addPreserved<GlobalsAAWrapperPass>();
1056     AU.addPreserved<DominatorTreeWrapperPass>();
1057   }
1058 };
1059 
1060 } // end anonymous namespace
1061 
1062 char ConstraintElimination::ID = 0;
1063 
1064 INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
1065                       "Constraint Elimination", false, false)
1066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1067 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1068 INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
1069                     "Constraint Elimination", false, false)
1070 
1071 FunctionPass *llvm::createConstraintEliminationPass() {
1072   return new ConstraintElimination();
1073 }
1074